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ISOMETRIC DILATIONS OF CONTRACTIONS ON
BANACH SPACES

ELENA STROESCU

This paper is concerned with the dilation, in the case of
a Banach space, of operator-valued functions on a group into
representations. Banach-space analogues of Sz.-Nagy's theorem
and Ando's theorem are obtained.

Throughout this note Z (resp. R, resp. R+, resp. N9 resp. C) is
the set of all integer (resp. real, resp. nonnegative real, resp. non-
negative integer, resp. complex) numbers. Also G is a group, e e G
its neutral element: K:G—>R+ a submultiplicative function (i.e.,
K{gh) ^ K(g)K(h) for all g,heG) with K(e) = 1; X a Banach space;

the Banach algebra of all linear bounded operators on X and
the identity.

^m{R) (m e N, m — oo) being the algebra of all m-times differenti-
able functions on R with the usual topology and Γ — {ze C; \z\ — 1},
Wm(Γ) is the algebra of all functions f:Γ-*C such that t->f(eu)
belongs to <g*m(R), endowed with the topology induced by ^m{R).
An operator Te^{X) is called <ίrm(/>unitary if it is 9fm(Γ)-scalar
([2], [4]).

THEOREM. (See also [7] Theorem 1). Let ψ:G-+^(X) be a
f u n c t i o n w i t h t h e p r o p e r t y \\φg\\ ^ K(g) f o r a l l geG a n d φe = I .

Then there exists a Banach space X containing X (by an isometric
isomorphism), a norm one projection P of X onto X and a represen-
tation φ of G as a group of invertible operators on X such that

(0) l/Kiy-1) ^ \\φr\\ ^ K(Ύ) for all γ e G and φe = L

1 i ) PΦnx - Φr f o r any 7 e G.
(ii) X is the closed vector space spanned by {φrx;yeGf xeX}.
(iii) If φ takes its values from the set of contractions on X,

then G is represented by φ as a group of invertible isometries on X.
Moreover, if G is a topological group and for every xeX, the func-
tion g-+φg x is left uniformly continuous, then the representation φ
is strongly continuous.

Proof. Let Y be the vector space of all X-valued functions on
G,y(.) with the property

\\y(g)\\£MK(g) f o r a l l geG,
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where M is a positive real constant and K the submultiplicative func-
tion from the hypothesis. (In what follows we shall denote elements
of Y also by {yg)g&G ) O n e s e e s easily that Y endowed with the norm

||3/(.)ll = sup \\y(g)\\K(g)~\ is a Banach space .
9

Let X{G) = ®geGX
9 be the direct sum with X9 = X for all geG.

Define a map Θ: X((?) — X by (©»), - Σ * &*»* for all 0 6 G and » e X{G).
Then for every # e X(G) one has % e Y and the set X = {θj/; y e X(G)}
is a subspace of Y. Consider the closure of 1 in Y and denote it
by X.

Now let Xo be a subspace of X of elements

#(•) = (Ψgψgeo = (Σhφ9hδehx)gBG when a? runs over X

(δgh — Q for g Φ h and δgh = 1 for # — λ) Define a map

φ:X 0 — X by φ(y(.)) = y(e) for all I / ( , ) G I 0 .

Then one has

^ suv \\y(g)\\K(grί=

and

sup
9

Hence φ is an isometric isomorphism of Xo onto X.

Let Q: X-+X be a map defined by

0»( ) = »(e) for all i / ( . ) e ί .

Obviously, Q is linear surjective and satisfies ||Qy(.)ll = lll/( )ll f ° r

all y(.)eX. Its extension by continuity to a linear map of X onto
X will be denoted by the same symbol. Then <p~xQ is a norm one
projection of X onto X.

For every 7 e G, define a map φr: X—• X by

^•02/ = ((θy)gr)geσ = (Σhφgrhyh)aeβ = ( ^ ^ i r e f f = ^ G X

when 7/ runs over X( ί?). (It is made the notation c£ = TΛ, ^ = yh for
all λ e G; hence ^ with these components belongs to X(ί?).) One sees
easily that φr is well defined and linear. Moreover, one has

$ = avp\\ ΣhφgrhVk\\K(grι

9

= sup \\Σkφβrhyt\\K(g7)-1K<0)-1K(irr)
9

£ K{Ί) sup \\Σhφ9rhyh\\K{gΊΓ =
97
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That is

(1) \\φγθy\\ ^ K{Ί)\\θy\\ for all i / e F ,

Then φγ can be extended by continuity to an element of &(X) which
will be denoted by φr. One sees easily that φaβ = ΦaΦβ for all a, βeG
and φe — I. Moreover,

(2) \\ey\\^Ur-4rey\\^K{^)\\4>rey\\ for all y

Also φr: X-+ X is surjective since one has

Θy = φγ{{Θy)gγ-ι)geG for all yeXiG) and 7 6 G.

Thus the property (0) is proved. To show (i) we see that

fr) = Φ~ι(φγv) f o r a l l x e X a n d 7 e G .

Identifying Xo and X via φ and writting P instead of <p~lQ, this
equality reads more naturally as Pφnx = φr The property (ii) is im-
mediate noting that every θyeX can be written Θy = Σhφhψ~ι{y}).
The first assertion of (iii) is immediate because taking K(g) — 1 for
all g e G, the above inequalities (1) and (2) become

(3) \\φrθy\\ = \\Θy\\ f o r a l l yeX{G) a n d y e G .

To prove the second assertion of (iii) we assume still that G is a
topological group and g—»φgx is left uniformly continuous for each
xeX. Taking into account of (ii) it is enough to show that for any
fixed 7 G G and y(.)eXϋ9 the map a -+ $a(Φrv)( ) — (ΦaγV){*) is continu-
ous. As this map is the composition of a—>ay and ay—*{φeΓΐy)( )i
we need only show that for each y(.)eXQ, the map a>—+($*y)( ) is
continuous. For this it is sufficient to show the continuity at a — e.
But this fact is immediate from the left uniform continuity of g —• φgx
for every xeX, because \\(φay)(.) - y(.)\\ = swpg\\φgay(e) - Φ9y(e)\\.

COROLLARY 1. Let {Tt}tGR+d^(X) be a semigroup of contrac-
tions. Then there exists a Banach space X containing X, a norm
one projection P of X onto X and a group {Ut}teB of invertible iso-
metries on X such that:

(i) PUtx = Tmx, for all xeX, teR.
(ii) X is the closed vector space spanned by

{Utx;teR, xeX} .

(iii) If {Tt}teR+ is strongly continuous, then {Ut}teR is also
strongly continuous.
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Proof. Taking G = R, the additive group of real numbers defin-
ing φ by φt = Tm, and K by K(t) = 1, for any £e j?, we are in as-
sumptions of the previous theorem.

REMARK 1. An invertible isometry is a ^w(Γ)-unitary operator
with m > 1, ([2], Proposition 5.1.4). Hence Corollary 1 can be under-
stood as a Banach space analogue of Sz.-Nagy's theorem ([9]) about
of the dilation of a semigroup of contractions into a group of unitary
operators.

COROLLARY 2. (See [9], Theorem IV). Let Te^(X) be a con-
traction. Then there exists a Banach space X containing X, a
norm one projection P of X onto X and an invertible isometry U on
X such that:

(i) PUnx = Tlnlx, for all xeX, neZ.
(ii) X is the closed vector space spanned by

{Unx; neZ, xeX) .

Proof. Obviously, for this case one takes G — Z the additive
group of integer numbers, φ defined by φn = T]n] and K by K(ri) = 1,
for all neZ.

COROLLARY 3. Let {Tί9 T2, •••, Tp}a^(X) be a finite system of
not necessarily commuting contractions. Then there exists a Banach
space X containing X, a norm one projection P of X onto X and a
finite system of commutative invertible isometries {Uu U2, •••, Up} on
X such that:

(i) PZ7Γ1 £7?2 U;*x = ΓΓ1' T^ ϊ > α ,

for any

nunz, , np e Z, x e X .

(ii) X is the closed vector space spanned by

{U^Up U;*x\ nl9 n2, , np e Z, x e X) .

Proof. We take G = Z, x Z2 x x Zp with ^ = Z for i =
1, 2, , p; define φ by φ{nu nz, --, np) = Tl^T^ . T^ and K by

K{nu n2, , np) = 1 for any nlf n2, -*-,npeZ, then apply the above
theorem.

REMARK 2. Corollary 3 is a Banach space analogue of Ando's
theorem ([1]). We remark that it is not necessarily to assume any
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property of commutativity also we can take a number of more than
two contractions, (in a Hubert space this is not true, see [5])

REMARK 3. The above theorem also asserts that for any sequence
{Tn}nez c &(X) of contractions with To = 1, there exists a Banach space
X ID X, a norm one projection P of X onto X and a invertible isometry
U on X such that Tn = PU V for any w e Z. Also X is the closed
vector space spanned by {Unx; neZ, xe X}. (This fact is true in a
Hubert space if and only if Tn is a positive definite sequence.)

COROLLARY 4. Let {Tt}teR+d^ί(X) be a semigroup of operators
such that || Tt\\ ̂  Meat (resp. \\ Tt\\ ^ ta + 1, wiίΛ 0 ^ α ^ 1) /or αZZ
£ G J?+, where a and M are real positive constants. Then there exists
a Banach space X z> X, a norm one projection P of X onto X and a
group of invertible (resp. ^m(Γ)-unitary with m > a + 1) operators
on X, {Ut}tBR such that:

(0) M-ιe~am ^ || £7,11 ^ Mealtι for all teR, if M>1, or e~alt] ^
IID il ^ealtιforallteR,ifM^l, (resp. ( | ί | Λ + l ) - 1 ^ || Ut|| ^ \t\a + 1
/ o r α?Z * G i£).

1 i ) PUtx = Tιtιx for all teR, xeX,
(ii) X is the closed vector space spanned by {Utx; t e R, x e X}.

Proof. Taking G — R the additive group of real numbers, defin-
ing φ by φt = Tιtι for all teR and K thus: if Λf > 1, K(t) = Meα | ί i

for ί ^ 0, and JP(O) = 1; or if M ^ 1, ίΓ(ί) - eαlί l for t Φ 0 and JBΓ(O) = 1,
(resp. K(t) — \t\a + 1 for any teR), we have the hypothesis of the
theorem.

Moreover, for the second case we obtain

for all Iii| > 1, teR. Then applying Proposition 5.1.4 from [2], it
follows that Ut is a ^m(Γ)-unitary operator with m > a + 1, for each
teR.

COROLLARY 5. Let Te^(X), satisfying \\ Tn\\ ^ n" + 1 for all
neN, with 0 ^ a <; 1. T&ew there exists a Banach space Xz)X, a
norm one projection P of X onto X and a ^m(Γ)~unitary operator,
with m > oc + 1, U on X such that:

(0) (\n\a + I Γ 1 ^ ||17 || ^ \n\a + 1 for all neZ.
1i) PUnx - T^x for all neZ, xeX.
(ii) X is the closed vector space spanned by

{Unx; n e Z, x e X} .
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