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ON THE CLASSIFICATION OF
LINDENSTRAUSS SPACES

H. ELTON LACEY

A Lindenstrauss space is a real Banach space X such
that its dual X* is linearly isometric to Li(β) for some measure
μ. The purpose of this paper is to describe how certain
classical types of Lindenstrauss spaces are characterized by
mappings from a compact Hausdorff space S into C(S)*.

Let S be a compact Hausdorff space and p: S—>C(S)* a bounded
function such that for each feC(S), the function fp defined by

fp(s) — \fdp(s) is integrable with respect to each regular Borel

measure on S. Thus p induces a natural bounded linear operator P

on C(S)* defined by (Pμ)(f) = \fPdμ for all μeC(S)* and/eC(S).

If (i) \\ρ(s)\\^l for all seS, and (ii) whenever μeC(S) and

[fdμ = 0 for all fe C(S) with/ - /„ then \fPdμ = 0 for all fe C(S),

then p is said to be an affine mapping.

It was shown in [1] that if p is affine, then Xp = {fe C(S):f=fp}
is a Lindenstrauss space, P is a contractive projection on C(S)* with
kernel equal to X^ = {μe C(S)*: μ(f) = 0 for all feXP}. Moreover,
the restriction mapping μ —> μ \ Xp is a linear isometry from the
range of P onto Xp.

Condition (ii) of the definition of an affine mapping is usually the
hardest to verify. In [7] Gleit gives a nontrivial example when
p(s) ^ 0 for all se S. Although he did not actually use this termi-
nology, careful inspection of his proof yields that the mapping he
postulates is indeed an affine mapping. In fact, slight modifications
in his proof yields the following general result.

THEOREM 1. (Gleit). Let S be a compact Hausdorff space and
T a closed subset of S. Let p:S-+C(S)* be a mapping such that

(a) 11/0(8)11 ̂ ίfor all seS,
(b) p(s) = ε8 (i.e., point evaluation) for seS\T,
( c) for T2 = {se T: ρ(s) = εj and Tx - T\T2, we suppose that

TγΦ S and \ ρ(s) \ (7\) = 0 for all s e T19

(d) p I T is weak* continuous.
Then p is an affine mapping and X* is, in fact, linearly

isometric to {μ e C(S)*: | μ | (T,) = 0}.

As mentioned above, Gleit assumes in addition that p(s) ^ 0 for
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all se S. This assumption yields that Xp is ordered and X* is
an L space in its dual ordering. This will be proved in general in
Theorem 2. For this and other results certain classical types of
Lindenstrauss spaces are recalled.

C(S): the Banach space of all continuous real valued functions
on a compact Hausdorff space S.

C0(LS): the Banach space of all continuous real valued functions
which vanish at infinity on a locally compact Hausdorff space LS.

A(K): the Banach space of all affine continuous functions on a
compact Choquet simplex K.

A0(K): the Banach space of all affine continuous functions on a
compact Choquet simplex space K which vanish at a fixed extreme
point of K.

Cσ(S): the set of all feC(S) such that f(s) = -f(σs) for all
se S, where σ is a homeomorphism on S such that σ2 is the identity.

M space: the set of all fe C(S) satisfying a fixed set of relations
fa, s , λj where si9 s- e S, λ< 6 [0,1] and / satisfies /(s4) = λ<(sθ for all
i in some index set.

G space: the set of all fe C(S) satisfying a fixed set of relations
{si9 si, λj where s{, s[ are in S, λ< e [ — 1,1] and / satisfies /(s4) = λ, /(s-)
for all i in some index set.

THEOREM 2. Let S be a compact Hausdorff space and p: S—>
C(S)* be an affine mapping. If p(s) ^ 0 for all se S, then Xp is an
A0(K) space. If p(s) ^ 0 and \\ ρ(s) || = 1 for all se S, then Xp is an
A(K) space. Conversely, each A0(K) and A{K) space can be so
represented.

Proof. Let P be the projection determined by p. Let r be the
restriction mapping from the range N of P onto X*. Then r is a
linear isometry and is clearly positive from N to X* where X* has
the dual ordering from the induced ordering on Xp from C(S).

Now N is a sublattice of C(S)*. For, if μ, v are in N, then
since P is positive, P(μ V v) ^ μ V v and since P is contractive,
II μ V v || ^ || P(μ V y) ||. Thus it follows that μ V v = P(μ V v).
Hence it remains only to show that r is order preserving to establish
that Xp is an A0(K) space (see [2]). Let x* e X* be positive and
have norm one and let W = {]/* e X*: 0 ^ 3/*, || 3/* || ^ 1}. Clearly TΓ
is a weak* closed convex set in X*. Let So be the weak* closure of
the extreme points of W. Since each nonzero extreme point of W
is the image (under restriction) of an extreme point of the unit
sphere of C(S)* and since the positive cone of Xp is nonzero, it
follows that So is contained in the image of {εs:s6S}U{0} = Sx
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under restriction. Now, there is a probability measure μ on So such

that \y*(f)dμ(y*) = x*(f) for all ΐeXp (see [19]) and by [8] there

is a probability measure v on SΊ such that I fdv = I y*(f)dμ(y*) — x*(f)
for all fe Xp, where / is defined by f(εs) = /(s) and /(0) - 0. Thus
i/ defined by i/(A) = y({εs: s e A}) is a nonnegative measure on S
and ί fάxf = ί /rfy for all/e X, (since /(0) = 0). If r i V = x*, then since

Pi/^0, the proof is complete. But, \fdv' = ί/ώ; = J y*(f)dμ(y*) =

x*(f) ίorfeXP.
If, in addition, \\p(s)\\ = l for all seS, then leXp and it

follows that Xp has a strong order unit and so Xp is an A(K) space
where ijί is a compact Choquet simplex.

Conversely, if we are given a simplex space A0(K), then without
loss of generality K = {#* 6 ΛCBL)*: 0 ̂  a?*, || α?* || ^ 1}. For each
α;* e ίΓ, let μx* denote the unique maximal probability measure repre-
senting x* (see [21]). It is well known that if S is equal to the
weak* closure of the extreme points of K and p(x*) is the unique
maximal probability measure on S representing a?*, p is an affine
mapping and A{K) = Xp. Let P be the projection associated with p.
Then it is also well known that kernel P= A(K)1 (the reader can
see [1] for a proof of this).

Now, let ρ(x*) = p(x*) for x* Φ 0 and ρ(0) = 0. Then p is an
affine mapping on S and the associated projection P is given by
pμ = μ _ ^(θ) εo. From this it follows that the kernel of P is equal
to {μ:(μ-μ(O)-εo)eA(Ky} = {μ:μeA0(K)L}. Thus it follows that
X7 = AQ(K).

Let X be a Banach space, F the unit sphere of X*, S the weak*
closure of the set of extreme points of V, and σ: V—> V be defined
by σ(x*) = — %* for all x* e F. The following theorem was also
proved in [1]. The notation is as above.

THEOREM 3. Let X be a Lindenstrauss space. Then p: S-+ C(S)*
defined by p(x*) — (1/2)[μ — μ<>σ], where μ is a maximal probability
measure on V (supported on S) representing x*, is an affine mapping
and X = Xp.

Theorem 3 will be used to characterize some of the types of
Lindenstrauss spaces in terms of affine mappings.

THEOREM 4. Let S be a compact Hausdorff space and p: S—> C(S)*
be a weak* continuous affine mapping. Then Xp is a Cσ(S0) space
for some compact Hausdorff space So. Conversely, any Cσ(S0) space
can be so represented.
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Proof. Let μ e C(S)*. Then [fdμ = [fdPμ = \fPdμ for all/e Xp.

Thus \fPdμ= [fpdPμ= \fPPdμ for all feC(S) Since p is weak*
continuous, fp and fpp are in C(S). Thus /^ = / P P for all feC(S)
and X, = {fP:fe C(S)}. Moreover, the operator Q defined by Q(f) =
fp for feC(S) is a constructive projection of C(S) onto Xp. Con-
sequently Xp is a Cσ(S0) space for some compact Hausdorff space So

by [i].
On the other hand, if X = Cσ(S0) for some compact Hausdorff

space So, then the weak* closure, S, of the set E of extreme points
of the unit sphere of X* is either E or E U {0} depending on whether
or not σ is fixed point free (see [16]). In particular for s e So and
σ(s) ^ s, (e81 X) e £7. Thus by Theorem 3 the mapping defined by
p(s) = (1/2)(εs — εσ{s)) defines an affine mapping and X = Xp. Clearly
p is weak* continuous.

From the definition of an M space, if p: S—> C(S)* is any func-
tion which takes its values in [0,1]S = {λεs: 0 ̂ X ^ 1, se S}, then
Xp = {fe C(S):f(s) = \fdp(s) for all seS} is an M space.

THEOREM 5. Let X be an M space. Then there is a compact
Hausdorff space S and an affine mapping p:S—+C(S)* such that p
takes its values in [0, 1]S and X = Xp.

Proof. Let S be the weak* closure of the set E of positive
extreme points of the unit sphere of X*. It is well known that
each element x* e S is of the form \y* with y* e E and O ^ λ ^ l
[9]. Moreover this representation is unique if x* Φ 0. Thus ρ(x*) =
λβj,* defines an afRne mapping and Xp — X (see the proof of Theorem 2).

Similarly, if p: S->C(S)* takes its values in [-1,1]S = {λεs: - l g
λ g l , s e S } , then X, = ίfeC(S):f(s) = \fdp(s) for all s e s j in a G
space. On the other hand, if X is a G space and £ is the weak*
closure of the set E of extreme points of the unit sphere of X*,
then Fakhoury has shown in [3] that Sa[ — 1,1]E. Thus for any
x* eS, ίκ*- ay* + (1 - a)(-y*) for some 0 ̂  a ^ 1 and y* e E. More-
over, μ — asy* + (1 — α)ε_y* is a maximal measure representing x*
and (1/2) [μ ~ H = (1/2) [(2α - l)ε^ + (1 - 2a)ε_y*] = (̂α?*) defines an
affine mapping with X = Xp by Theorem 3.

If S is a compact Hausdorff space, then p defined by p(s) = εs

is clearly an affine mapping and C(S) = X .̂ On the other hand, if
LS is a locally compact noncompact Hausdorff space, then the weak*
closure So of the set E of positive extreme points of the unit sphere
of CQ(LS)+ is E U {0}. Clearly SQ can be thought of as S U {0} since
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E is homeomorphic to S. Let p(s) = εs for s e S and ,0(0) = 0. Then
as in Theorem 5, p is an affine mapping and Xp = C0(LS).

THEOREM 6. Let S be a compact Hausdorff space and ρ:S-+
C(S)* be a positive weak* continuous affine mapping. Then Xp is a
Co(LS) space.

Proof. By Theorems 2 and 4, Xp is simultaneously a Cσ(S0)
space and an AQ(K) space. Thus by [16] XP is a C0(LS) space for
some locally compact Hausdorff space LS.

Open questions. The results in this paper are in the isometric
theory of Banach spaces. It is natural to ask about the isomorphic
theory. The isomorphic analogue to a Lindenstrauss space is a ̂ SfL
space. A Banach space X is said to be a e5fL,̂  space if for each
finite dimensional subspace Y of X there is finite dimensional sub-
space Z of X with Γ c Z and d(Z, L(dim Z)) = inf {|| T \ \ \\ T'1 \ |: T: Z ->
L(dim Z) is 1-1} £ λ.

Using proofs similar to those in [1] one can show that is F is a
compact Hausdorff space and p:S—>C(S)* has the properties of an
affine mapping except that we only assume that sup \\p(s) || < °o
instead of || p(s) || ^ 1 for all seS, then Xp is an ^ L space.

Question 1. Is it possible to construct each Jίf^ space from
such a mapping?

Another question which is well known is the following.

Question 2. Is every ^f^ space isomorphic to a Lindenstrauss
space? Recently, Benyamini and Lindenstrauss [21] have shown
that there are separable Lindenstrauss spaces X and Y such that
X* is separable and Y* is nonseparable and both X and Y are not
isomorphic to a complemented subspace of a C(S) space.

Some questions which arise in the isometric theory are discussed
below. Let S be a compact Hausdorff space and XaC(S) a closed
linear subspace containing 1. Suppose further that {s e S: εs \ X is an
extreme point of the unit sphere of X*} = dxS is dense in X. Then
X = A(K) where K = {x* e X*: α?*(l) = 1 = || α>* ||} has the weak*
topology and the extreme points of K are homeomorphic to dxS and
their closure is homeomorphic to S. In particular, each maximal
measures on K is supported on S.

Question 3. Is there an affine mapping p of S into the maximal
measures on K such that p(s) = εs if and only if s e 3XSΊ
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In [20] Rao has shown that there is a Borel measurable mapping
when S is metrizable metrizable.

This is related to the following question.

Question 4. If S is a metrizable compact Hausdorff space and
TdS is a dense Gδ set, is there a compact Choquet simplex with
extreme points homeomorphic to T and their closure homeomorphic
to SΊ

Let I c C(S) be as above. It is shown in [6] that if X is a
Lindenstrauss space, then X is maximal with respect to dxS. That
is, if XczY and dγS = 3XS, then X = Y. An easy application of
Zorn's lemma shows that for any such I c C(S) there is a maximal
Yz) X with respect to dxS.

Question 5. Is any X maximal with respect to dxS a Linden-
strauss space?
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