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THE WEAK ENVELOPE OF HOLOMORPHY FOR
ALGEBRAS OF HOLOMORPHIC FUNCTIONS

ALAN T. HUCKLEBERRY

The object of this paper is to study analytic continuation
of algebras of functions holomorphic on complex spaces of
dimension greater than 1. Classically this has been done by
putting complex structure on the maximal spectrum of the
algebra so that the spectrum is a Stein space with respect to
the induced algebra of holomorphic functions. Grauert has
given non-pathological examples where this is not possible.
In the present paper the axioms of a Stein space have been
weakened and the weak envelope of holomorphy has been con-
structed for a certain type of algebra. In particular, if the
algebra A separates points and gives local coordinates on a
complex space X then the weak envelope of holomorphy for
the pair, (X, A) is obtained.

1. Introduction. In this paper a complex space, unless other-
wise stated, will mean a normal, connected, reduced complex space.
WeZwill let H(X) denote the algebra of functions holomorphic on a
complex space X. A complex space E is said to be the envelope of
holomorphy of a complex space X if the following conditions are
satisfied:

(1) There is a holomorphic mapping 7: X — E such that 7(X)
is open in F.

(2) The map t*: H(E)— H(X) is an algebra isomorphism.

(3) The complex space E is a Stein space.

It is known that if X has an envelope of holomorphy, E, and 7": X — E’
satisfies (1) and (2) above then there is a biholomorphic mapping
@: ' — F such that 7 = @.7’. Moreover, the spectrum of H(X),
S(H(X)), has the structure of a complex space such that it is biholo-
morphically equivalent to E in a natural way [2].

Grauert has provided an example of a complex manifold X with
H(X) containing local coordinates and separating points, but S(H(X))
contains a point no neighborhood of which has the structure of an
analytic variety [1]. Thus, in order to investigate the envelope of
holomorphy problem, it makes sense to either modify the notion of a
complex space, as Grauert has suggested [1], or to weaken the con-
straints on an envelope of holomorphy. In this paper we have taken
the latter route. We have weakened the restrictions (1), (2), and (3)
above, while preserving the maximality property. Our results, which
apply to a class of algebras which includes many algebras which are
not of the form H(X), can be described as follows.
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Let A be an algebra of functions holomorphic on a complex space
X. Let A* be the quotient field of A and

S. = {(x, x,) e X x X|f(») = f(x,) V€ A* such that f is holomor-
phic at #, and ).

DEFINITION 1.1. Let A be an algebra of functions holomorphic
on a complex space X. We say that A weakly identifies the points
2, and 2, in X if

1. Every fe A* which is holomorphic at », is also holomorphic
at x, and vice versa, and f(x,) = f(=,) for all such holomorphic quotients
and 2. The dimension of S, at (x,, 2,) is at least the dimension of X.

The algebra A is said to weakly separate x, from z, if it does
not weakly identify x, and z,. Finally, we say that A weakly separ-
ates points on X if every two points from X are weakly separated
by A.

DerINITION 1.2. Let A be an algebra of functions holomorphic
on an n-dimensional complex space X. We say that A covers a variety
at p e X if there is an open neighborhood W of p and a map F: W—C"
onto an n-dimensional subvariety of an open set in C™ such that
F=(f,- -, f, with f;e A and F is an open mapping onto its image.

We now are able to describe the type of complex space which is
our candidate for the weak envelope of holomorphy.

DEFINITION 1.8. Let A be an algebra of functions holomorphic
on a complex space X. We say that X is weakly Stein with respect
to A if

(a) The algebra A weakly separates points on X.

(B) The algebra A covers a variety at every point of X.

(v) For every pe X the quotient field A* contains functions
holomorphic at p which give coordinates for X in a neighborhood
of »
and

(0) If there is a complex space X’ containing X and an algebra
A'S H(X') satisfying (a), (8), and () such that the restriction map
r: A’ — A is an isomorphism then X’ = X.

Let &, be the stalk of the structure sheaf on X at p. If Ac H(X)
is an algebra then we define h,: A — 7, as the restriction map. We
will prove a theorem which clarifies the meaning of weak separation
of points. In the above notation this theorem can be stated as follows:
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THEOREM 1. Suppose A* contains coordinates at x,, x,€ X. Then
A weakly separates x, from , if and only if h, o h; can not be ex-
tended to a continuous isomorphism of &, onto &,.

We now wish to define a class of algebras for which the weak
envelope of holomorphy exists.

DEFINITION 1.4. An algebra A of functions holomorphic on a
complex space X is said to be ample on X if for every pe X the
following two conditions hold:

(a) The algebra A covers a variety at p.

(b) There is a neighborhood W of p, a holomorphic mapping @
of W onto a complex space V, an algebra A c H(V) such that @*: A—-A
is an algebra isomorphism and A* contains local coordinates at each
point of V.

We will prove the following theorem concerning abstract algebras.

THEOREM 2. Let A be an algebra over C. Then there is a (not
necessarily connected) complex space Rep A called the representation
space of A, and an algebra A H(Rep A) such that each conmectivity
component of Rep A is weakly Stein with respect to A. Furthermore,
there is an algebra homomorphism h of A onto A such that for any
other algebra homomorphism k' of A onto A’ an ample algebra on a
complex space X' there is a unmique holomorphic mapping ¥ of X’
onto an open subset of Rep A such that for every fe A, h'(f) = h(f)o@.
The mapping ® is 1-1 if and only if A’ weakly separates points
on X'.

As a corollary to the above theorem we obtain the weak envelope
of holomorphy for an ample algebra of holomorphic functions:

THEOREM 3. Let A be an ample algebra of functions holomorphic
on a complex space X. Then there is a complex space E and an
algebra Ac H(E) such that

(1) The space E is weakly Stein with respect to A.

(2) There is a holomorphic mapping T of X onto an open subset
of E such that t*: A— A s an algebra isomorphism.

(8) If 7' is a holomorphic mapping of X onto an open subset
of a complex space X' and there is an ample algebra A’  H(X') such
that ©'*: A’ — A is an isomorphism then there is a unique holomorphic
mapping P of X' onto an open subset of E such that for every fe A,
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@) o = (T*)N(f). The map @ s 1-1 if and only if A’ is weakly
separating on X'.

The pair (F, ff) in Theorem 3 is unique up to biholomorphic equiv-
alence and is called the weak envelope of holomorphy for the pair
(X, A). We note that Theorem 1 says that ¢ identifies x, and =,
if and only if A “looks exactly the same at @, as it does at =,”. This,
coupled with the maximality property contained in Theorem 3, shows
that E is the complex space where A “lives”.

The theory presented here answers a question posed to me by
Royden and generalizes to higher dimensions his Riemann surface
representative space [5]. The germs of this theory and some results
in the 2-dimensional case can be found in [3]. I wish to thank Pro-
fessor Royden for numerous helpful conversations.

2. Separation of points. A family of functions &% on a topol-
ogical space X separates points on X if for p, ¢ € X there exists fe &
such that f(p) # f(g¢). If one takes the algebra H(X) of holomorphic
functions on a complex space X and considers the induced algebra
H on S(H(X)) then he finds that A separates points on S(H(X)). In
a sense this is one reason that S(H(X)) may not have complex struc-
ture, as the level sets of H(X) must be collapsed to points. Thus,
our first step toward obtaining a weak envelope of holomorphy which
is a complex space is to weaken the definition of separation of points.

In all that follows A is an algebra of functions holomorphic on
a complex space X and A* is its quotient field.

LEMMA 2.1. Let

S = {(®, ) e X x X|f(») = f(x,) Vf e A* such that f
is holomorphic at x, and x.} .

Then S, is an analytic subvariety of X x X.

Proof. For every fe A* we have the meromorphic correspondence

Xx X 73 P, x P, which has graph G, such that

—~— G(f,f) o~
CAVARRNEN))
/ N

X><X(T}O)P1><Pl

~_ S

is commutative, (f, f) is proper holomorphic and (f, f) is holomorphic
S

[6]. Let 4 be the diagonal of P, x P,. Then (f, f)™'[4] = V is an
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~— ~_
analytic subvariety of G, and, since (f, f) is proper, (f, NIV] is

an analytic subvariety of X x X. Let L(f) = (?,/f)[V]. Now S, =
Ny L(f). Since each L(f) is an analytic subvariety of X x X, S,
is an analytic subvariety of X x X.

Thus we may speak of the dimension of S, at a given point and
to use it in the definition of weak separation of points, Definition 1.1.
We attempt to clarify the meaning of weak separation with the
following theorem.

THEOREM 1. Let A be an algebra of functions holomorphic on a
complex space X. Let x,, 2, X and suppose A* contains coordinates
at », and x,. Let h,:A— &, be the restriction maps for i =1, 2.
Then A weakly separates w, from w, if and only if h, o h;} can mot
be extended to a continuous algebra isomorphism of &,, onto 7,.

Proof. Suppose h, ok, extends to a continuous isomorphism of
&,, onto 2, , h. Let f,geh,[A] and suppose q = f/ge .. Then
h(q) € &, and h(q) = h(f)/h(g). Furthermore, since i(1l) = 1 and units
are mapped into units, g(x,) = ¢(x,). Suppose ¢i, ---, ¢, give coordi-
nates at x;, where ¢: € A* and 7 = 1, 2. By the above remarks, each
¢; is holomorphic at both x, and .. Let Q@ = (¢}, -++, ¢, &, **+, ¢3)
and V, (resp. V,) be a neighborhood of z, (resp. w,) such that Q; =
Qly,: Vi W, is biholomorphic for ¢ = 1, 2.

Now W,N W, is a subvariety of an open set in C*"2 which con-
tains Q,(z,) = @Q,(x;). Suppose dim (., W, N W, < dimX — 1. Then
there is a function f holomorphic in a neighborhood of Q,(x,) in C™m*"2
such that f-Q, =0 and f-Q,= 0. Since f is given by a convergent
power series we may write f(@), = Ja.Q;, . Now W(Q,) =@ and &
is a continuous isomorphism. Thus A(f(Q).,) = f(Q).,. Butf(Q)., =0
and & has trivial kernel. Thus S(@y),,=0. Thisisa contradiction and
therefore dim ¢, , W, N W, = dim X = n.

If dim ., Si = — 1 then there must be g€ A* which is holo-
morphic at #, and %, such that if we replace @ above by (Q, q) then
dimg,, W, N W; < n — 1. By the same argument as above we reach
a contradiction. Hence dim,, ., S, = n. Since we have already shown
that the first criterion for weak identification is satisfied, », and =,
are weakly identified by A.

Conversely, suppose z, and z, are weakly identified by A. Then,
just as above, we have @, (resp. @) biholomorphic on V, (resp. V)
and, as our spaces are locally irreducible, we may assume that W, = W,.
Define 9: V,—V, by ¢ = @'-Q, and h: &,,— &, by k(f) = fop.
Since @ is biholomorphic it follows that % is a continuous algebra
isomorphism. It remains to show that . extends &, - h;).
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Let fe A be given and define f; by f; = f lr,» Then (Q;, f;): V; > W!
is biholomorphic. Since «, and x, are assumed to be weakly identified
by A, we may assume W/ = W,. Now W/ is the graph of f,oQ;*
on W, and W, = W,. Therefore, f,oQ" = f,oQ;'. Hence f,op = f,
or equivalently A(f)) = fi.. Thus % extends h, ok

3. Construction of Rep A. Our main goal is to construct envel-
opes of holomorphy for algebras of holomorphic functions, but in this
section we consider abstract algebras over C and construct their
representative spaces.

DErFINITION 8.1. Let ¢ be the reduced structure sheaf for the
normal complex space V and ,, its stalk at pe V. Let A be an
algebra over C. A representation of A on V is an algebra homo-
morphism : A— H(V). A local representation is an algebra homo-
morphism o: A — 7, for some pe V such that ¢ = h,o, where «
is a representation of A on V.

Let 0: A— 2, and p: A — 7, be local representations. We say
that o and p are equivalent if there are neighborhoods of » and ¢
respectively, V' and W’, in V and W and a biholomorphic map
@: V' — W’ such that @(p) = ¢ and ®*(0) = 0. It is easy to check
that equivalence of local representations is an equivalence relation.
If o is a local representation of A, we will use [¢] to denote its
equivalence class and if ¢ and p are equivalent local representations
then we will denote that by o ~ o.

The space Rep A will be composed of equivalence classes of local
representations of A, each of which satisfies certain conditions.

DEFINITION 3.2. Let 0: A— 7, be a local representation of A.
We say that o is primitive if 6 = h,o+ such that

(1) The algebra [A] covers a variety at »
and

(2) There are quotients g,, - -+, ¢, € ¥[A]* which are holomorphic
near p on V and give local coordinates at p for V.

It is easy to check that if ¢ is primitive and ¢ ~ p then p is
also primitive. Thus we define an equivalence class [o] to be primi-
tive if and only if ¢ is primitive.

DEFINITION 3.3. Let A be an algebra over C. We define the
representation space of A, Rep A, as the collection of all primitive
equivalence classes of local representations of A.



THE WEAK ENVELOPE OF HOLOMORPHY 121

We now proceed toward showing that Rep A can be given, in a
natural way, the structure of a reduced, normal, not necessarily
connected complex space. First, we cover Rep A with a system of
coordinate patches which gives it a topology. Consider [¢] € Rep 4.
Then o¢: A — 7, factors by

A—" L HWV)

AN /
0\‘ /hp
vp
By taking V smaller if necessary, we may assume that [h, o] is
primitive for every z€ V. Thus we have a mapi: V— Rep A defined
by i(x) = [h,o+]. Since [A]* contains local coordinates at p for V,
we may take V small enough for these to be coordinates for all of
V. Thus ¢ is 1-1. We give i[V] the topological structure of V.
Since V has the complex structure of a normal, reduced complex
space and since the change of coordinates on overlapping patches is
biholomorphic, Rep A has induced complex structure. In order to
show that Rep A has the structure of a normal, reduced, not neces-
sarily connected complex space it is enough to show that our topology
is Hausdorft.

LEMMA 3.4. The topology defined above for Rep A is a Hausdorf
topology.

Proof. Let x,x,€Rep A. We suppose that any two coordinate
neighborhoods of x, and %, have a nonempty intersection. In terms
of representations, we have connected subvarieties V, and V, of open
sets in complex Euclidean space with ;e V; and representations q,
of A on V; such that [A,o~] is primitive for # in V|, or V,. Further-
more, there are sequences {x.} C V, converging to x; such that

[ha:,ln ° /‘xlf\l] = [hz?n ° 11"2] .

In order to show that the topology is Hausdorff, we must show that

[y, 0 9] = [Rayo vra]-
Let

U ={xeV,|yeV, with [h,ovy] = [h,o]}
and
U, = {ye Vzlaxe Vi with [ha:o“lﬁ] = [hyo'\lle} .

For every x ¢ U, there exists a y € U,, an open neighborhood U, (resp. U,)
of # (resp.y) and a biholomorphic map ®,: U, - U, such that v.(f) =
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P (vo(f)) on U, for every fe A. In particular U, < U, (resp. U, c U,)
and thus U, (resp. U,) is open in V, (resp. V,). Furthermore, we claim
that the map ® = U,.y, . is well-defined on U, and a biholomorphic
map of U, onto U..

To show that @ is well-defined, consider ze U, N U,,. Suppose
that @, () = ¥, and @,,(®) = ¥,. We have taken V, small enough so
that there are quotients gq,, - -+, ¢, € ¥,[A]* which are holomorphic on
V, and give coordinates there. Thus, if y, # ¥, there is a ¢; (say q,)

such that ¢,(y) # ¢.(¥)). But g, = vo(f)/¥:(9), Where ¥.(f) = @7 (vo(f))
for 7 = 1, 2 and similarly for g. Thus

PLA) o _ W) PG
2@ 2" i P ) DT

a.(y,) = () -

Hence y, = ¥, and @ is well-defined.

To show that @ is a biholomorphic map of U, onto U, it is
enough to show that it is injective. Suppose that @(a) = @(b) = y.
If a # b then there is a quotient ¢ €+,[A]* such that q(a) = q(b). If
q = ¥.(f)/¥.(9) then by a similar argument to the above we find that
g(a) = q(b). Thus a = b and @ is 1-1.

To summarize, we have a biholomorphic map @: U, - U, such
that for every fe A @*vy(f) = 4.(f) on U,. Further, we have assumed
that o, U, for ¢ = 1, 2. We will show that «, € U, and =, ¢ U,, thereby
proving that [k, o+] = [h,,o ;] and Rep A is Hausdorff.

QOur first step is to show that U, is dense in V,. By the primit-
ivity assumption, there are functions f,, «-+, f,€ A such that F, =
(0i(f), =+, ¥:(f.)) of V, onto a complex subvariety of an open set in
C", such that dim W = dim V.. Let F, = (¢(f), **-, ¥(fW). Now
@ is biholomorphice, F, is of generic maximal rank and @*F, = F, on
U,. Thus F, is of generic maximal rank on V,. Furthermore, F,'[ W]
must be a subvariety of V, which contains x,. Let S; be the singular
points of V; and J; be the points of V; — S; where the Jacobian of
F; vanishes, 1 =1,2. Let U/ =U,— S, — J, and U] = U, — (S, —
@(J). Observe that x,¢ U,. Now F;, is locally 1-1 on U/ and there-
fore F, is locally 1-1 on U,. Furthermore, U, C F;'[W]. But U]
being open in V, and x,€ U; implies that dim,, F;'[W] = dim,, V..
Thus, by taking V, smaller if necessary, we may assume that
F[W]= V.,

Let u,c U, such that

(1) V, is nonsingular at u,,

(2) The Jacobian of F, is nonzero at wu,
and

(3) wu, ¢ Fi'[F[S, U J]l.
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By (1) and (2) there is a neighborhood 2 of u, contained in the non-
singular points of V, such that F,|, is a biholomorphic map. Let
u, € V, be any point such that F,(u,) = Fy(u,). Since F|[V]= W>
F,[V,], we are assured that such points do exist. By (3) and by
taking 2 smaller if necessary, F'F, exists and maps 2 biholomorphic-
ally onto an open neighborhood of #,. Now 2N U, @ and

F Filenr, = 97 onw, -

By uniqueness of analytic continuation (F['F,)* has the same pro-
perties as (p™)*. Since U, is maximal for ¢, 2< U,.

Let B be the set of points in V, excluded by conditions (1)-(3)
above. We will show that the Hausdorff dimension [4] of B, Hdim B,
is at most Hdim V, — 2. Since S, and J, are analytic varieties of
dimension at most dim V, — 1, it is easily verified that their Hausdorff
dimension is at most Hdim V, — 2. Thus, in order to show that
Hdim B < Hdim V, — 2, it is enough to show that F;'[F.[S, U J)]] —
S, — J; has Hausdorff dimension at most Hdim V, — 2.

Now there is a collection of open subsets of V,, {4,:v=1,2, ...},
such that V, — J, — S, = U, 4, and F,|, is biholomorphic. Let g,
be the (Hdim V, — 2 + a)-dimensional Hausdorff measure. Hence

Pl FOIELS, U = 8, = J] = 353 wlFOIRLS, U T 0 Al
<< S pIFIS, UJINFIAN < 5 mlFIS, U,

where the symbol < < means that the left hand side is zero if the
right hand side is zero. Since dim (S, UJ) =dimV,— 1, F[S, U J] is
a countable union of complex varieties (almost thin) each of which
has dimension at most dim V, — 1. If @ > 0 then, by the countable
subadditivity of ., t[F.[S, U Ji]] = 0. Therefore, the above inequal-
ities show that, for a > 0, pJF;[F[S,UJ]] — S, —J,] =0. As a
result HdimB £ Hdim V, — 2.

We have previously shown that 0U,=B. Thus HdimoU, <
Hdim V,— 2. Now, U, and V, — U, are disjoint open sets separated by
a set of Hausdorff codimension at least 2. This is impossible [4] unless
one of the two sets is empty. Therefore, V,— U, = @ and U, is
dense in V,.

We have shown that V, and V, can be chosen such that ¢: U, » U,
is biholomorphic onto U,, which is an open dense subset of V,. Sup-
pose ¥ (f)/v.(9) € v, [A]* is holomorphic on V! D>D V,. Now

Vo(f)[4ra(9) 0 @ = 4 (f)/4:(9)
on U, Thus v,(f)/v.(9) is bounded on the dense set U, and, since
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V, is normal, is therefore holomorphic at z,.

We could have performed the same proof for U, to show that
@: U, > U, is biholomorphic from the open set U,, which is dense in
V.. Thus, using the analogous argument to the above, +(f)/v.(g)
holomorphic on V; D> V, implies +,(f)/4.(9) holomorphic at x,. We
thus conclude that +,(f)/4.(9) is holomorphic at #, if and only if
Jro(f)/42(9) is holomorphic at .

By primitivity, there are functions f3, ---, fi, and gi, ---, g, in
A such that the quotients .(f1)/v(gi), - -+, ¥i(fi)/¥:(gi,) are holo-
morphic on V,; and give coordinates there for 7 = 1, 2. Define

G,;: V,; - Cnl-)—'nz
by

Gi = (b:(SD/¥i(9), « =y Va(f2 )/ (92) »
Vi(FDPGD), ++ +, ¥i(F2,)/V:(95)

for ¢ = 1,2. Then G; is biholomorphic on V; and G,o» = G, on U,.
Now G,[V;] is an irreducible normal subvariety containing G.(z,) =
G,(x,). Furthermore,

Gl[ Vl] N Gz[ Vz] = Gl[ Ul] = Gy Uz]
and G(z;) € G;[U,] for ¢ = 1,2. Therefore,
dimGL(xl)Gl[VI] = dimG’l(xl)GI[ VN GlVy] = dimaz(xz)Gzl Vi -

Hence, by choosing V, and V, appropriately, we may assume that
G.[V.] = G,[V,]. Thus G;'oG, is a biholomorphic extension of @ to
a map from V, to V,. Furthermore, by the unicity of analytic con-
tinuation, this has the property (G;'o G)*vy.(f) = ¥.(f) for every
feA. Thus U, =V, if V, is chosen small enough, and [k, -] =
[hxzo"}'@]’

COROLLARY 3.5. Ewndowed with the topology described above, Rep A
18 a reduced, normal, not mecessarily connected complex space.

4, The main theorems. In order to prove Theorem 2 and
Theorem 3, we need several preliminary lemmas.

LEMMA 4.1. Let V be a complex space and AS H(V) an algedra
which has generic maximal rank on V. Suppose there are holomorphic
maps P2 V— V, onto the complex spaces V; and algebras A; = H(V))
such that ®f: A;,— A is an algebra tsomorphism. Suppose further
that for some PEV [hypo (PF)7] and [hey, o (P)7] are primitive.
Then [hy, ) o (PT)7] = [hoym © (#P3)7]-
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Proof. The maps @; have generic maximal rank on V. Let S
be the singular points of V and J; be the subset of V — S where the
Jacobian of ®; vanishes. Clearly U=V — S —J, — J, is an open
dense subset of V. The map @, @7 is locally defined and locally biholo-
morphic on @,[U]. Now, the isomorphism of A and A’ yields the
existence of a unique fie A° such that f = fiop; for every fe A.
Thus, locally on ,[U], f* = f*o (P,o®"). Therefore, since U is dense,
we can obtain a sequence {x,} in U which converges to p such that
Pi(@,) — Pi(p) and [ke ., o (PF) 7] = [heya, © (PF)7']. For n sufficiently
large, these equivalence classes of local representations must be
primitive. But Rep 4 is Hausdorff. Thus [h, ) © (PF) 7] = [Reym o (#5) 7]

Let A be an algebra over C and Rep A its representative space.
For [o] e Rep A, define f([o]) = o(f)(p), where v: A— H(V) and ¢ =
h,oqp. Clearly the definition of f is independent of the particular
representative of the equivalence class. If V is taken sufficiently
small it is biholomorphically equivalent to a coordinate neighborhood
of [o] in Rep A and f is defined by +(f) on V. Thus f is holomor-
thc on Rep A. We define the algebra homomorphism 4: A — A by
h(f) = f.

~ LEMMA 4.2. The algebra A weakly separates points on Rep A and
A* gives local coordinates at each p < Rep A.

Proof. It follows immediately from the definition of primitivity
that A* gives local coordinates at each peRep A.

Let x,, x,c Rep A. Suppose that every §e A* which is holomor-
phic at 2, is holomorphic at «, and vice versa. Also assume that for
such holomorphic quotients, §(»,) = §(x,). Under these hypotheses,
we will show that dim,,,, S5 = dim X implies that », = ..

Let V, and V, be coordinate neighborhoods of #, and x, respect-
ively. Since «; is a primitive representation of A, there are quotients
g, -, i, holomorphic on V, such that @, = (¢, ---, ¢i) is biholomor-
phic on V;. Now, by our assumption, @, is holomorphic on V, and
Q. is holomorphic on V,. Therefore, (Q,, @,) is biholomorphic on both
V. and V, such that (Q, @)(@®) = (@, Q)(®,). Let G;= (Q, @) v,
Since dim, ., Sy = dim X, we may assume, by taking V; smaller if
necessary, that G,[V,] = G,[V,]. Define p:V,— V, by = G;*-G,, for
every fe A, let f,- = f lr,» For the same reasons as above,

(G, AV = Gy PV -

Thus f,o@ = f, for every fe A. Therefore, since @(x,) = @, &, = ..
Recall that an algebra A of functions holomorphic on a complex
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space X is ample on X if for every pe X A covers a variety at p and
there is a neighborhood W of p, a holomorphic mapping ® of W onto
a complex space V and an algebra A c H(V) such that ¢*: A— A
is an algebra isomorphism and A* contains local coordinates at each
point of V.

LEMMA 4.3. Let A be an ample algebra of functions holomorphic
on a complex space X. Then there is a umnique holomorphic map
7: X — Rep A such that v*: A— A is an algebra isomorphism with
' = h. The set 7[X] is an open subset of Rep A and the map T is
1-1 4if and only if A weakly separates points on X.

Proof. Since A is ample on X, we have for each pe X the map
® in the definition of ampleness. We define 7 by 7(p) = [hei o (P*) 7]
The map 7 is clearly holomorphic and z*7(f) = 7. By Lemma 4.1,
7 is unique. The ® guaranteed by the ampleness of A maps onto a
complex space W. Thus a biholomorphic copy of W is contained in
[ W] with z(p) corresponding to ®(p). Therefore, 7[X] is open. It
remains to show that 7 is 1-1 if and only if A weakly separates
points on X.

Let x,, #,€ X and suppose z(x,) = 7(x,). Thus there are neighbor-
hoods V; of x; and a biholomorphic map ®: V, > V, such that f, =
feo @, where f; = fl,,, for every fe A. In particular, both conditions
for the weak identification of x, and z, by A are satisfied.

Conversely, suppose that », and x, are weakly identified by A.
Let V; be a neighborhood of z; so that on W, = ¢[V;] the map Q; =
(Gi, -+, @) is biholomorphic, where §ic A* and i =1,2. Since A
weakly identifies x, and x,, ¢} is holomorphic at both , and @, and
qi(®,) = qi(w,) for every ¢ and j. Let G = (@, Q) lyw ;o Clear]y G,
biholomorphic on W,. Now G; = G.,or maps V; onto G[W] and
since dim,,,, S, = dlmX we can choose V,; appropriately so that
GVl = Gij[Vi]. Thus G[W] = 2[W] and we have a biholomorphic
map P: W, - W, defined by @ = G;toG,. For exactly the same reasons
as in the proof of Lemma 4.2, f1 f2 o®, where f1 f lw,» for every
fed. Since p(r(x)) = (), 7(®) = ().

We now proceed with the main theorems.

THEOREM 2. Let A be an algebra over C. Then there is a (not
necessarily connected) complex space Rep A, and an algebra AcH (Rep 4)
such that each component of Rep A is weakly Stein with respect to A.
Furthermore, there is an algebra homomorphism h of A onto A such
that for any other algebra homomorphism h' of A onto A’, where A’
is an ample algebra on a complex space X', there is a umnique holo-
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morphic map P of .Z( " onto an open subset of Rep A such that for
every fe A, W(f) = h(f)op. The map ® is 1-1 if and only if A’
weakly separates points on X'.

Proof. By the previous lemmas, in order to prove each com-
ponent of Rep 4 is weakly Stein with respect to A, it is enough to
verify the maximality condition, () in Definition 1.8. Thus we let
X be a component of Rep A and suppose X is an open subset of a
complex space X’. Suppose A’ is an algebra of functions holomorphic
on X’ such that the restriction map r: A’ — 4 is an algebra isomor-
phism. Finally we assume that A’ and X’ satisfy conditions (@), (8),
and (v) in the definition of weakly Stein. Since » is an isomorphism,
Rep A = Rep A’. Now A’ weakly separates points on X’. Thus
Lemma 4.8 gives us a 1-1 holomorphic mapping z: X’ — Rep A. Since
7 is unique it must agree with the identity on X. But 7z[X’] is con-
nected and therefore 7[X’']— X. Hence 7[X'] = X and X' = X.

The algebra homomorphism % has already been constructed. Now
h: A — A’ is a homomorphism onto an ample algebra on X’. Thus,
for every primitive local representation [0'] of A’, we obtain a
primitive local representation [o’- k'] of A. In this way we obtain
a biholomorphic injection 7: Rep A’ — Rep A onto an open subset of
Rep A. Now Lemma 4.3 gives us the map 7’: X’ — Rep A’ such that
7(x) = 7(x;) if and only if 2] and 2} are weakly identified by A’. Let
® = io7. The uniqueness of @ follows from Lemma 4.1. Clearly @
is 1-1 if and only if A’ weakly separates points on X’. It remains
to check that A'(f) = A( f)op for every fe A, but this follows by a
simple diagram chase.

THEOREM 3. Let A be an ample algebra of functions holomorphic
on a complex space X. Then there is a complex space E and an
algebra A c H(E) such that

(1) The space E is weakly Stein with respect to A.

(2) There is a holomorphic mapping T of X onto an open subset
of E such that t*: A—Aisan algebra isomorphism.

(3) If 7' is a holomorphic mapping of X onto an open Ssubset
of a complex space X' and there is an ample algebra A’ C H(X') such
that o'* : A’ — A is an isomorphism then there is a unique holomorphic
mapping @ of X' onto an open subset of E such that for every fe A,
@ (fop = @*)(f). The map ¢ is 1-1 if and only if A’ 1is
weakly separating on X'.

Proof. The map 7 is given by Theorem 2 by letting X = X’
and E is taken to be the connected component of Rep A which con-
tains t[X]. Then £ is weakly Stein with respect to A. Now t*'=#
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must be an isomorphism, because 7[X] is an open subset of E.
The map needed for (3) is also given by Theorem 2 and the
unicity of ¢ implies that ¢ = @o7” on X. Thus @[X'|C E and

@) (NP = @)7)-

5. Concluding remarks. It should be observed that the entire
question of the existence of z: X — Rep A has been avoided by build-
ing it into the definition of ampleness. This is a drawback of our
theory, but the study of existence seems to be quite complicated.
At this point in time we strongly believe that the existence question
should be asked in the category of meromorphic maps instead of
holomorphic maps.

Even though the existence question has been avoided here, our
theory applies in many classical cases. For example suppose A = H(X),
where X is a reduced, irreducible normal complex space. Further,
assume that H(X) separates points and gives local coordinates. Then
our theory applies and we obtain the weak envelope of holomorphy
for the pair (X, H(X)). In particular, this applies to the type of
space X and algebra H(X) constructed by Grauert [1], where H(X)
is mot a Stein algebra.
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