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FIELDS OF TOPOLOGICAL SPACES

JOHN MACK

In their memoir "Representation of rings by sections",
Memoirs, Amer. Math. Soc, Dauns and Hofmann introduce
the concept of "field of uniform spaces" which provides an
extremely useful setting in which a wide class of topological
rings can be represented as rings of continuous sections.
The Dauns-Hofmann theory uses a mixture of uniform and
topological techniques to achieve its ends. The purpose of
this note is to show that much of the Dauns-Hofmann theory
can be developed using solely topological techniques without
resort to the concept of field uniformity which is central to
the Dauns-Hofmann approach. The theory developed here
represents a natural extension of that of fibre bundles.

1* DEFINITION. A field of sets is a quadruple (E, B, Y, Φ) where
E, B, and Y are sets and Φ is a family of maps φ: dom φ—> E from a
subset of B x Y to E (here dom φ denotes the domain of φ) such that
the following conditions are satisfied:

(A) E = \Jφeφ image φ
(B) B — UίieΦpr^dom φ] where pr 5 denotes the projection of

B xY onto B.

(C) For bre B, yr£y, and φre Φ with r = 1, 2, the equality φλ(blf

Vι) = Φ2(K V*) implies bt = b2.
A field of topological spaces is a field of sets (E9 B, Y, Φ) in which

E, B, and Y are topological spaces and Φ is a set of continuous, open
maps with open domain in B x Y. The space E will be called the field
space and B, the base space. The maps φ are called co-ordinate maps.

REMARK. If (E, B, Y, Φ) is a field of topological spaces for which
each φeΦ is injective (and hence a homeomorphism of its domain
onto its image), then the field is a fibre bundle in the sense of Steenrod
[7]. Also, if Y has the discrete topology then (E, B, Y, Φ) is a sheaf.
Thus fibre bundles and sheaves are examples of fields of topological
spaces. An example of a field of topological spaces that is neither a
sheaf nor a fibre bundle is given below (Example D)

EXAMPLE A. For topological spaces B and Y let E = B x Y and
Φ be the identity map on B x Y. Then (E, B, Y, φ) is a field of
topological spaces.

EXAMPLE B. Let B be the circle S\ Y = [0,1] and E be the
Mobius band. Select distinct points pl9 p2 from B and let &: [B\{pi}] x
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F—* E be a homeomorphism onto an open subset of E for r = 1, 2.
Further assume i? is the union of the images of φx and φ2. Then (i£,
5, Y, {φί9 φ2}) is a field of topological spaces.

EXAMPLE C. Let E be an w-manifold and Φ be an adequate set
of coordinate maps from En to E. If B is a singleton and 01 is
defined by ^(6, y) = ^ ) , then (#, 5, JEn, Φ1) is a field of topological
spaces where Φι = {̂ : ^ e Φ).

EXAMPLE D Let B be a compact Hausdorff space and Y be the
topological ring C(B) of all continuous real valued functions on B,
with the uniform norm. Set E = B x R (R is the real line) and
define φ:B xY->E by φ(b, f) = (b, f(b)). Then (E, B, Y, φ) is a field
of topological spaces.

EXAMPLE E. Let A be a topological ring, B be an appropriate
set of ideals (the set of primitive ideals for example) and E = \JbeB {fy x
A/6. If φ: B x A-*E is defined by φ(b, a) = (6, a + 6), then (#, 5,
A, 0) is a field of sets. If α is defined by d(b) — {b,a + 6) and the
kernel of B is {0}, then α->α is a faithful representation of A. If
B and £/ are topologized so that φ is a continuous, open map then
each a is a continuous section. In that case (E, B, A, φ) becomes a
field of topological spaces with respect to which the elements of A
are representable as continuous sections.

Examples D and E suggest the possibility of representing top-
ological rings as rings of continuous sections over fields of topological
spaces. It is this fact that motivates much of this paper. However,
at the moment, we shall content ourselves with developing the top-
ological aspects of fields of topological spaces and only in a later paper
will we address ourselves to the representation problem for rings.

It is convenient in applying fields of topological spaces in special
situations to allow Φ to have arbitrary cardinality. However, in
developing the theory, it is also convenient to assume that Φ consists
of a single element. The following theorem shows that there is no
loss of generality in making the latter assumption.

2* THEOREM. If (E, B9 Y, Φ) is a field of topological spaces then
(E, B, YxΦ, ψ) is also such a field if Φ is assigned the discrete topology
and ψ is defined by ψ(b, y, φ) = φ(b, y).

Proof. Note that dom ψ = \JφeΦ (dom φ) x {φ} is open in B x Y x
Φ. Also, it is clear that (A), (B), and (C) hold for ψ. Finally, it is
a simple matter to check that ψ is a continuous open map.

Notation convention, (i) We shall in the statement of theorems
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allow Φ to have arbitrary cardinality. However, whenever it is con-
venient to do so, in proofs we shall assume Φ to be a singleton,

(ii) If G is a subset of B x Y, then φ(G) shall mean the set φ(G Π
dom φ). In particular dom φ = Φ~xφ{B x Y).

3* LEMMA. If (E, B, Y, Φ) is a field of topological spaces then
there exists a unique continuous open surjection π: E—+ B such that
πoφ is the restriction to dom^ of the projection of B x Y to B.

Proof. For xe E, select b e B, y e Y and φ e Φ so that x = φ(b, y).
Such elements exist by axiom (A). Then define π(x) = b. Axiom (C)
implies that π is well defined and (B) shows that π is surjective.
Clearly πoφ(b, y) — b for all (6, y)eάomφ\ thus πoφ is the restriction
to dom φ of the projection of B x Y to B. To prove that π is con-
tinuous let xe E and V be open in B such that π(x) e V. Select φe
Φ so that a; e image 0. Then φ[(V x 7 ) Π dom^] is a neighborhood of
x whose image under π is contained in V. Whence π is continuous.
That π is an open map follows from the continuity of φ and the
openness of πoφ for each φeΦ.

4. DEFINITION. The map π defined in the proof of Lemma 3
will be called the field projection. The set π~\b) is the stalk over
b and a map σ: B —> E will be called a section over the field (E, B,
Y,Φ) if πoσ is the identity map on B. A map σ:U-+E from an
open subset U of B to E is a local section if πoσ is the identity on U.

In their memoir [3] Dauns and Hofmann define a field of top-
ological spaces to be a triple (E, JS, π) where E and B are space and
TΓ: E —> B is a continuous open surjection such that

(I) E — U {image σ: σ is a continuous local section with respect
to π).

The term "field of topological spaces" as used in this note varies
slightly from the Dauns-Hofmann meaning for this term. Our field
of topological spaces represents a concept which lies between the
Dauns-Hofmann field of topological spaces and their field of uniform
spaces. The relations existing among these concepts are given by
the next theorem and Theorem 18 at the end of the paper.

5* THEOREM. If π is the field projection for afield of topological
spaces (E, B, Y, Φ), then (E, B, π) is a field of spaces in the sense of
Dauns and Hofmann.

Proof. It is suffices to show that there is an adequate supply of
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local sections. For x e E, select φ e Φ so that x e image φ and fix y e
Y so that (b,y)eφ~1(x) for some beB. Define σ:U-+E on U =
{b: beB, (6, y) e dom ψ) by σ(b) = 0(6, #). Then σ is a continuous local
section which contains x in its image. Therefore axiom (I) is satisfied.

Next we deal with the problem of assigning topologies to E, B,
and Y for a given field of sets (E, B, Y, Φ) so that the latter becomes
a field of topological spaces. First we note that the topology on E
is entirely determined by Φ and the topologies on B and Y.

6* THEOREM. Let B and Y be topological spaces and (E, B, Y,
Φ) be a field of sets. Then the topology on E is uniquely determined
in the sense that if j^7 and S\ are topologies on E for which (E, B,
Y, Φ) is a field of topological spaces, then the two topologies are
identical.

Proof. Due to symmetry it suffices to show that j / \ is weaker
than J7~2' Let Ue j^7 and xeU. Select φeΦ such that xe imageφ.
Since φ is continuous with respect to j / 1 and open with respect to
^ 7 , it follows that φφ~ι(U) e jy\. Since xe ΦΦ~\U) c Ϊ7, the set U is
a ^^-neighborhood of each of its points. Whence Uej/\.

Thus, in constricting a field of spaces, it is enough to know that
(E, B, Y, Φ) is a field of sets and that B and Y are topological spaces
such that each φ e Φ generates a lower semicontinuous decomposition
of its domain. For if this is the case, (E, B, Y, Φ) becomes a field
of spaces if E is assigned the final topology (i.e., the finest topology
such that all φeΦ are continuous) and Theorem 6 asserts that the
final topology is the only admissible topology on E.

We now give a series of technical lemmas that are needed to
determine which topologies on B and Y give rise to a field of spaces
(E, B, Y, Φ).

7. LEMMA. If (E, B, Y, Φ) is a field of sets and V is a subset
of B, then π~\V) - \J^Φφ(V x Y).

Proof. Since πoφ is a restriction of the projection of B x Y on
B, it is immediate that π^(V) z> U Φ(V x Y). If xeπ"\V), then (A)
implies that there exists φ e Φ such that xe image φ. If (6, y) e φ"\x)
then b = πoφ(b, y) = π(x) e V. Thus xe φ(V x Y).

8. LEMMA. // (E, B, Y, Φ) is a field of sets, VaB and WaY
then for any όi e Φ, i — 1, 2, it follows that

ΦT'ΦiiV xW) = (VxY)Π Φϊ'Φ^B x W) .
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Proof. If (b, y) belongs to the set on the left, then clearly (6, y) e
ΦT'Φ^B x W). Also π o φ2(b, y) = π o &(&, w) e F for some w e W Thus
(6,7/) belongs to the set on the right. Conversely, if (6, y) belongs
to the set on the right, then be V and φ2(b, y) — φ^b, w) for some
weW. Thus (6, y) e φϊ'φ^V x W).

9. COROLLARY, (a) Φ,{B x W) n &(F x Γ) = ̂ ( F x W) n image ψ2

and (b) ̂ (F x W) = Φ(B xW)Π φ(V x Y) = 0(B x W) Π ̂ ( F ) /or αίϊ
F c 5, αK TFc Y and for φ, φl9 φ2 in Φ.

10. THEOREM. Let (E, B, Y, Φ) be a field of sets where B and
Y are topological spaces. A necessary and sufficient condition that
E admit a topology with respect to which (E, B, Yy Φ) is a field of
spaces is that φTιΦi{B x W) be open in B x Y for each pair φlf φ2 in
Φ and each open subset W of Y.

Proof. Necessity. Since φ± is an open map and φ2 is continuous,
the set Φ^ΦίiB x W) must be open.

Sufficiency. Let the topology on E be the one which has £/* =
{Φ(G): φeΦ, G open in B x Y) as a subbase. With respect to this topol-
ogy all φ G Φ are open maps. Also, dom φ = φ~ιΦ{B x Y) is open for each
φe Φ. Whence it suffices to show that each φ e Φ is continuous. For
φ e Φ and (6, y) e dom φ, let S be a neighborhood of φ(b, y) which belongs
to the subbase S^. Then there exists φxeΦ and G open in B x Y
such that S = Φι{G). Thus there is a point (6^ yλ) e G such that
Φί(bίy Vι) = Φ(b, y). Now axiom (C) implies b = b^ Since G is open in
the product space, there are open sets F and W in B and Y respec-
tively such that (6, yx) e F x W c G. Thus by Lemma 8, (6, y) e
$rVi(F x TF) = F x Γ Π $rVi(JB x W). By the hypothesis, the latter
set is open. Hence φ^φ^V x W) is a neighborhood of (6, T/) whose
image under φ (namely φ^V x W) ΓΊ imaged) is contained in S = Φi(G).
This proves that each φe Φ is continuous.

11. THEOREM. If (E, B, Y, Φ) is a field of topological spaces and
Bx is a space with underlying set B, whose topology is finer than that
on B, then (Elf Bί9 Y, Φ) is also a field of topological spaces when Et

is the set E with the final topology with respect to Φ and Bγ x Y.
Moreover, {UΠ π~ι(V): U is open in E, V is open in B^ is a base for
the topology on Ex.

Proof. The first part of the theorem follows from Lemma 10.
For if W is open in Y, then ΦT'ΦiiB x W) is open in B x Y; hence
this set is also open in Bί x Y. By Lemma 3, π is a continuous map
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from Eι to Bx. Thus each Uf] π~~ι(V) is open in Eι if U is open in
E and V is open in Bx. To see that these sets form a base, let G
be open in EL and xeG. Then there exist elements be B,ye Y, and
φ e Φ such that φ(b, y) = a?. Let F and FT be open B1 and F respectively
such that (b, y)eVx Waφ~\G). Then by Corollary 9, we have xe
φ(B xW)Γ\ π~\V) = Φ(V x W) c G. Since φ(B x IF) is open in E,
the proof is complete.

12• LEMMA. Lei (£7, S, Y, Φ) be a field of sets. For a given
topology on Y, a necessary and sufficient condition that E and B
admit topologies for which (E, B, Yy Φ) is a field of spaces is that
p{φϊιφi{{b) x W)) be open in Y (here p denotes the projection of B x
Y on Y) for each be B, each open set Win Yand each pair φu φ2 in Φ.

Proof. Necessity. Note that piΦT'Φidb} x W)) = {y: (6, y) e φ2

ι

φx(B x W)}. The latter set is open since φx an is open map and φ2 is
continuous.

Sufficiency. If B is assigned the discrete topology then φ^φ^B x
W) = \JbeB{b} x p(ΦTιΦΛ{b} x W)) is open in B xY. According to
Lemma 10, this is sufficient to insure that E admits a topology for
which (E, B, Y, Φ) is a field of spaces.

13. DEFINITION. Let (E, B, Y, Φ) be a field of sets. A topology
on Y is called Φ-admissible if satisfies the condition stated in Lemma
12. For a given Φ-admissible topology on Y, the coarsest topology
(if such exists) on B for which (E, B, Y, Φ) becomes a field of top-
ological spaces is called the weak topology on B determined by Φ.

The term "weak topology" is motivated by Theorem 11 which
says, in effect, that if the weak topology on B exists, then any finer
topology on B gives rise to a field of topological spaces.

14. THEOREM. Let (E, B, Γ, Φ) be afield of sets. If the topology
on Y is locally compact and Φ-admissible, then the weak topology on
B has a subbase S^ consisting of all sets of the form V(K, W, φl9 φ2) =
{b: {b} x Kczφ^ΦiiB x W)} where K is compact, W is open in Y and
Φu Φ2 a r e in Φ (ί β , the weak topology is the same as the ucompact-
open" topology).

Proof. Let J7~ be a topology on B for which (E, B, Y, Φ) is a
field of spaces (with respect to the final topology on E). If be V =
V(K, W, φl9 φ2) then {6} x K is contained in the open set Φ^Φ^B x W)
in B x Y. By Wallace's theorem ([5], p. 142) it follows that V is
open in ^7~. Thus the topology generated by Sf is weaker than ̂ ~.
It remains to show that the topology generated by S? is compatible



FIELDS OF TOPOLOGICAL SPACES 463

with the field structure. Let W be open in Y and φl9 φ2 be elements
of Φ. We must show that ΦTxΦi(B x W) is open; let (δ, y) be an
element of this set Since the topology on Y is 0-admissible, Lemma
12 implies there exists an open set Wx in Y containing y such that
{δ} xWιdΦ^ΦtiB x W). Since Yis locally compact, there is a compact
neighborhood K of y contained in Wx. Then for V = V(K, W, φly φ2),
the set V x K is a neighborhood of (δ, ?/) contained in φ^ΦiiB x T'P).
Whence the latter set is open. It now follows from Lemma 10 that
&* is a subbase for the weak topology.

In case that Y has an algebraic structure as well as a topological
one, it is sometimes possible to characterize the weak topology even
when Y is not locally compact. Specifically let 7 be a commutative
topological group (written additively) and B be an index set for
a family of subgroups {Gb: be B) and define E = \JbBB {δ} x (Y/Gb) and
φ: B x Y-+E by φ(b, y) = (b,y + Gb). If t h e stalks {δ} x Y/Gb are

assigned the natural quotient group structures then φ(b, •) is a homo-
morphism for each be B.

15. THEOREM. If {Gb: beB) is a family of closed subgroups of
the commutative topological group Y, then the quadruple (E, B, Y, φ)
defined above is a field of sets for which the topology on Y is φ-
admissible and the weak topology on B has the set S^ described in
Theorem 14 as a subbase.

Proof. Since dom φ = B xY and image φ — E, axioms (A) and
(B) for a field of sets are satisfied. It is clear that axiom (C) holds.
Also, since translation is continuous in Y, it follows from Lemma 12
that the topology on Y is ^-admissible. As in Theorem 14, it can be
verified that the topology generated by £S is weaker than any topology
which is compatible with the field structure. Thus it suffices to show
that φ is open and continuous with respect to the topology generated
by Sf. Let W be open in Y and let (δ, y) e φ~ιφ{Bx W). Then there
exists we W such that φ(b, y) = φ(b, w). Let N be a neighborhood of
0 in Y such that w + N + Na W. Set V = V(y, w + N,φ, φ) (in the
notation of Theorem 13). If (δ\ y')e V x (y + N), then yew + N +
Gb, since V e V, and y'ey + N. Thus y'ew + N + N + Gb,czW + Gb,.
Whence φ{V, yf) e φ(B x W). This proves that V x (y + N) c $rty(J3 x
W). The theorem now follows from Lemma 10.

In the remaining part of this paper we shall explore the connection
between our definition of a field of topological spaces and the Dauns-
Hofmann definition of field of uniform spaces. To facilitate this
discussion we shall reproduce some of the definitions in the Dauns-
Hofmann memoir [3].
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16. DEFINITION, (a) Let E, B be topological spaces and π:E~+
B be an open continuous surjection. A set of global section Σ is a
full set if E = \JσeΣ σ(B). Then (E, B, π) is a field with a full set of
sections.

(b) Let C2/ be a uniformity (in the sense of Weil, page 169 of
[1]) on E. Then ^ is a field uniformity if EW Ee^ where E V
j£ = {(^ y): (x, y) e E x E such that τr(a ) = 7r(2/)}.

(c) If (E, B, π) is a field with a full set Σ of continuous sections
and *%? is a field uniformity on E which satisfies the technical con-
dition stated in Lemma 1.9 of [3], then (E, π, B, ̂ ) is called a field
of uniform spaces.

(d) If Σ a full set of continuous section for a field (E, π, B, ^)
and ί / G ^ , ( 7 G l set U(σ) = {z: z e Σ, (σ(b), τ(b)) e U for all beB).
Then the topology on Σ is the one for which {U(σ):Ue^} is a
neighborhood base at σ.

(e) Let I7, E, π9 B, and ^ be as in (d). For Ue^,σeΣ define
U(σ) = {α;: α e #, (<τ(δ), a;) e U for some 6 e J5}

Next we shall form a field of topological spaces from a given
field of uniform spaces. Let (E, π, B, <%f) be a field of uniform spaces
with a full set of global sections Σ and define φ: B x Σ —> E by
0(6, *) = σ(b).

17. LEMMA. // [7° denotes the quasi-interior of U as defined in
Dauns-Hofmann ([3], p. 19) then U°{σ) aφ(B xθ(σ))cz U(σ) for each
σ e Σ and each Ue (%f.

Proof. First assume ye U°(σ) and set x = σ(π(y)). Then (x9 y) e
U°o Thus by Definition 2.5, p. 19 in [3], there exists Ve^S and
τeΣ such that y = τ(π(y)) and V{τ) c U{σ). Now τ[B] c V(τ) c U(σ)
implies z e U(σ). Whence y = ψ(π(y), z) 6 ̂ (5 x U(σ)). This proves
the first of the two inclusions. Next assume y e φ(B x U(σ)) and let
(6, z) e B x U(σ) be such that y = φ(b, z) — z(b). Now z e U(σ) implies
that (σ(b), y) = (σ(b), z(b)) e U. Whence ye U(σ).

18. THEOREM. If (E, π, B, %f) is a field of uniform spaces
with a full set Σ of continuous global sections, for which ^Ό = {U:
Ue^ such that U° e^} is a base for ^/, then (E, B, Σ, φ) is afield
of topological spaces.

Proof. It is easy to verify that (E, B, Σ, φ) is a field of sets for
which dom φ = B x Σ. Thus it suffices to show that φ is continuous and
open. For (6, σ) e B x Σ and a neighborhood N of φ(b, σ) in E, then
by Lemma 1.9, page 4 in [3], there exists a neighborhood V of 6 and
Ue%f such that π^(V) Π U(σ) c iV Now V x U{σ) is a neighborhood
of (6, o ) in B x Σ whose image satisfies φ(V x U(σ)) — π~\V) Π Φ(B x
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U{σ)) c 7Γ\V) Π U(σ) by Corollary 9 and Lemma 17; whence <j> is
continuous. Since φ(B x {σ})c U°(σ), it follows from Lemma 17 and
the fact ^Ό is a base that <f>{B x W) is open in E for every open set
Win Σ. Thus by Corollary 9 (b), <j> is an open map. Whence (E, B,
Σ, φ) is a field of topological spaces.

There are several conditions on the quasi-interiors U° which are
equivalent to the assumption that ^ is a base for ^ . The following
lemma is contained implicitly in the material on pages 19 and 20 of [3].

19* LEMMA. The following conditions are equivalent:
(a) {U: Ue <Zf, U° e^} is a base for ^/.
(b) {U°: Ue ^} is a base for ^
(c) U° e <%s for all Ue <%s.
It should be noted that the requirement in the Dauns-Hofmann

development that the set of quasi-interiors ^Ό form a base for ^
is precisely the condition that insures that the map φ is an open
map.

This shows that under any of the equivalent conditions of Lemma
19 that each field of uniform spaces (in the sense of Dauns and
Hofmann) is a field of topological spaces. The converse is true in
the following setting: If (E, B, Y, φ) is a field of topological spaces
with Y a commutative topological group and φ(b, •) is a homomorphism
for each be B then there is a natural field uniformity ^ on E such
that (Ey π, B, <%S) is a field of uniform spaces.

Specifically, let 7 be a commutative topological group written
additively and let {E, B, Y, φ) be a field of topological spaces such
that dom0 = B x Y and φ{b, •) is a homomorphism with kernel Gb

for each be B. Further, let Λ^ be a base for the neighborhoods of
0 in Y. For Ne Λ^ define UN to be the subset ofExE given by
{(xl9 x2): there exists yίy y2 in Y, be B such that yx — y2e N and x{ —
φ(b, y{) for i = 1, 2}. It is easy to verify that {UN: Ne ^^} is a base
for a field uniformity US on E. For y e Y, define y(b) = φ(b, y). Then
clearly Y — {y: y e Y} is a full set of global continuous sections. If
ΠbeBGb = {0}, then y-+y is bisection between Y and Ϋ.

20* LEMMA. // (E, B, Y, φ) is a field of topological spaces, Y
is a topological group and ^ is defined as in the preceding paragraph,
then (E, π9 B, ^) is a field of uniform spaces (in the sense of Dauns
and Hofmann) for which Y is a full set of global sections.

Proof. It suffices to show that the condition stated in Lemma
1.9 of [3] is satisfied. Specifically, we must show that the sets UN(y) Π
π~\V) form a base for the topology on E. Now UN(y) equals, by
definition, φ(B x [y + N]). Thus by Corollary 9 (cf. proof of Theorem
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11), the sets UN(y) Π π~\V) form a base for the topology on E.

21. LEMMA. If (E, B, Y, φ) is a field of topological spaces satisfy-
ing the hypothesis of Lemma 19, then UN(y) — (y + Π&ei?[ΛΓ+ Gb])~.

Proof. By definition z e UN{y) if and only for each b e B there
are elements yb, zb of Y such that zb — ybe N while φ(b, y) — φ(b, yb)
and φ(b, z) = 0(6, s6). Thus z-y = zb-yb + ( 2 - zb) + (yb-y)eN + G>
Thus £ G Σ7iv(2/) if and only if z — y e Γ\beB [N + Gb]. This completes the
proof.

The next theorem summarizes the results contained in the dis-
cussion preceding Lemma 20. In the setting under consideration,
this theorem says that fields of topological spaces (as defined in this
paper) are equivalent to the fields of uniform spaces defined by Dauns
and Hofmann in [3].

22. THEOREM. Let (E, B, Y, φ) be a field of topological spaces
with Y a (Hausdorff) commutative topological group and φ be a map
from B xY to E such that φ(b, •) is a homomorphism with kernel Gb

for each be B. If ^V is a base for the neighborhoods of 0 in Y such
that N — Γ\beB [N + Gb] for each Ne Λ" and ^ is the field uniformity
which has {UN: Ne^ί^} as a base (for definition of UN see the par-
agraph preceding Lemma 20), then (E, π, B, %f) is a field of uniform
spaces for which Ϋ is a full set of global sections. Moreover, the &-
uniform topology is the same as the original topology on Y.

Proof. Except for the last assertion, this theorem follows directly
from Lemma 20. Since N is the intersection of all the sets N + Gb,
we have by Lemma 21 that U(y) = (y + N)~. It is now clear that the
uniform topology on Y and the original topology are identical.
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