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UNIFORM INTEGRABILITY OF DERIVATIVES ON
o-LATTICES

ALLAN F. ABRAHAMSE

This paper contains a new derivation of the Radon-Nikodym
derivative on a s-lattice. Absolute continuity is defined in this
setting, and the definition is justified by obtaining an extension
of a standard result on the uniform integrability of deriva-
tives. An application to mean convergence of martingales and
a version of Jensen’s inequality are given.

Let (2, #, P) be a probability space, # a finite signed measure
on &, and _# a o-lattice of elements of .&#. By this, we mean _#
contains £ and the empty set ¢, and is closed under countable unions
and countable intersections. We denote by _Z° the collection of com-
plements of elements of _#. An extended real valued function X on
Q is said to be measurable with respect to _#Z (we will write Xe _#)
if sets of the form {X = a} = {w | X(w) = a} are in _# for every real a.

In [3] it is shown that there exists an a.s. unique (a.s. with re-
spect to P) function Xe€ _~ such that for every real a,

P(AN{X = a) = aP(AN{X = a}) Ae _z°
PUAN{X =a})) SaPUN{X =< a}) Ade 7 .

X is called the derivative of @ with respect to P on _#Z. We denote
this by X = D(p, #).

In this paper we present a new proof of the existence of this
derivative X, based on the observation that the set {X = a} maximizes
P(4) — aP(4) as 4 runs over _#. We introduce what appears to be
suitable definition of absolute continuity in the present setting. Our
main result is that the collection of derivatives {D(®, )}, for
Ay S A, is uniformly integrable if and only if @ is absolutely con-
tinuous with respect to P on _#. As an application of this, we can
strengthen a result in [2] concerning mean convergence of martingales
over o-lattices.

Finally, we prove a version of Jensen’s inequality for the present
setting. This enables one to obtain very easily the results in [2].

The o-lattice # is a o-field if and only if # = _#°. It will
be noted that in all that follows, if _# is a o-field the standard
theory is obtained. We have here direct generalizations of the clas-
sical theory. What is remarkable is that little extra work seems to
be entailed.
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2. The derivative. We begin by defining:
(1) Pt = sup {p(4) | 4e 7}
~ =inf{p{A) | A #Z°}.
Then the following holds for A,e _#°, 4,€ _#"
(2) P) — P Z P4 N L) Z Pl4) — P

To establish the right hand inequality, we note that AN 4,e_,
hence @(4; N 4,) < p*. Then @4, N ) = P(L — PN Ay) = P(4,) — P
The left hand inequality follows similarly.

THEOREM 1. (a) There is a A€ _# such that P(4) = ¢*. (b) There
s a de _#° such that p(A) =

Proof. For each n =1, choose 4,6 _# such that ¢(4,) =@+ —27"
Then
P(U 4,) = 2(4) + 5 @y — (4.0 -+ U 4s)

m=n-+

= 9(4,) ; @) — P*)

_I_
— Sem =gt o2,

Let 4 = limsup 4,, and by continuity of @, (1) =
The proof of (b) is similar.

COROLLARY 1. @(Q) = @+ + @~

Proof. Select Ae _# so that (1) = ¢*. Then p(Q) = ¢+ + ¢~
The reverse inequality is obtained in an obvious way.

COROLLARY 2. For Ae _# @A) = ¢t if and only if ¢(4°) = ™.

Proof. If Ae_# and @(4) = ¢*, then @A) = P(2) — P(4) =
P(2) — Pt = P

THEOREM 2. If A€ _#; the following are equivalent:

(a) P(4) =o*

(b) @4, NA) =0 for all Adye #°, and PU4,N A) =0 for all
A, e _#.

Proof. Assume (a). Then ®(4°) = »~. The first inequality of
(b) follows from the right hand inequality of (2), and the second from
the left hand.
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Conversely, assume (b) is valid for 1€ _#. Select 4,€ _# so that
o(4,) = p*. Then @(4°N 4,) = 0 from (2) and @(4°N 4,) < 0 from (b),
hence (4°N4,) = 0. Similarly, (4N 45) =0, and so P(4) = p(4,) = P*.
This completes our proof.

DErINITION. A function Xe _# is a derivative of ®» with respect

to P if for every real a,
PUAN{X=a}) ZaP(UN{X=a}) Ade _7z°
PUN{X = a}) S aPUN{X =< a}) Ade # .

For any real a, let @, = ® — aP, and define @} and ®; by (1),
using @,. Since for each fixed 4€ &, ®,(4) is nonincreasing, so are
Ps and ;.

COROLLARY. Xe _Z is a derivative of ® with respect to P on
A2 if and only if P.({X = a}) = @F for every real a.

The reader is referred to [4], p. 108, for a classical version of
the following.

THEOREM 3. A derivative of ® with respect to P on _#Z exists,
and 18 a.s. unique.

Proof. Define a collection K of functions by setting

K={Xe 7Z|pAN{X=a}) =0 all 4e_»°, all real a}.
For any real a, we can choose 4,€ _# so that ®(4,) = @;. Let

X.(w) =a we A,
= — oo we AS.

(3)

Then we claim X,e K. For suppose b > a. Then {X, = b} = &, so
(A N{X, = b}) =0. On the other hand, if b < a, then {X, = b} = 4,,

and ¢, (AN{X, = b}) = P,(4N{X, = b}) 0 by Theorem 2.

We now note that if Xe K, Ye_»~ and X = 7Y, then for any
de 77,

PAN{X=a}) =p(AN{Y =Za}) + p.(AdN{a > Y}IN{X = a)}).
Since 4 N {a > Y}e _#°, the right-most term is nonnegative, hence
(4) PAN{X=Za}) ZP(AN{Y = a}) .

Now suppose X, X,, --- are elements of K. Let

Z =sup (X, X,, ) .
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Certainly Ze _»#. We define
4, =0
A ={X,<a, -, Xo < a} E>1.
Then 4,e€ _#° for each k=1, and
Z>d=U4n{X>qg.

The terms on the right are pair-wise disjoint, so for any Ae 27,
P(ANA{Z > a}) :I§¢a(/ln/1kn {(Xy >a}) =0.
That @,(4N {Z = a}) = 0 follows by continuity, whence Ze K.

Let Q be a countable dense subset of the reals containing the
discontinuities of ®;. Define

X =sup{X,|qe @)}

where X, is defined by (3). From the preceding argument Xe K,
and from (4),

PrZ P (X =q) =2 P(X,=0q) =P;

for all ge Q. It follows that ¢,(X = a) = ®;, hence X is a derivative.
Uniqueness a.s. is implied by the following lemma.

LeEMMA 1. Suppose X, Y are measurable with respect to _#; and
for all real a,

<Pa(/lﬂ {Yz a}) go Ae%c
PAN{XSa) <0 de 7.

Then Y < X a.s.

Proof. Choose @ < b. Then
0=2({X=a<b=Y)h) =P ({(XSa<hb=¥Y}) 0.
It follows that
bPX<a<b=Y})=aP{X=Za<bZY)}

and so P(X < a < b < Y}) = 0, from which our result clearly follows.
We now give some elementary properties of the derivative.

LEMMA 2. Let @', 9 be finite signed measures on &, with P' < @
Then D(9', #) < D(P*, _#) a.s.
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Proof. Let X* = D(p*, #),k =1,2. Then
PAN{X* S a)) = PiAN{X*Za}) 20

for A€ _«, any real a. Since PL(AN{X'=a}) =0 for 4 _#°, any
real a, the result follows from Lemma 1.

LEMMA 3.
D(ap + bP, #) = aD(p, #) + b a=0
=aD(p, #Z°) + b a<0.

Suppose a < 0, and let ¥ = ap + bP, and X = D(p, #). Since
aX + be _#°, we must show that ¥/ = ¥,(aX + b = t). But
U = aPh-wa
= aq)(t—-b)/a(X =({— ba)
= aP-_p(@X + b = 1)
=0,aX+b=t).

This proves our assertion. When a = 0 or ¢ > 0, similar proofs work.
Finally, we note that | D(p, .#)| is a.s. finite. For

aPXza) =X =a) =t

hence
PXza) =2
a
and so
P(X = ) :ErgP(X%a) =0.
Similarly we can prove P(X = — o) = 0.

3. Absolute continuity and uniform integrability. When
Xe 7, de 7, we will write

mxngmw
A

if the right hand side is well defined. The following result is in
[3], but since the proof is not long, we will include it here.

THEOREM 4. If X = D(®, #), then for a, b real,

PUNfe< X< EX;AN{fa<X=<b) de z°

5
(5) SEX;AN{fe = XZ0)) Ade 7 .
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Proof. For any » =1, choose a, a, ---,a,, with ¢, =a — 1/n,
Oy — . = (b— ag)/n,a, =b. For Ade 27,
PUN(a— =< X =) =5 9N @, < X Za,.1)

n—1
= kz:oakP(/l N {ak < X< ak—(—l}) .

As n increases, the right and left hand terms of this inequality ap-
proach the corresponding terms of (5). For Ae_; a similar proof
works.

COROLLARY. D(p, #) is integrable.
Proof. Since Qe _~ N _#°, both inequalities in Theorem 4 hold,
and we obtain
Pla=X=b) =EX;{a=X=b)).
Our conclusion follows from the fact that P(| X| <) =1 and @ is

finite.

DEFINITION. @ is absolutely continuous with respect to Pon _#
if the following conditions hold: (a) If 4e_# and P(4) = 0, then
@A) £0. (b) If A€ _7° and P(4) = 0, then @(4) = 0.

THEOREM 5. The following are equivalent:

(a) @ s absolutely continuous with respect to P on _7.
(b) D@, #Z) = ) =9(D(p, #Z°) = —)=0

(¢) lim,. @5 =lim,. .97 =0

(d) There is an Xe 7 such that

P{d) = E(X; 1) Ade z°
= E(X, 1) de # .

Proof. Let X = D{p, ). Then since
aPla = X) = pla = X < =)
we always have lim,_.,aP{a < X) = 0. Now we note

0=, =P(X =a)
=pX=za)—aPX=a).
Hence

lim @, = (X = ).

a—oo
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Similarly,

}fi’l Py =P(X = —c0).
Hence, (b) and (c¢) are equivalent.
Now assume (a). Since P(X = «) =0, it follows that o(X =
) < 0. But since p(X=n)=nP(X=n)=0, (X = «) =0 always
holds. Hence (X = «) = 0. Similarly we can prove (X = — =) =0,
hence (b) holds.
Assume (¢). Select 4€_+, and suppose P(4) = 0. Then for all a,

P(4) < Pf + aP(A) = ¢

hence ¢(4) =< 0. In a similar way we can prove ®{4) = 0 if de _~°
and P(4) = 0, so (¢) implies (a).

Clearly (d) implies (a). Conversely, if (b) holds, then (d) follows
from Theorem 4 by letting a — — oo, b— . This completes the
proof.

ExAMPLE. Let (2, &, P)denote the unit interval under Lebesgue
measure. Let _# denote the class of all intervals of 2, each of which
contains the number 1. Define @{{1}) = —1, #({0}) = 1, and @(4) =0
if {0,1}Nn4=¢. Then @ is absolutely continuous with respect to
P on _#, but is singular with respect to P on .&#. It is therefore
not the case that there exists a function Xe.&# such that ¢(4) =
E(X; A) for all 41€ &#. It is not hard to verify that D{p, #) = 0.
a.s.

In what follows, let _#Z be a fixed o-lattice, and let & denote
the class of derivatives X, = D(®, ), where 7, = _#. For each
X, e &, define 9#(X,) by (1) using .#;. Then

PHXy) = (X, = @)

P (Xo) = (X, = a)
and from the definition of @*, it is clear that ¢;(X,) < #:(X) and
?7(X,) = 97(X), where X = D{@, 7). We now prove our main result:

THEOREM 6. <7 s a uniformly integrable class if and only if
@ 1s absolutely comtinuous with respect to P on _.
Proof. For X,e =, for a > 0,
E(X ;| X za) =EX; Xy =za) — E Xy Xy = —a).
Since ¢(X, = «) = lim,_, (X, = n) = 0, we obtain from Theorem 4,

EX;Xiza) =p(eo >Xoza) 29X,z a).
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Now,
pXiza)=pX;=z2a, X=2b) + X, =2a, X < D)
<oX,=a,X=b) — bPX,=a, X = b
+bP(X,=a, X=b) + bP(X, = a,
X<b)=9/(X)+bPXoza).
Now,
aP(Xo = a) = ¢7(Xo =a) = @(T(Xo) = @;(X)
hence,
(6) E(X, (X, z a) < p{(X) + -2- PF(X) .

If ¢ is absolutely continuous with respsct to P on _#, then
lim,... 9 (X) = 0, and we can get a uniform bound on E(X,, {X, = a})
for large enough a. In a similar fashion, we can prove — E(X,; {X, <
—a}) is uniformly bounded if @ is absolutely continuous with respect
to P on _#, proving sufficiency of this condition.

Now if & is not uniformly integrable, there is an & > 0 such
that for any @ > 0, there is an X, € & such that E(| X,|, | X,| > a) > .
Without loss of generality, we can assume this statement holds for
the left hand side of (6), hence lim,..®;(X) > 0, so ® is not abso-
lutely continuous with respect to D on _#. This completes our proof.

Application. If #Z & #, < --- are o-lattices, it is shown in [1]
that D(p, #,) — D(p, #) a.s., where _# is the minimal o¢-lattice
containing each _#,, n = 1. It follows from Theorem 6 that if @ is
absolutely continuous with respect to D on _; this convergence holds
in the mean as well. This strengthens a result in [2], where mean
convergence of such a sequence is shown to hold when @ is a abso-
lutely continuous with respect to P on . However, our example
above shows this is not the most general situation.

4, Jensen’s inequality. Suppose ® is a absolutely continuous
with respect to P on &, so that there is a Ye.&# such that p(4) =
E(Y; 1), 1e #. Let . # = & be a o-lattice. We define

EY| %)= D@, #).
and call E(Y|_#') the conditional expectation of Y given _#.

THEOREM 7. Let F be a nondecreasing, convex function. If F(Y)
s integrable, then
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FE(Y| . 2) = EFY)| A) .

If G is a monincreasing convex fumnction, and G(Y) is integrable,
then

GEY| . 2) = B(G(Y)| 2°) .

Proof. We prove the second assertion—the first being similar.
Let {a,x + b,; n = 1} be an affine lower envelope for G, with a, <0
all n. From Lemma 3,

e, B(Y| #)+ b, = E@,Y +b,| 2
and since a,Y + b, < G(Y), it follows from Lemma 2 that
a,B(Y| . #Z)+ b, = EG(Y)| .2°) .

Our result follows by taking the supremum of the left hand side.

Suppose H is a nonnegative convex function, with H(0) = 0. We
say Xe &~ (H) if Xe & and E(H(X)) <. If we apply Theorem 7
to the functions

F(z) = H(x) =0
= 0 <0
G(x) = H(z) — F(x)

then the first assertion of the following theorem clearly holds. The
second assertion is implied by Theorem 6.

THEOREM 8. If Xe &£ (H), then so is E(X | _»#). If Xe ¥ (H),
then the collection {H(E(X | _+))}, as #; runs over the o-lattices in
&, is uniformly integrable.

Integrability of conditional expectation E(X|._#;), and mean con-
vergence of martingales of form E(X|_#,), where Z <& #Z ---,
can be obtained Theorems 7 and 8, thus obtaining results in [2].

The author expresses his gratitude to the referee for correcting
several blunders, and suggesting a simpler proof of Theorem 1.
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