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ON THE SEMISIMPLICITY OF GROUP RINGS
OF LINEAR GROUPS

D. S. PASSMAN

In this paper we study the semisimplicity problem for
group rings of linear groups. We prove the linear group
analog of a result which constitutes part of the solution of
the semisimplicity problem for solvable groups. Since all of
the necessary group ring lemmas have appeared elsewhere,
the work here is strictly group theoretic. We consider the
possibility of a linear group being covered by a finite union
of root sets of centralizer subgroups.

Let K[G] denote the group ring of G over the field K. Probably
the most fascinating and difficult question asked about this ring is
when is it semisimple, that is when does its Jacobson radical JK[G]
vanish. If K has characteristic 0, then by a result of Amitsur [1]
JK[G] = 0 for all fields K which are not algebraic over the rationals
and in all likelihood K[G] is always semisimple. Thus the real interest
is now in characteristic p > 0. At this time there is not even a
reasonable conjecture as to the answer here and so it is necessary
and important that a large number of special cases be studied. So
far the only nontrivial family of groups for which this problem has
been solved is in fact the solvable groups, that is the groups of
finite derived length. It appears that the next family of interest will
be the linear groups since some interesting work in this direction
has already appeared in [4]. In this paper we study the semisimplicity
problem for linear groups.

Let G be a group and let H be a subgroup. We say that H
has locally finite index in G and write [G: H] — l.f. if for all finitely
generated subgroups S of G we have [S: Sf) H] < oo. We say that
G is a J-group if G = A{G), that is if all conjugacy classes of G are
finite. The result on solvable groups was proved in a series of three
papers [3], [2], and [5] and is as follows.

THEOREM. {Hampton, Passman, and Zalesskii.) Let K be a field
of characteristic p > 0 and let G be a solvable group. Then JK[G] Φ 0
if and only if there exists an element x e 3 (G) (a certain characteristic
subgroup of G) of order p with [G: CG(x)] = l.ί.

We remark that 3(G) is a particular normal J-subgroup of a
solvable group which is defined in [5] and we propose to call it the
Zalesskii subgroup of G.
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Now let G be a linear group. That is, G is a subgroup of the
group of units of Lu, the ring of u x u matrices over some field L
(which need not be at all related to K). The main results here are.

THEOREM. Suppose K is a field of characteristic p > 0. Let G
be a linear group and let H be a normal solvable subgroup. Then
JK[G] Π K[H] Φ 0 if and only if there exists an element xe ^(H)
of order p with [G: CG(x)] = l.f.

COROLLARY. Suppose K is a field of characteristic p > 0. Let
G be a linear group and let H be a normal nίlpotent subgroup.
Then JK[G] Π K[H\ Φ 0 if and only if there exists an element x e Z(H)
of order p with [G: CG(x)] = l.f.

Actually the required group ring lemmas have already been
proved in [2] and [5]. The work here is strictly group theoretic.

1* Isolated subsets* Let G be a group and let if be a sub-
group. We let

VΈ = VΈ = {geG\gmeH for some integer m ^ 1}

be the root set of H. Thus for example if H <\ G then VΉ cor-
responds to the set of torsion elements of G/H. Certainly \/Ή need
not be a subgroup of G. We start by listing three trivial observa-
tions.

LEMMA 1. Let H, Hu H2, , Hk be subgroups of G. We have

(i) VHX n H2 n n Hk = VTΓ, n V ~K n n V TΓk.
(ii) VTP = {VΈ)g for any geG.
(iii) if HS VΈl U VΊζ" U U VTh then

VΉ s VTΓ, u VTΓ2 u u VTΓk .

LEMMA 2. Suppose G = \Jΐ V Hi with Hi <\ G. Then for some
j9 G = V Hj or equivalently G/Hj is torsion.

Proof. We proceed by induction on n, the case n — 1 being
clear. Suppose the result is true for n — 1 and we consider n.

Given Hu H2, , Hn we define the parameter r of this situation
to be the minimum number of IΓs whose intersection is equal to
JHΓ = Hx Π H2 Π Π Hn. Clearly r exists, r ^ n and we prove the
n case by induction on the parameter r. Say the numbering is so
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chosen that H, Π H2 Γ) Π Hr == Ht Γ) H2 Π Π Hn. If r = 1 then
HΊ S H2 SO T/ΊZΓ S VΊzΓ, G = U? VΊ/7 and the w - 1 case yields
the result We may therefore assume that r > 1. Set

w = H2 n flβ n n Hr

so by definition W > N and Hx Π WF = AT. There are two cases to
consider according to whether W/N is torsion or not.

Suppose first that W/N is torsion. Let G — G/W and let Hi =
G. Clearly G= UΓv'lzT. Also for i = 2, 3,-- ,r, fl, =

so S 2 Π 5 3 Π Π Br = <1>. This clearly implies that

Γϊ # , = <1>

and that the parameter of this situation is less than r. By induc-
tion for some jf G — V Hs or equivalently G/HjW is torsion. Now
Hj W/Hj ~ W/(Hj Π W) and this is a homomorphic image of the
torsion group W/N. Thus HjW/Hj is torsion and hence so is G/Hά.
The result follows in this case.

Finally suppose W/N is not torsion and choose x e W to cor-
respond to an element of infinite order in W/N. Let h e Rλ and
consider the n + 1 elements x, hx, h2x, , hnx. Then for each i
some power of Wx is contained in some Hk. Since there are n + 1
elements and only % subgroups it follows that for two different i, j
we have h% hjx e VTϊl for some k. By choosing a sufficiently high
power m we can assume that (hix)m

9 (hjx)m e Hk. Note that

Hx n W - iV so (fli/JSO (TF/ΛΓ) = (fli/iSΓ) x (W/N)

is a direct product. We show first that k Φ 1. For suppose ά = 1.
Then from (hϊx)m e Hλ and heH^G we have easily x'^'eH,. Thus
#m e W Π H"i = N a contradiction since a? has infinite order modulo N.
Thus k Φ l Now clearly (/^#)w = himxmg for some # e ΛΓg H"fc so we
have /&ίm£w € Hk and similarly /iimxm G Hk so if i > j then

^«-i)» = {himxm){hirrιxm)-1 e Hk

and heVHk. We have therefore shown that H Ί S U ? " ^ ^ 7 so
VΊϊΓ S U? V ^ and G = U? i/fl7 The result follows from the
n — 1 case.

This completes the r induction step and the n case is true for
all r. Thus the lemma follows by induction on n.

Now let G be a linear group so that G g L a for some field L
and some integer u and we fix this notation throughout the remainder
of this section. If H is a subgroup of G we let H denote its L-linear
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span. Thus clearly H is a subalgebra of Lu. We say that H is a
pure subgroup of G if H = H Γ\ G and we let ^(G) denote the set
of all such H. If He^(G) we use dim if to denote the L-dimension
of H. We list a number of trivial observations.

LEMMA 3. Let G be as above.
( i ) He^(G) if and only if H = G Π R for some L-subalgebra

R of Lu.
(ii) &(G) is closed under conjugation by G and arbitrary inter-

sections.
(iii) // H19 H2 e &>(G) and H, > H2 then dim Hλ > dim H2.

Let if be a pure subgroup of G. We say that H is root reduced
if

VΊΓ s T/ΊSΓ U VΊΓ2 u u

for finitely many pure subgroups Hi of G implies that Hi^ H for
some i.

LEMMA 4. Let He^(G). Then

V~H = V~Hl u T/ΊZΓ U U VTΓk

for finitely many pure root reduced subgroups Hi £ H.

Proof. We proceed by induction on dim H. If dim H = 1 then
clearly H is contained in all pure subgroups of G. Thus H is
certainly root reduced and the result follows here. Suppose now
that dim H > 1 and that the result is true for all pure subgroups
of smaller dimension. If H is root reduced the result is clear so we
may suppose not. Then

τ/ΊΓ s VTΓ, u VTΓ2 u u V TΓk

with Hi pure and H §£ H{ for all i. Since V~H Π i/lζ" = l/ίffl fl*
we have

1/ 1Γ - V H(\H, U V Hς\H2 U U VHf)Hk

and H> Hf] H{. Now dim£Γ> dim (if Π ΐf̂ ) so by induction each
V H Π Hi is a finite union of root sets of root reduced pure sub-
groups of H Π H^ Therefore, if we replace each V H Π Hi by its
corresponding union, then the result follows.

If If is a subgroup of a group G we let core H = ΓigeσH9 be
the intersection of all G-conjugates of H. Thus core if is the largest
normal subgroup of G contained in H.
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LEMMA 5. Suppose G is a linear group and

G = VΈl u VΈl u u VΊΓn

for pure subgroups H{. Then for some subscript j , G — "l/eore H3,
that is G/coreHj is torsion.

Proof. By Lemma 4 we may replace each V H{ by a finite union
of root sets of root reduced pure subgroups of H{. Thus from the
above we get

G - VWl u VW2 u u VWt (*)

where for each i, Wi is a root reduced pure subgroup of G and Wi
is contained in Hv for some %'. Furthermore, by successively eliminat-
ing unnecessary Wt

9s in (*) we may assume that this union is ir-
redundant. If geG, then conjugating (*) by g yields for each i

VWl g C = VW9 U VWξ U U VW{ .

Thus since W{ is root reduced we conclude that for each i and g
there exists a subscript s with W{ S Ws

g.
We show now by inverse induction on dim Wi that all G-conju-

gates of Wi occur in the union (*). Suppose first that dim Wi is as large
as possible. Then from Wi £ Wi and the maximality of dim Wi we
have Wi = Ws

9 and W8 = Wξ~ι occurs in (*) for all geG. This starts
the induction. Now suppose the result to be true for all Wk with
dim Wk > dim W{. Let geG and let 8 be given by W{ S Wi. If
Wi > Wi then dim W8 > dim W{ so by induction Wi occurs in (*).
Thus since VWϊ 2 VWl we see that the Wi term in (*) is redun-
dant, a contradiction. Therefore, we must have Wi = Wi so W8 =
Wϊ~~ι occurs in (*) and this fact follows.

Now (*) is a finite union so obviously each Wi has only finitely
many conjugates in G. Thus we can find a normal subgroup G of
G of finite index which normalizes each W^ If Wt = G Π Wi then
Wi<\G and we have clearly

G = Gjwl U VWΓ U U VWΓ

Thus by Lemma 2 applied to the abstract group G we have G = \/ W<
for some i and hence since G/G is finite and Wi 2 ^ we obtain
G =z VWi Now TFί has only finitely many conjugates and certainly
for each Wξ, G — VWξ. Thus since the intersections below are all
really finite we have

= l/core Wi.
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Finally W{ g H5 for some j so core Wt S core Hό and G = i/core fly.
The result follows.

2* Centralizer subgroups. Let G be a linear group so that
G £i L%. If H is a subgroup of G, then we say that H is a central-
izer subgroup if H = CG(T) for some nonempty subset T ϋ Z/M.

LEMMA 6. Le£ H be a centralizer subgroup of G. Then H is a
pure subgroup and G/core H is a linear group.

Proof. Let H = CG(T). Then clearly G n ΰ centralizes T so
GΠHQ H and H is pure. If #e G then H9 = Cff(Γ0 so certainly
c o r e i ϊ ^ 0^(5) where S = \JgzGT

9. Let S denote the L-linear span
of S. Then S is a finite dimensional Z/-vector space and G acts on
S by conjugation. Since clearly core H = CG(S) we see that G/core £Γ
is a linear group.

We now complete our group theoretic work.

PROPOSITION 7. Suppose G is a linear group and

G = VΊT, u VTΓZ u u VΈl

where each Hi is a centralizer subgroup of G. Then for some sub-
script j , G/core H3 is locally finite and hence [G: Hό] — l.f.

Proof. By the above lemma each H{ is a pure subgroup of G
and thus Lemma 5 implies that for some j , G/core Hό is torsion.
Then again by the above lemma G/core Hd is a periodic linear group
and hence, as is well known, it is locally finite. Finally let S be a
finitely generated subgroup of G. Then S(core il^/core H3 is a finitely
generated subgroup of G/core Hά so

S/(S Π core Hά) = S(core Hs)/eoτe H3

is finite. Since S 3 S Π iϊy 2 S Π core fly we have [S: S Π fly] < °o
and hence [G: fly] = l.f.

Now we consider group rings.

Proof of the Theorem. Let G, H, and K be as given and suppose
first that 1= JK[G] n # [ # ] =*= 0. Since H is solvable and I is a
nonzero ideal of K[H], results of [5] imply that If) K[^(H)] φ 0.
Thus
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JK[G] n κ[Έ3(H)] = inκ[=3(H)] Φ O .

Now =>(H) is a normal solvable ^-subgroup of G so by Theorem A
of [2] there exist finitely many nonidentity elements hl9 h2, " ,hn of

of order a power of p with

G = U VCTO"
1

Since G is a linear group and CG(hi) is a centralizer subgroup we
conclude from Proposition 7 that for some j , [G: CG{hj)\ — l.f. Now
/̂  ^ 1 has order a power of p so we can choose x e (hj) to have
order p. Since CG(a?) =2 C^(^ ) we have [G: CG(OΣ)] = l.f. and this half
is proved.

Conversely suppose xe 3(2ϊ) is given with [G: CG{x)\ = l.f. and
suppose x has order p. Then since 3 (if) is a normal z/-subgroup of
G we see easily that the proof of the converse part of Theorem B
of [2] carries over to prove the result that JK[G] Π K[^(H)] Φ 0.
Thus certainly JK[G] Π K[H] Φ 0 and the result follows.

Proof of the Corollary. Let G, H, and K be as above. If H is
nilpotent then by [5] the same result holds with =>(H) replaced by
A(H). Thus we need only show that if Δ{H) has an element y of
order p with [G: CG(y)\ — l.f. then we can also find such an element
in Z{H).

Now y e A{H) has finite order so (y)H, the normal closure of y
in H has finite order. Moreover, since (y}H is a finite nilpotent
group generated by p-elements, it is a p-group. Since H is nilpotent
(y)H n ^Γ(ίf) ^ <1> and we can choose x to be an element of order
p in this intersection. Now CG(y) normalizes (y} and H so it nor-
malizes the finite group (y}H. Thus some subgroup of CG(y) of
finite index centralizes (y}H and hence [C0(y): CG(y) Π CG(x)\ < oo.
By Lemma 1 (v) (i) of [3] we conclude first that

[G: CG(y) n Cβ(x)} = l.f.

and then

[G: C0(x)} = l.f.

The Corollary is proved.
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