ON REALIZING HNN GROUPS IN 3-MANIFOLDS

C. D. Feustel and R. J. Gregorac

Abstract

In this paper we suppose that the fundamental group of a 3 -manifold M has a presentation as an HNN group. We then show that under suitable conditions we can realize this presentation by embedding a closed, connected imcompressible surface in M.

In [2], [3], and [4] we show that if $\pi_{1}\left(M^{3}\right)$ is constructed in certain ways, one can realize this construction by a surface embedded in M^{3}. In this paper we show that one can realize the HNN construction when certain relationships between $\pi_{1}\left(M^{3}\right)$ and M^{3} are present. The results in this paper are related to Theorem 2.4 in [10].

In this paper all spaces will be simplicial complexes, all maps will be piecewise linear, and all 3 -manifolds will be 3 -manifolds with boundary. However the boundary may be vacuous. Let X be a connected subspace of a space Y. As usual we shall denote the boundary, closure, and interior of X in Y by bd (X), cl (X), and int (X) respectively. The natural inclusion map from X into Y will be denoted by ρ and the induced homomorphism from $\pi_{1}(X)$ into $\pi_{1}(Y)$ by ρ_{*}. Let S be a closed connected surface other than the 2 -sphere of projective plane embedded in a space Y. Then S is incompressible in Y if $\rho_{*}: \pi_{1}(S) \rightarrow \pi_{1}(Y)$ is one-to-one. If S is a closed surface embedded in Y, then S is incompressible in Y if each component of S is incompressible in Y. Irreducible and P^{2}-irreducible are defined as in [7]. We denote the unit interval [0,1] by I throughout.

Definition 1. Let K be a group and A a subgroup of K. Let S be a closed connected surface other than the projective plane or 2 -sphere. Let $A_{j} \cong \pi_{1}(S)$ and $A_{j} \subset A$ for $j=1,2$. Let k be an element of K not in A such that $A_{1}=k^{-1} A_{2} k$. Then if A and k generate K and all relations of K are consequences of the relations of A together with the relations k induces between the elements of A_{1} and A_{2}, we shall say that K is an extension of A by k across A_{1} and A_{2}. The reader will note that the class of groups defined above is a subclass of the Higmann, Neumann, Neumann (H.N.N.) groups [8].

Let M be a 3 -manifold, x a point in M, and S an incompressible surface in M such that $M-S$ is connected. Then it is a consequence of Van Kampen's Theorem that $\pi_{1}(M, x)$ is an extension of $\pi_{1}(M-S, x)$ by some element of $\pi_{1}(M, x)$ across appropriate subgroups of $\pi_{1}(M, x)$. One might then wonder "If $\pi_{1}(M, x)$ were such an extension, could we embed in M an incompressible surface which realizes this exten-
sion." We will show blow that this can, in fact, be done. Let M be a compact 3 -manifold and x a point of M. We suppose that $\pi_{1}(M, x)$ is an extension of A by k across A_{1} and A_{2} as given in Definition 1 above. We can represent this extension by an ordered sequence $\left\langle\pi_{1}(M, x), A, A_{1}, A_{2}, k\right\rangle$. If for each component F of the boundary of M some conjugate $\rho_{*} \pi_{1}(F)$ is contained in A, we shall say that the extension preserves the peripheral structure of M. Suppose a second representation of $\pi_{1}(M, x)$ is given by $\left\langle\pi_{1}(M, x), B, B_{1}, B_{2}, \hat{k}\right\rangle$ and this extension of B is induced by an incompressible, closed, two-sided surface S embedded in M and a loop l meeting S in the single point x, i.e., B is generated by the elements of $\pi_{1}(M, x)$ having representative loops which do not cross $S, \hat{k}=[l], B_{1}=\rho_{*} \pi_{1}(S, x)$ and $B_{2}=[l] B_{1}[l]^{-1}$. We shall say that S realizes the extension of B if there is an isomorphism

$$
\Phi: \pi_{1}(M, x) \longrightarrow \pi_{1}(M, x)
$$

such that
(1) $\Phi(A)=B$
(2) $\Phi\left(A_{j}\right)=B_{j} \quad j=1,2$
(3) $\Phi(k)=\hat{k}$.

Theorem 1. Let M be a compact 3-manifold such that $\pi_{2}(M)=0$. Let S be a closed connected surface other than the 2 -sphere or projective plane. Suppose $\pi_{1}(M, x)$ has a representation given by

$$
\left\langle\pi_{1}(M, x), A, A_{1}, A_{2}, k\right\rangle
$$

where $A_{1} \cong \pi_{1}(S)$ and the extension above preserves the peripheral structure of M. Then there is an embedding of S in M which realizes the given extension.

The proof of Theorem 1 above is similar in many respects to the proof of Theorem 1 in [3]. One first constructs a complex X having the same fundamental group as M. One then finds a map $f: M \rightarrow X$ inducing an isomorphism from $\pi_{1}(M)$ to $\pi_{1}(X)$. The complex X is constructed to contain an embedded surface S realizing the given extension. One shows that there is a map g homotopic to f such that $g^{-1}(S)$ is an incompressible, connected, closed surface in M and that $g^{-1}(S)$ realizes the given extension.

The following three lemmas appear in [4]. We omit the proofs which are not difficult.

Lemma 1. Let M be a compact, connected 3-manifold such that $\pi_{2}(M)=0$. Let X be a connected complex and S a closed incompressi-
ble surface embedded in X and having a neighborhood homeomorphic to $S \times I$. We suppose that no component of S is a 2 -sphere or projective plane. Let $X_{k}, k=1, \cdots, n$ be the components of $X-S$. We suppose that $\pi_{i}(X)=\pi_{i}\left(X_{k}\right)=0$ for $i \geqq 2$ and $k=1, \cdots, n$. Let $f: M \rightarrow X$ be a map such that $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}(X)$ is one-to-one $f \operatorname{bd}(M)$ does not meet S. Then there is a homotopy, constant on $\mathrm{bd}(M)$, of f to a map g such that $g^{-1}(S)$ is an incompressible surface in M.

Lemma 2. Let S_{1} and S_{2} be disjoint, incompressible, connected, two-sided surfaces which are embedded in a P^{2}-irreducible 3-maifold M. Then if S_{1} is homotopic to S_{2} in $M, S_{1} \cup S_{2}$ bounds an $S_{1} \times I$ embedded in M.

Lemma 3. Let M_{1} be a compact, connected, 3-manifold, X a connected complex, and F and S incompressible connected surfaces in M_{1} and X respectively. We suppose that S is neither a 2-sphere or projective plane and $\pi_{i}(X)=0$ for $i \geqq 2$.

Let $f:\left(M_{1}, F\right) \rightarrow(X, S)$ be a map of pairs such that for some $x \in F$

$$
f_{*} \pi_{1}\left(M_{1}, x\right) \subset \pi_{1}(S, f(x))
$$

Then f is homotopic under a deformation, constant on F, to a map into S.

Proof of Theorem 1. It is a consequence of Remark 1 in [9] that we may assume that M is irreducible.

Let (M_{A}, \hat{x}, p) be the covering space of (M, x) associated with $A \subset$ $\pi_{1}(M, x)$. Let $f_{1}, f_{2} ;(S, y) \rightarrow(M, x)$ be maps such that $f_{j^{*}}\left(\pi_{1}(S, y)\right)=A_{j}$, for $j=1$, 2. Since $f_{j^{*}}\left(\pi_{1}(S, y)\right) \subset p_{*} \pi_{1}\left(M_{A}, \widehat{x}\right)$, there is a map $\hat{f}_{j}:(S, y) \rightarrow$ (M_{A}, \hat{x}) such that $p \hat{f}_{j}=f_{j}$ for $j=1,2$. Let X be the union of M_{A} and $S \times I$ with identifications $\hat{f}_{1}(s)=(s, 0)$ and $\hat{f}_{2}(s)=(s, 1)$. We note that the $\operatorname{arc}\{y\} \times[0,1] \subset S \times I$ becomes a simple loop \hat{l} after the identification above since $\hat{f}_{1}(y)=\hat{f}_{2}(y)=\hat{x}$. Let $\Phi: A \cup\{k\} \rightarrow \pi_{1}(X, \hat{x})$ be a function defined by $\Phi(k)=[l]$ and $\Phi(a)=P_{*}^{-1}(a)$ for $a \in A$. Then Φ can be extended to an isomorphism of $\pi_{1}(M, x)$ onto $\pi_{1}(X, \widehat{x})$ since X has been constructed so that $\pi_{1}(X, \hat{x})$ will have a presentation identical to the given presentation of $\pi_{1}(M, x)$.

It can be shown as in the proof of the theorem in [2] that $\pi_{i}(X)=$ $\pi_{i}(X-S)=0$ for $i \geqq 2$.

We denotes $S \times\{1 / 2\} \subset X$ by S.
Let the boundary of M be expressed as $\bigcup_{m=1}^{n} F_{m}$ where F_{m} is a closed connected 2 -manifold. Then some conjugate of $\rho_{*} \pi_{1}\left(F_{m}\right)$ is contained in A for $m=1, \cdots, n$. Thus we can find a collection $\left\{\alpha_{m} \mid m=1, \cdots, n\right\}$ of simple arcs embedded in M such that intersec-
tion of each pair of these arcs is x, α_{m} meets F_{m} in a single point, and there is a map $\hat{\rho}: \bigcup_{m=1}^{n}\left(F_{m} \cup \alpha_{m}\right) \rightarrow M_{A}$ such that $p \hat{\rho}=\rho$. Note that for each loop l_{0} in $\bigcup_{m=1}^{n}\left(F_{m} \cup \alpha_{m}\right)$ based at $x,\left[\hat{\rho} l_{0}\right]=\Phi\left[l_{0}\right]$. Since $\hat{\rho}_{*} \rho_{*}=\Phi \rho_{*}: \pi_{1}\left(\bigcup_{m=1}^{n}\left(F_{m} \cup \alpha_{m}\right), x\right) \rightarrow \pi_{1}(X, \hat{x})$, we can extend $\hat{\rho}$ to a map $f: M \rightarrow X$ such that $\Phi=f_{*}: \pi_{1}(M, x) \rightarrow \pi_{1}(X, \hat{x})$ by using standard techniques from obstruction theory. (See [2] or [3] for the details of this construction.) It is a consequence of Lemma 1 that there is a map g_{1} homotopic to f such that $g_{1}^{-1}(S)$ is an incompressible surface in M and $g_{1}=f$ on the boundary of M.

Since $g_{1}^{-1}(S)$ and S are incompressible in M and X respectively, if S_{0} is any component of $g_{1}^{-1}(S)$, the homomorphism $\left(g_{1} \mid S_{0}\right)_{*}: \pi_{1}\left(S_{0}\right) \rightarrow \pi_{1}(S)$ is one-to-one. Thus by Theorem 1 in [6] $g_{1} \mid S_{0}$ is homotopic to a covering map. Thus after a deformation, constant outside of a small neighborhood of S_{0}, we may assume that $g_{1} \mid S_{0}$ is a local homeomorphism. Thus we may assume that g_{1} is a local homeomorphism on $g_{1}^{-1}(S)$.

Let z be a point on S_{0}. Suppose that the isomorphism $\Phi_{0}=$ $g_{1 *}: \pi_{1}(M, z) \rightarrow \pi_{1}\left(X, g_{1}(z)\right)$ does not carry $\pi_{1}\left(S_{0}, z\right)$ onto $\pi_{1}\left(S, g_{1}(z)\right)$. It is a consequence of the result in [1] that M is P^{2}-irreducible. Since $\Phi_{0}^{-1} \pi_{1}\left(S, g_{1}(z)\right.$) would properly contain $\pi_{1}\left(S_{0}, x\right)$, we would have by Theorem 6 in [7] that S_{0} bounds a twisted line bundle $N \subset M$. One can easily show using the techniques of [7], as has been done in [5], that $\rho_{*} \pi_{1}(N, z)$ may be taken to be $\Phi_{0}^{-1}\left(\rho_{*} \pi_{1}\left(S, g_{1}(z)\right)\right)$. It follows from Lemma 3 that there is a deformation of g_{1} to a map g_{2} which pushes $g_{1}(N)$ first onto S and then to one side of S so that $g_{2}^{-1}(S)=g_{1}^{-1}(S)-S_{0}$. Thus we can assume that $\left(g_{1} \mid S_{0}\right)_{*}: \pi_{1}\left(S_{0}\right) \rightarrow \pi_{1}(S)$ is an epimorphism for each component S_{0} of $g_{1}^{-1}(S)$.

Since $\pi_{1}(M) \not \subset A, g_{1}^{-1}(S)$ is not empty.
Let S_{0} and S_{1} be components of $g_{1}^{-1}(S)$. We claim that $S_{0} \cup S_{1}$ bounds a copy of $S_{0} \times[0,1]$ embedded in M. Since M is P^{2}-irreducible, this will follow from Lemma 2 after we show that S_{0} and S_{1} are homotopic. Let z_{0} be a point on S_{0}. Since $g_{1} \mid S_{0}$ and $g_{1} \mid S_{1}$ are assumed to be homeomorphisms, there is a unique point z_{1} on S_{1} such that $g_{1}\left(z_{0}\right)=g_{1}\left(z_{1}\right)$. Let α be an arc running from z_{0} to z_{1}. Since $g_{1^{*}}$ is an isomorphism, we can find a loop l_{1} based at z_{0} such that the loops $g_{1}\left(l_{1}\right)$ and $g_{1}(\alpha)$ represent the same element in $\pi_{1}\left(X, g_{1}\left(z_{0}\right)\right)$. Thus we may assume that $\left[g_{1}(\alpha)\right]=1 \in \pi_{1}(X)$. Let λ_{0} be a loop on S_{0} based at z_{0} and λ_{1} a loop on S_{1} such that $g_{1}\left(\lambda_{0}\right)=g_{1}\left(\lambda_{1}\right)$. Since the loop $g_{1}\left(\lambda_{0}\right) g_{1}(\alpha)\left(g_{1}\left(\lambda_{1}\right)\right)^{-1}\left(g_{1}(\alpha)\right)^{-1}$ is nullhomotopic and $\pi_{2}(X)=0$, we can show as in the proof of Theorem 1 in [3] that S_{0} and S_{1} are homotopic. Our claim follows.

We wish to show that we may assume $g_{1}^{-1}(S)$ contains exactly one component.

Suppose there is more than one component in $g_{1}^{-1}(S)$ and that the
number of components of $g_{1}^{-1}(S)$ cannot be decreased by a small deformation of g_{1}. Let $l: S^{1} \rightarrow M$ be a loop in M such that $\left.g_{1} \times l\right]=[\hat{l}]$. We may assume that
(i) $g_{1}(l)$ meets S since the intersection number of $[\hat{l}]$ and S is one. Thus we can take our basepoint to lie on one of the surfaces in $g_{1}^{-1}(S)$.
(ii) l crosses $g_{1}^{-1}(S)$ at each point in $l \cap g^{-1}(S)$ and thus $\left(g_{1} l\right)^{-1}(S)$ is a finite set whose cardinality cannnot be reduced.
(iii) $g_{1}\left(l \cap g_{1}^{-1}(S)\right)$ is a single point.

Let D be a disk and β_{1} and β_{2} arcs in the boundary of D such that $\beta_{1} \cap \beta_{2}=\operatorname{bd}\left(\beta_{1}\right)$. Then we can define a map $\gamma: D \rightarrow X$ such that $\gamma\left(\beta_{1}\right)$ is the loop $g_{1} l\left(S^{1}\right)$ and $\gamma\left(\beta_{2}\right)$ is the loop \hat{l}.

We wish to show that $g_{1}^{-1}(S)$ may be taken to be homeomorphic to S (connected). Assume that $g_{1}^{-1}(S)$ is not connected; then it has been shown that each pair of distinct surfaces in $g_{1}^{-1}(S)$ bounds a copy of $S \times I$ embedded in M. If this is the case, it is clear that $l^{-1} g_{1}^{-1}(S)$ contains more than one point. Let $\delta_{1}, \cdots, \delta_{v}$ be the closures of the components of $S^{1}-l^{-1} g_{1}^{-1}(S)$. After a general position argument we may assume $\gamma^{-1}(S)$ contains an arc β_{3} which cuts off an arc $\beta_{4} \subset \beta_{1}$ and that $g_{1} l\left(\delta_{1}\right)=\gamma\left(\beta_{4}\right)$. Now l carries bd $\left(\delta_{1}\right)$ to one or two components of $g_{1}^{-1}(S)$.

If $l\left(\operatorname{bd}\left(\delta_{1}\right)\right)$ is a single point, the loop $l\left(\delta_{1}\right)$ is homotopic to a loop $l_{1} \subset g_{1}^{-1}(S)$ such that $g_{1}\left(l_{1}\right)=\gamma\left(\beta_{3}\right)$ since the restriction of g_{1} to each component of $g_{1}^{-1}(S)$ is a homeomorphism and $g_{1^{*}}$ is an isomorphism. It would follow that the number of points in $l^{-1} g_{1}^{-1}(S)$ could have been reduced by a different choice of l. Thus we conclude that l carries the points of $\mathrm{bd}\left(\delta_{1}\right)$ to distinct components of $g_{1}^{-1}(S)$.

Let N be closure of the component of $M-g_{1}^{-1}(S)$ which meets $l\left(\delta_{1}\right)$. Let S_{0} be a component of $\operatorname{bd}(N)$. Since $g_{1} \mid S_{0}$ is a homeomorphism and the loop $g_{1} l\left(\delta_{1}\right)$ is homotopic to a loop in S, we may assume that the loop $g_{1} l\left(\delta_{1}\right)$ is homotopic to a point. (One alters the image of l in a neighborhood of S_{0}.)

Since the loop $g_{1} l\left(\delta_{1}\right)$ is nullhomotopic in X, it can be shown that the $\operatorname{map} g_{1} \mid N$ is homotopic $\bmod \mathrm{bd}(N)$ to a map into S; full details of a similar argument appear in [3]. It follows after an argument by induction that there exists a map $g: M \rightarrow X$ homotopic to $g_{1} \bmod$ bd (M) such that $g^{-1}(S)$ contains exactly one component S_{0} and $g \mid S_{0}$ is a homeomorphism. After an argument similar to the one given above, we can find a loop l meeting S_{0} in a single point and based at $x \in M$ such that $g_{*}[l]=[\hat{l}]$.

We observe that S_{0} and l induce an expression of $\pi_{1}(M, x)$ as an extension of a subgroup B of $\pi_{1}(M, x)$. Let B_{1} and B_{2} be the associated subgroups of $\pi_{1}(M, x)$. Then we see that our map g induces
an isomorphism $g_{*}: \pi_{1}(M, x) \rightarrow \pi_{1}(M, x)$ such that
(1) $g_{*}(B) \subset A$
(2) $g_{*}\left(B_{1}\right)=A_{1}$
(3) $g_{*} B_{2}=A_{2}$.

Thus Theorem 1 is an immediate consequence of the remark preceding Lemma 2 on page 238 in [8] which shows that g_{*} sends B onto A.

Remark 1. The remark mentioned above allows us to strengthen the statement of the theorem in [2] so that the splitting and the cutting are both actually realized.

Remark 2. We can also realize geometrically more general presentations of $\pi_{1}(M)$ as an HNN group. In particular one might have that $\pi_{1}(M)$ has a presentation as in the first definition in $\S 4$ in [8] where each of the subgroups L_{i} of K is isomorphic to the fundamental group of a closed connected surface other than S^{2} or the projective plane and there are only finitely many of the t_{i}. The proof of this result varies only slightly from the one given above.

Remark 3. Theorem 1 in this paper together with Theorem 1 in [3] or [4] give us a sort of converse to Van Kampen's theorem as applied to a closed, connected, incompressible surface, other than S^{2} or the projective plane, embedded in the interior of a compact 3manifold.

REMARK 4. This paper is in some sense a generalization of Stalling's work in [11].

References

1. C. D. Feustel, M^{3} admitting a certain embedding of P^{2} is a pseudo P^{3}, Proc. Amer. Math. Soc., 26 (1970), 215-216.
2. _-, On replacing proper Dehn maps with proper embeddings, Trans. Amer. Math. Soc., 166 (1972), 261-267.
3. -, A splitting theorem for closed orientable 3-manifolds, Topology, 11 (1972), 151-158.
4. —_, A generalization of Kneser's conjecture, Pacific J. Math., to appear.
5. ——— On S-maximal subgroups of $\pi_{1}\left(M^{2}\right)$, Canad. J. Math., 24 (1972), 439-449.
6. W. Heil, On P ${ }^{3}$-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969), 772-775.
7. W. Jaco, Finitely presented subgroups of three-manifold groups, Inventions Math., 13 (1971), 335-346.
8. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroups, Trans. Amer. Math. Soc., 150 (1970), 227-255.
9. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math., 84 (1962), 1-7.
10. G. P. Scott, On sufficiently large 3-manifolds, Quart. J. Math. Oxford, 23 (1972), 159-172.
11. J. Stallings, On Fibering Certain 3-Manifolds, Topology of 3-manifolds, PrenticeHall, Englewood Cliffs, N. J., 1962, 95-100.

Received April 28, 1972 and in revised form October 3, 1972.
Virginia Polytechnic Institute and State University AND
Iowa State University

