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APPROXIMATE IDENTITIES FOR
CONVOLUTION MEASURE ALGEBRAS

CHARLES D. LAHR

Let (A, *) be a commutative semisimple convolution
measure algebra with structure semigroup Γ. It is proved
that A has a weak bounded approximate identity if and only
if Γ has a finite set of relative units; moreover, Γ has an
identity if and only if some weak bounded approximate
identity is of norm one. Considering now a commutative semi-
group S9 the existence of a bounded (norm) approximate
identity in A = Λ(S) is equivalent to the existence in S of a
finite number of nets {^xijjptfje^, i — 1,2, — ,n with the
property that for every xeS there exist j and p(j)x such
that p(J) ^ ρ(j)x implies xup(j} = x.

Basic definitions, notation, and background results are given in
§ 2. In § 3 we study the relationship between (A, *) and Γ when
A has a weak bounded approximate identity of norm R. In § 4 we
examine conditions on S that are equivalent to the existence of a
bounded (norm) approximate identity in A = /X{S).

2. Preliminaries* Let (B, *) be a commutative Banach algebra
under || ||. Let A(B) denote the maximal ideal space of J5, that is,
the space of all continuous homomorphisms of B into the complex
field C together with the weak-*(Gelfand) topology [9]. As usual
for any aeB, define ά(χ) = χ(a) for each χeΛ(B), and let

B = {a: aeB} .

A weak bounded approximate identity of norm R for B is a net
{Eplpejr of elements of B such that (a) \\EP\\^L R for some positive
number R and for all p e ̂ 7 and (b) (a*Ep)~(χ) ->α(χ) for all χ e J(B)
and for every aeB. A bounded approximate identity of norm R
for B is a net {Ep} of elements of B such that (a) | | ^ | | ^ i? for
some positive number R and for all p, and (b) ||«*JS^ — a\\ —»0 for
all aeB) we sometimes use the terminology "bounded (norm) ap-
proximate identity of norm R" for the same concept.

If X is any normed linear vector space, the continuous linear
dual of X is denoted by X*; (α, /) represents the action of / e l *
on aeX; and if F g l , 2 g Γ , then let w(Y, Z) be the weak
topology on 7 g l induced by Z g l * . The natural mapping of X
into X** is denoted by j : X—»X**. Often, we simply denote
(f,j(a)) by (<*>/)> aeX, feX*, in those circumstances where the
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meaning is clear
Now let S be a commutative locally compact Hausdorff semigroup

with jointly continuous multiplication (sometimes herein referred to
as a commutative locally compact topological semigroup); and let
M(S) denote the complex Banach algebra of all bounded regular
Borel measures on S where the product * is defined by convolution.
For μ, veM(S), F a Borel subset of S,

*i>) (F)=\ \
JS JS

where φF denotes the characteristic function of F. The norm on M(S)
is the total variation norm, denoted || ||. See Taylor [10] A semi-
character χ on S is a nonzero continuous complex valued function
on S of modulus less than or equal to one which satisfies

= x(*)x(v) f o r a 1 1 χ , y e S .

The collection of semicharacters of S is denoted by S. It is well
known that C0(S)* = M(S), where μ e M(S) induces a linear functional
on C0(S) by

(9, μ) = \ 9(x)dμ(x) for all g e CQ(S) .
J s

This paper is devoted to characterizations of approximate identities
for certain semisimple convolution measure algebras. For a definition
of convolution measure algebra see [10]. If G is a locally compact
abelian topological group, and if L^G) is the algebra of Haar inte-
grable functions on G under convolution multiplication, then LX(G)
is a convolution measure algebra. Likewise, M(S) is a convolution
measure algebra.

Taylor proves in [10] that if (A, *) is a commutative convolution
measure algebra, we may identify the maximal ideal space of (A, *)
with Γ, the set of all semicharacters on a compact topological semi-
group Γ9 which he labels the structure semigroup of (A, *), (we will
denote the structure semigroup of any convolution measure algebra
under discussion by Γ). There is a homomorphism p: μ—>μv of A
into M(Γ) with the following pertinent properties: p(A) is weak-*
dense in M(Γ), that is, dense in the w{M{Γ), C(Γ)) topology (where
we have identified C(Γ) with its natural image in M(/τ)*); p is an
isometry if and only if (A, *) is semisimple. Γ also has the property
that the uniformly closed linear span of Γ is C(Γ). We make use
of this fact in observing that Γ £ Δ{M{Γ)) is enough to imply the
semisimplicity of M(Γ): that is, suppose μ, ve M(Γ) and β(χ) — v(χ)
for all χeΓ; then because the linear span of Γ is uniformly dense
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in C(Γ), the formula (χ, μ) = (χ,v) for χeΓ can be extended to all
feC(Γ); therefore, μ and v agree as linear functionals on C{Γ) and
so as elements of M(Γ).

The set of discrete measures in M(S) forms a subalgebra of
M(S), denoted by s^S). Of course, if S is discrete, then /[(S) =
M(S). Hewitt and Zuckerman present a detailed study of <(S) in
[5]. An interesting fact is that the existence of an identity in /X(S)
is equivalent to the existence of a finite set of relative units in S,
where U is defined to be a set of relative units for S, if for every
xe S, there exists u e U such that xu = x. Lardy [6] proves that
the same conditions on S are necessary and sufficient for the existence
of an identity in M(S)9 and in fact an identity for M(S) must lie
in

3* Weak approximate identities* Throughout this section
(A, *) is a semisimple convolution measure algebra. Assume that A
is embedded in M(Γ). The first result relates the existence of a
weak bounded approximate identity in A to the existence of an
identity in M{Γ).

THEOREM 3.1. Γ has a finite set of relative units if and only if
A has a weak bounded approximate identity.

Proof. Suppose A has a weak bounded approximate identity
{Ep}, \\EP\\ ̂  R for all p. Then {Ep} is a subset of the closed ball
of M{Γ) of radius R. In the weak-* topology, this ball is compact.
Thus, there is a subnet {Ep,} and EeM(Γ) such that EP,-*Έ in
the weak-* topology of M(Γ). Our aim is to show that E is an
identity for M{Γ). If aeA, (χ, a*EP) ~»(χ, a) for all χeΓ. Thus,
(χ, a*E) = (χ, α) for all xeΓ implies that a*E = a for all aeA.
Since A is weak-* dense in M(Γ) [10], if μ is an arbitrary element
of M(Γ), there exists a net {ft}c4 such that μd-+μ in the weak-*
topology; hence, (χ, μd * E) -> (χ, μ * 2?) for all χ e Γ, while
(χ, μd*E) = (χ, /£,) -> (χ, /£) for all χ e Γ . Therefore, (χ, μ* E) =
(l, J") f o r aH X e Γ implies that μ* Έ •=• μ for all μ e M(Γ), and hence
£7 is an identity for M(Γ). Finally, Γ has a finite set of relative
units [6].

Conversely, assume now that Γ has a finite set of relative units
and without loss of generality assume that U = {ylf 72, , Ύn} is a
minimal set of relative units with Ί\ — 7< for all i [6]. Let
{ωP{i)}pn)ejri be a neighborhood system for Ύif i — 1, 2, •••, n; for each
i, ^ 7 is ordered by set inclusion, that is, p(i) ^ p'(i) if and only if
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ωp{i) £ θ)p>d) Now, since A is a weak-* dense L-subspace of M(Γ),
for each p(i) e J^, there is a nonnegative measure μm of norm one
in A such that μpιi) is concentrated on ωp[i),i=l,29 9n [10].
For each fe C(Γ), we assert that (/, μP(i)) -> (/, dr.), i = 1, 2, . , n:
fix i and let ε > 0 be given; there exists po(ϊ) such that

I f(i) - f(%) l < e for all 7 e ω,oWJ

by continuity of /; thus, p(i) ^ pQ(i) implies

L
<

Further, by the weak-* joint continuity of convolution multiplication
on the unit ball of M{Γ) [4], for (ρ(i), p(j))ej?i x J ^

weak-* for all i and j — 1, 2, , n, i Φ j .
Now, set ^^= ^~l x &\ x x ^ and let p e ^ be denoted

by p = do(l), ^(2), •••, ί>(^)); for each ^ e / define

If JE is the Hewitt-Zuckerman identity for M(Γ) constructed from
U (see [5] and [6]), then from above (χ, Ep) —• (χ, £7) for each χGί 1,
which implies (χ, μ * JE>) —• (χ, ^ * £/) — (χ, /£) for each χ e Γ and for
all μeA. Clearly, \\EP\\ ̂  R for some positive number R and for
all p. Thus, {Ep} is a weak bounded approximate identity for A.
This completes the proof.

The next corollary should be contrasted with Theorem 3.1 of [10].
We are unable to verify that the existence of an identity in Γ im-
plies the existence of a bounded approximate identity in A of norm
one.

COROLLARY 3.2. Γ has an identity if and only if A has a weak
bounded approximate identity {Ep} of norm one.

Proof. If Γ has an identity e, let {ωp} be a neighborhood system
at e. Since A is a weak-* dense L-subspace of M{Γ), there is a
nonnegative measure Ep of norm one in A such that Ep is concen-
trated on each ωp. As in the proof of Theorem 3.1 it is seen that
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is a weak bounded approximate identity for A since

<X,μ*Ep) ><χ9μ*S.) = <X,μ)

for all χeΓ and for each μeA.
Conversely, if {Ep} is a weak bounded approximate identity of

norm one, the proof of Theorem 3.1 shows that there is a subnet
{Ep,} and E e M(Γ) such that Ep, —> E in the weak-* topology and
Έ is the identity of M(Γ). In fact, E is the Hewitt-Zuckerman
identity for s^Γ) formed from the set of relative units of Γ [6].
Thus, \\EP || ^ 1 for all p implies \\E\\ = 1, so E is concentrated on
a single point e of Γ. Thus, e is the identity of Γ.

COROLLARY, 3.3. A has a weak bounded approximate identity
if and only if M(Γ) has an identity.

Proof. M(Γ) has an identity if and only if Γ has a finite set
of relative units [6].

4* Approximate identities for *ί(S)* We now begin the study
of <(S). The semisimplicity of 4(S) is equivalent to the algebraic
condition on S that x2 = y2 = #?/ implies a? = y, a?, y e S [5]. If S
satisfies this condition, we follow Petrich [7, p. 311] in saying that
S is separative.

The maximal ideal space of ^(S) is just S. If A is the uni-
formly closed subspace of ^l(S)* = s^S) generated by S, then A
is a C*-algebra with identity. Therefore, Γ, the maximal ideal
space of A, is compact and if S separates points of Sf then there is
a natural isomorphism i8 of S onto a dense subset of Γ. Also note
that (χ, is{x)) = χ(α?) for all xeS,χe S. The author originally proved
all of these results by pursuing Rennison's techniques [8] of applying
the Arens product [1] to the task of describing J(/ί(S)). It was very
kind of the referee to point out the much simpler arguments just
presented. We restate the main conclusion in the next proposition.

PROPOSITION 4.1. If S is separative, then there is a natural
isomorphism i8 of S onto a dense subset of Γ.

In examining conditions on S that are imposed by the existence
of a norm approximate identity in ^(S), we find that the following
proposition holds without regard to the semisimplicity of <(

PROPOSITION 4.2. Let S be a commutative semigroup. If <



152 CHARLES D. LAHR

has a norm approximate identity {Ep} (bounded or not), then S has
a set of relative units.

Proof. Let x e S. Then there exists p such that

δ.*EP-δm\\<±.

Set Ep - ΣΓ=i sA Then

l - Σ β«
i <i4

implies there exists g e S such that gx = x.

COROLLARY 4.3. If S is a cancellative semigroup and if /x

has a norm approximate identity, then S has an identity.

Proof. Let xeS. Then t h e r e exists zeS such t h a t xz = x.

Now if y eS, xzy = xy implies zy = y, so z is t h e identity for S.

PROPOSITION 4.4. Suppose {EP}czsί(S) is such that ||JE7,|| ^ Λ
for all p and some positive number R, and in addition

|| Ep * δx - δx || > 0 for all x e S .

TΛe% {ϋy is α bounded approximate identity for <(

Proof. Let a e sjβ) be arbitrary and let e > 0 be given. Then
there exists No such that ΣΓ=ivo+i I a(%i) I < ε/3i?. Also, there exists
p0 such that p^ p0 implies

Thus,

|| J0, * α - α|| £ |g*(*<) ( ^ * «., - ̂ .)||

II °° II II °°

+ \EP* Σ « ( Λ + . Σ

~Ί + J + J = $ f o r aI1 ^ - P t '

This completes the proof.
We now confine our attention to separative semigroups. Using

Proposition 4.1, we consider S to be embedded in the compact
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topological semigroup Γ a s a dense subsemigroup
It is possible to use the semicharacters of S to decompose the

semigroup into a set of equivalence classes as follows: for x, yeS,
write x ~ y if for each χ e S, χ(x) = 0 if and only if χ(y) = 0; let
Hx == {yeS: y~ x}; then ~ is an equivalence relation on S and the
mapping x t-> Hx is a homomorphism of S onto the idempotent semi-
group {Hx: xeS}, multiplication in the latter space being given by
HxHy = Hxy. Then define a partial ordering which makes [Hx\ xe S}
a semilattice by setting Hx ^ Hy if and only if HxHy = Hx, x, yeS;
further, define 4 = fe/eS: Hy^Hx}, xeS. Then for each xeS,
Hx and Ax are subsemigroups of S; Hx is cancellative;

Ax = {yeS: iί χeS and χ(x) Φ 0, t h e n χ(y) Φ 0}

and the characteristic function of Ax is always a semicharacter of S
(see [2, 3, 5] for more details).

If sλ(S) has a bounded approximate identity {Ep}, then certainly
{Ep} is a weak bounded approximate identity. Thus, Theorem 3.1
with A — s^S) implies the existence of a finite set of relative units
in Γ. In the next theorem we show that if we assume that S has
a set of relative units, then the existence of a finite set of relative
units in Γ allows us to construct a bounded approximate identity for

THEOREM 4.5. Suppose sx{S) is semisimple and S contains a set
of relative units. If Γ contains a finite set of relative units, then
(a) there exist in S a finite number of nets

{^wlpiijβ^, i = 1, 2, , n

such that for every xeS there exist j and p(j)x for which p(j) ^ p(j)x

implies upU)x = x, and (b) 4(S) has a bounded (norm) approximate
identity. Moreover, if Γ has an identity, then n = 1 in (a) and the
approximate identity in (b) is of norm one.

Proof. Let U = {71? 72, , 7n} be a set of relative units for Γ,
and assume without loss of generality that Ί\ = 74 for all i [6]. Then
there exist nets { % ) U e ^ c S such that Xp(i)—*Ίn i = 1, 2, •••,%.
Let {^(^(ije^.CiS be such that upii)xPii) = xp{i) for all ρ(i)e^i, i =
1,2, •••, w. Now, let xeS; then there exists j such that 7 ^ = x.
Thus, a?p(i)a? —• x in Z7. If ^̂  is the characteristic function of Ax, φxeS
[2, Proposition 3.8] and hence φx(xPiί)x) ~> φx(x) = 1; thus, there exists
ρ(j)x such that ρ(j) ^ ρ(j)x implies Φx(xPU)) = Φ*(npii)B) = l Hence,
by the choice of w,(i), φx{up{ά)) = 1 for all ^(y) ^ |0(τ)»» we thus have
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that p(j) Ξ> p(j)x implies xpU) e Ax, up{ά) € Ax. We now show that
upuΊx = x for all ρ(j) ̂  ρ(j)x. If not, there [exist ρ(j) and χ e Γ such
that χ(upU)x) Φ χ(x). Since uP(j)xeHx, if follows that χfa^aO)^ 0
and χ(&) Φ 0. Also since α̂ y, 6 A99 χ(xPu)) =£ 0 and since

However, this leads to the contradiction χ(x) = χ(upU)x) Φ χ(x).
Therefore, if x e S is arbitrary, then it is possible to find j and p(j)x

such that p(j) ̂  p(j)x implies upU)x = α?. This proves (a). To see
that ^(S) has a bounded approximate identity, let

with pej^" denoted by p — (ρ(ί), ρ(2), •••, ρ(n)). Further, for each
define

We assert that {Ep}pejr is a bounded approximate identity for
To substantiate this, let xeS and let j and /Ô /),. be such that p(j) ^
/oϋ), implies that xupU) — x. Thus, for all p e ̂  with

P = ( , ̂ (i), •) and p(j) ̂  ^0% ,

we have that Ep * δx = 5β. Since a? is arbitrary, EP* δx-+ δx for all
a e S in ^-norm. Clearly, \\EP\\^R for some positive number R
and for all pejK Thus, Proposition 4.4 implies that {Ep}peJr is a
bounded approximate identity for <(£). If .Γ has an identity, say
7X, then {Ep} with JE^ = δUpa) is seen to be an approximate identity
of norm one for

COROLLARY 4.6. Suppose <(Sf) is semisimple. Then ^(S) has a
bounded approximate identity if and only if S has a set of relative
units and Γ has a finite set of relative units. Moreover, ̂ (S) has a
bounded approximate identity of norm one if and only if S has a
set of relative units and Γ has an identity.

Proof. If /[(S) has a bounded approximate identity, then S has
a set of relative units by Proposition 4.2; Γ contains a finite set of
relative units by Theorem 3.1. Now if s^S) has a bounded approximate
identity of norm one, then Γ has an identity by Corollary 3.2.

Conversely, if S has a set of relative units and 7 has a finite set
of relative units, then ^(S) has a bounded approximate identity by
Theorem 4.5 (b). Moreover, if Γ has an identity, then s[(S) has a
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bounded approximate identity of norm one by Theorem 4.5. This
completes the proof.

Note the existence in S of the nets described in Theorem 4.5 (a)
is all that is required in order to construct a bounded approximate
identity in <(S).

Once again referring to Theorem 3.1 of [10], if S is separative
and we make the additional assumption that S contains a set of
relative units, then the existence of an identity in Γ is a sufficient
condition for s^S) to have a bounded approximate identity of norm
one by Corollary 4.6. Each of the next two results gives conditions
on S that are equivalent to the existence of a bounded approximate
identity in ^Ί(S). Theorem 4.8 is almost a restatement of Theorem 4.5
and Corollary 4.6.

PROPOSITION 4.7. Suppose /γ{S) is semisimple. Then ^(S) has
a bounded approximate identity of norm one if and only if S has a
set of relative units and there exists a net {xp} c S such that %(xP) —• 1
for all χeS.

Proof. If <(S) has a bounded approximate identity of norm one,
then Corollary 4.6 implies that S has a set of relative units and Γ
has an identity e. Assuming S is embedded in Γ as a dense subset,
there exists a net {xP} c S such that xp —* e. Hence, χ(xp) —»χ(e) — 1
for all χeS.

Conversely, if S has a net {xP} such that χ(xp) —> 1 for all χ e S,
then {δXp} is a weak bounded approximate identity of norm one.
Thus, Γ has an identity e by Corollary 3.2. Since by assumption
S has a set of relative units, Corollary 4.6 implies that /L(S) has a
bounded approximate identity of norm one.

THEOREM 4.8. Suppose <(S) is semisimple. Then ^(S) has a
bounded approximate identity if and only if there exist a finite
number of nets K ^ U e ^ c S , i = 1,2, " ,n such that for every
x e S there exist j and p(j)x for which p(j) ̂  ρ(j)x implies up(j)x = x.

Proof. If ^(S) has a bounded approximate identity, then S
contains a set of relative units and Γ contains a finite set of relative
units by Corollary 4.6. Therefore, by Theorem 4.5 (a) there exist in
S the nets {Up^p^e^-^ i = 1, 2, •••, n with the designated properties.

Conversely, if S contains a finite number of nets {Up^p^e^^
i = 1, 2, , n as specified in the statement of this theorem, then as
in the proof of Theorem 4.5 (b), it is possible to construct a bounded
approximate identity for /ί(S)



156 CHARLES D. LAHR

COROLLARY 4.9 Suppose st(S) is semisimple. Then sx{S) has a
bounded approximate identity of norm one if and only if there is a
net {Up} c S such that for every xeS there exists ρx for which p^ ρx

implies xup = x. In this case {dUp} forms a bounded approximate
identity for

Proof. Most of this corollary is obvious. In any event, the fact
that \\δup * δx - δx || -* 0 for all xeS proves that {δUp} forms a bound-
ed approximate identity of norm one for <(S) by Proposition 4.4.
This completes the proof.

If S is an idempotent semigroup, there is a natural partial
ordering on S that is sometimes helpful in constructing the net {up}
of Corollary 4 9. We define "<g" by x ^ y if xy — x, x,yeS.

PROPOSITION 4.10. Let S be an idempotent semigroup. Then
^i(S) has a bounded approximate identity of norm one if and only
if S has the property that for any x, y e S there exists ze S such that
xz — x and yz = y.

Proof. Suppose S has the designated property. Then the semi-
group itself forms a net under the partial ordering described above,
since by assumption, given x, ye S it is possible to find zeS such
that x ^ z, y ^ z. Now, if xe S, choose zeS such that x ^ z. Then
yeS, y ^ z implies that xy = x and so by Corollary 4.9 {dy}yeS forms
an approximate identity for <(S).

Conversely, if ή(S) has a bounded approximate identity of norm
one, then by Corollary 4.9 there is a net {up} c S such that given
x, y e S it is possible to find uPo with the property that uPox — x and
uPoy — y. This completes the proof.

We would like to prove a theorem analogous to Proposition 4.10
for semigroups that are unions of groups, but not necessarily idem-
potent. Let S' = {Hx: xeS}; recall that under the multiplication
HxHy = Hxy, S' is an idempotent semigroup [2, 3j.

PROPOSITION 4.11. Suppose sλ(S) is semisimple. Then ^(S) has
a bounded approximate identity of norm one if and only if S has a
set of relative units and A(Sf) has a bounded approximate identity
of norm one.

Proof. The existence of a bounded approximate identity of norm
one in ^(S) is equivalent to the existence of a net {up} in S with
the property that for every xe S there exists px such that p ^ px
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implies xup = x by Corollary 4 9 Thus, S has a set of relative
units Moreover, given x, yeS, there exists ρ0, p0 ^ px and p0 ^ ρy,
such that ŵ flc = x and ^ o y = y. Thus, HXUPo = iί* and lϊj,,^ = H,.
The idempotence of S' and Proposition 4.10 now imply that ^Ί(S')
has a bounded approximate identity of norm one.

Conversely, because 4(S') has a bounded approximate identity
of norm one, Proposition 4.7 implies that there exists a net {HXp}aSr

such that <f (fl,,)-> 1 for all ψe(S')A. Let K J c S be such that
UpXp — xP for all p. We assert that χ(up) —* 1 for all χ e S To sub-
stantiate this assertion, let χeS and define for all Hxe S',

o, * * ) = o .

Then χ € (S')Λ and hence X(HXp) -* 1. Thus, there exists ^0 such that
P^ Po implies that ϊ{HXp) = 1, which in turn implies that χ(ap) ^ 0
for all p ^ /v Therefore, p ^ p0 implies that χ(up) — 1, or in other
words, χ{up) -+1. Thus, an application of Proposition 4.7 yields that

(S) has a bounded approximate identity of norm one

THEOREM 4.12. Let S be a union of disjoint groups. Then

has a bounded approximate identity of norm one if and only if S

has the property that corresponding to each x, yeS there is zeS

such that Hxz = Hx and Hyz = Hy.

Proof. The fact that S is a union of disjoint groups is equiva-
lent to Hx being a group for all xeS[5, Theorem 8.11]. Thus, each
Hx contains an idempotent u such that ux = x, and so S has a set
of relative units. If for each x, yeS there exists zeS such that
Hxz = Hx and Hyz = Hy, then ^(S') has a bounded approximate iden-
tity of norm one Thus, according to Proposition 4.11 /i(S) has a
bounded approximate identity of norm one.

Conversely, if /X{S) has a bounded approximate identity of norm
one, then it is an easy matter to see how to use the net described
in Corollary 4.9 in order to obtain the property stated above. This
completes the proof

For the sake of completeness we state following proposition.

PROPOSITION 4.13. Suppose <(S) is semisimple. Then s^S) has
a bounded approximate identity of norm one if and only if S has a
set of relative units and S is a semigroup.

Proof. If sjβ) has a bounded approximate identity of norm one,
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then <S has a set of relative units and Γ has an identity by Corol-
lary 4.6. Hence, S is a semigroup.

Conversely, if § is a semigroup, by Theorem 6.7 of [5], for each
x,yeS there exists zeS such that Hxz = Hx and Hyz = fl,. Thus,
the idempotence of S' and Proposition 4.10 imply that •IOS') has a
bounded approximate identity of norm one. Therefore, by Proposition
4.11 and the fact that S has a set of relative units, we conclude that
/Ί(S) has a bounded approximate identity of norm one. This com-
pletes the proof.

EXAMPLE 4.14. Let S be the set of integers under the operation
of maximum multiplication and consider the subsemigroup So of Sx S
consisting of the negative axes

Then, clearly, two sequences {(n, 0): n ^ 0} and {(0, m): m ^ 0} are
required having the properties specified in Theorem 4.8; thus, by
Theorem 4.8 <(S0) has a bounded approximate identity. Γ is the two
point compactification of SQ obtained by adjoining yt and 72 and defin-
ing the products: TJ = 7^ Ί\ = 72; 7i72 = (0, 0); 7x(w, 0) = (n, 0) for all
n ^ 0; 7x(0, m) = (0, 0) for all m ^ 0; 72(0, m) = (0, m) for all m ^ 0;
and 72(M, 0) = (0, 0) for all % ̂  0. 7X and 72 are relative units for
Γ with E — δrι + δ r 2 — <?(o,o) being the Hewitt-Zuckerman identity for
M(Γ). If for n ^ 0, m ^ 0, we let E(n>m) = ί(n,0J + δ(0,m) — δ(0,0), then
{E{n>m)} is a bounded approximate identity for /i(S).
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