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AXIOMS OF COUNTABILITY AND THE ALGEBRA C(X)

WILLIAM A. FELDMAN

Relationships between a topological space (more generally
a convergence space) and its associated function space C(X)
are investigated. The algebra of all continuous real-valued
functions on a space X together with the continuous con-
vergence structure is denoted by CC(X) After appropriate
generalizations of the axioms of countability to convergence
spaces, it is shown: 1. A completely regular topological space
X is Lindelδf if and only if Ce(X) is first countable. 2. A
completely regular topological space X is separable and metriz-
able if and only if Ce(X) is second countable. Generalizations
of (1) and (2) are introduced, and results and examples which
justify the use of axioms of countability in convergence space
theory are presented.

1* Preliminaries* We wish to investigate the interplay between
a convergence space (Limesraum, [1]) X and C(X), the algebra of all
continuous real-valued functions on X. Since the algebraic properties
of C(X) are not, in general, sufficient to determine the space X, we
are led to consider additional structures on C(X). The algebra C(X)
endowed with the continuous convergence structure (see [1]), which
we denote by CC(X), proves to be particularly well suited for our
work. We note that in the case of a locally compact topological space
X, the continuous convergence structure on C(X) coincides with the
compact-open topology. Thus Theorem 3 ((1) in the above paragraph)
generalizes a result proved by Warner for locally compact spaces.
(See [5], Theorem 7.)

We will study the largest class of convergence spaces with the
property that CC(X) determines the space X. Specifically, let
Homc CC(X) denote the collection of all continuous homomorphisms
from CC(X) onto the reals together with the continuous convergence
structure. A convergence space Xis said to be c-embedded if ix: X—>
Homc CC(X) is a homomorphism, where ix maps each ajeX to the
homomorphism of point evaluation by x (i.e., ix{x)ix{x){f) = f(x) =
f(x) for every / e C{X)). Indeed, two c-embedded spaces Xand Y are
homeomorphic if and only if CC(X) and CC(Y) are bicontinuously isomor-
phic. (See [2], Satz 5.) Furthermore, Binz has shown in [2] that the
c-embedded spaces are the largest class of convergence spaces with
this property. It is evident that every completely regular topological
space X is c-embedded. In a convergence space X, we will use the
notation "φ—>x" to indicate that a filter φ converges to x in X.
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2* The aim of this section is to characterize Lindelof and more
generally upper y^-compact spaces.

We will first generalize a few topological concepts. By a covering
system S^ of a convergence space X, we mean a collection of subsets
of X with the property that for every convergent filter φ on X, there
exists an S G Sf such that Se φ. A basic subcovering of a covering
system £f is a subfamily &" of S^ with the property that for every
convergent filter φ on X, there exists a finite number of elements in
^ % {&•}?=!, such that U ί U S i ^

Let y$ denote an arbitrary infinite cardinal number.

DEFINITION 1. A convergence space X is said to be upper y$-
compact if every covering system of X has a basic subcovering of
cardinal number less than ^ . In particular, X is Lindelof if it is
upper fc^-compact.

DEFINITION 2. A convergence space X is said to be first countable
(respectively ^-countable) if for any point xeX and any filter φ con-
vergent to x in X, there exists a coarser filter φ' such that #'—•$
and φf has a countable basis (respectively a basis of cardinal number
less than y$).

It is evident that our definitions correspond to the usual defini-
tions in the case of topological spaces.

Given a convergence group G (see [1]), we note that G is y$-
countable if and only if the condition in Definition 2 holds for filters
convergent to the identity element in G.

We will need the following two technical results. Given a c-
embedded convergence space X, let Xf denote the underlying set X
together with the weak topology induced by C{X). We call Xf the
associated completely regular space of X and note that Xf is homeo-
morphic to Homs Ce(X)f where the subscript s denotes the topology
of pointwise convergence.

LEMMA 1. Let X be a c-embedded convergence space and Xf its
associated completely regular space. If φ is a convergent filter in X,
then the filter φ generated by

{Mx':Meφ} ,

where Mx> is the closure of M in X', is also convergent in X.

Let φ —» x in X for some xeX We can consider φ convergent
to x in Homc Ce(X). This means that for every convergent filter Θ
in CC{X), say Θ —> /, and for every ε > 0, there exists a Te Θ and an



AXIOMS OF COUNTABILITY AND THE ALGEBRA C(X) 83

Meφ such that

w(TxM)c{f(x) + [-ε,e]},

where w is the evaluation map sending each (/, p) to f(p) (i.e.,
\g(y) — f(x)\ ^ ε f° r every ge T and every yeM). Since Xf carries
the weak topology induced by all the functions in C(X),

w(Tx M*')cz{f(x) + [-ε, ε]}.

Hence φ converges to x in X.
We say that & is a refinement of a covering system ^ if ^

is a covering system with the property that each i? e ^ is contained
in some element of S<

LEMMA 2. Let X be a c-embedded convergence space. Every
covering system of X has a refinement consisting of sets closed in
the associated completely regular space.

Let y be a covering system of X and let Φ denote the collec-
tion of all convergent filters in X. For φeΦ, Lemma 1 implies φe
Φ. Therefore, there exists an S e y such that Seφ. Since φ has a
basis consisting of sets closed in X'', we can choose a set Bφeφ such
that Bφ is closed in Xf and Bφ c S. Of course φ is coarser than φ
and hence {Bφ}φeφ is indeed a refinement of £ζ

THEOREM 1. A c-embedded convergence space X is upper ^-com-
pact (respectively Lindelb'f) if and only if CC(X) is ^-countable
(respectively first countable).

Proof. Assume X is upper ^-compact. Again, denote by Φ the
collection of all convergent filters in X. Let Θ be an arbitrary filter
in CC(X) convergent to 0, the zero function. This means that for
every 1/n, where neN, and every φeΦ there exists a Tιln,φ 6 θ and
an MUn,φ e φ so that

wi<;(Tιln,φ x Mιln,φ) c Γ — , — 1 .
L n n Λ

For a fixed neN, the collection

{Mlln>φ: φeΦ}

is a covering system of X and by assumption admits a basic sub-
covering
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of cardinal number less than y$. Let Ta be the element of θ that
corresponds to Ma as above- That is,

w(Ta x Ma) c Γ ^ , 1 ] .

It follows that

generates a filter 0' coarser than θ. Obviously θr has a basis of
cardinal number less than ^ . It only remains to verify that 0'—»0.
Given Ijn for neN and φeΦ there exists a finite subset of sf%,
{au a2f . . . , ak), such that (JIU Mai e φ. Now T = f|ίU Ta. is an ele-
ment of θ' with the property that

w(τx U Ma) C Γ—, - Ί ,

and hence 0' converges to 0 in CC(X).
Conversely, assume CC(X) is ^-countable. Let

be an arbitrary covering system of X. Because of Lemma 2, we can
assume that the elements of Sf are closed in the associated completely
regular space. We will prove that S? has a basic subcovering of
cardinal number less than ^ For each Sae<9*9 s e t

Ta={feC(X):f(Sa) =

Clearly, the collection of all sets Ta for aej^f generates a filter θ
that converges to 0 in CC(X). By assumption, there exists a filter θ'
coarser than θ, convergent to 0 in CC(X), and having a base of cardinal
number less than y$. Let

be a basis for θ', where the cardinal number of the index set & is
less than ^ . Since θ' —>0, for every φeΦ there exists a Dβeθ' and
an Lφ 6 φ such that

(I)

For a fixed βε&, let the union of all sets Lφ that correspond to
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Dβ in the sense of (I) be denoted by Rβ. It follows that

12 = {Rβ:βe,

is a covering system for X. Since θ' ^ 0, for a given β e &, there
exists a finite subset s^fβ of j^f such that

We claim that

(Π) Rβcz U Sa.

Assume to the contrary, that there exists a point xe Rβ\\Jae^βSa9

where "\" denotes the set theoretic difference. The fact that \Jae^βSa

is closed in the associated completely regular space X' implies that
there exists a function / e C{Xf) such that

f(x) = 2 and / ( U Sa) = {0} .

Because of the natural isomorphism from C(X') onto C(X)9 we can
assume feC(X). Clearly fe f | «e^ Ta but, in view of (I), the func-
tion / ί Dβ. This contradicts the fact that Dβ i) Γ\ae^β Ta, and hence
our claim is established. Now, it follows from the inclusion (II) that
the collection

" = \sa:

is a basic subcovering of £^ Furthermore, the cardinality of £f9 is
less than y$, and thus X is upper ^-compact.

COROLLARY. Let X he a c-embedded convergence space. If CC(X)
is Lindelof, then X is first countable.

If CC(X) is Lindelof then Ce(Ce(X)) is first countable. Since X
is c-embedded, it is homeomorphic to a subspace of Cc(Cc(X))y and
thus first countable.

In § 4 we will provide examples of Lindelof convergence algebras
CC(X).

3* Here, we obtain a characterization of separable metrizable
topological spaces.

Let X be a convergence space. By a basis for X, we mean a
collection ^~ of subsets of X with the following property: For any
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convergent filter φ on X, say φ —> x, there exists a coarser filter φr

such that φ'—+x and ^' has a basis consisting of sets in

DEFINITION 3. The least infinite cardinal number of a basis for
X is called the weight of X. In particular, X is second countable if
it has weight y$0

It is easy to verify that our definitions of basis, weight, and
second countable coincide with the usual concepts in the case of
topological spaces.

The following generalization of a topological result is evident.

REMARK, (a) Let X be a convergence space having weight fc$.
Then any subspace of X has weight less than or equal to y$.

(b) Any subspace of a second countable convergence space is
second countable.

(c) A second countable convergence space is first countable.

THEOREM 2. A c-embedded convergence space X has weight ^
(respectively is second countable) if and only if CC(X) has weight ^
(respectively is second countable).

Proof. Assume X has weight y$. Let

= {Ua:ae

be a basis for X of cardinal number y$. Given aej^reQ (the
rational numbers), and neN, we define the following subset of C(X):

Mc:„.. = {/ 6 C(X): f(Ua) c Γr - -ί, r + 11} .

Denote by ^ the collection of all finite intersections of sets of the
form Ma>r>n, for aej^reQ, and neN. Clearly, the cardinality of
^^is still y$. We now show that ^/£ is indeed a basis for CC(X).
Let θ be an arbitrary convergent filter in CC(X). :Say #•—•/. Our
assumption implies that for any convergent filter φ in X, say φ —> x,
there exists a convergent filter φf which is coarser than φ, and has
a base consisting of sets in ^ 7 Thus, we can find a Uaeφ, and a
Teθ such that

w(T x Ua) c

Now choose as r eQ so that

= 2n
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Because of our construction, there exists an Mφ,n e ^{Mφ,n — Ma,r>n)
such that for every geMφ,n and every ye Ua,

\g(y) - f(x) I rg \g(y) - r | + \r - f(x) | ^ A
n

or

x ί7α) c \f(x) + Π= ,̂ Al l .
I L n ni)

We observe that Mφt% ID T, since

\g(y) - r\ ^ \g(y) - f(x)\ + \f(x) - r\ ^ A
n

for every # G T and every ?/ e Ua. Therefore, the collection of all
Mφ,n9 for ^ a convergent filter on X and ne N, generates a filter #'
coarser than Θ with a basis consisting of sets in ^t. It is also clear
that θ' converges to /• Further, there can exist no basis ^£' for
CC(X) of cardinality strictly less than y$. If such an ^£' existed,
then, as we have just proved, CC(CC(X)) would have a basis of cardi-
nality strictly less than ^ . Because of the preceding remark and
the fact that X is homeomorphic to a subspace of CC(CC(X)), it follows
that X would have weight unequal to fc$.

Conversely, assume CC(X) has weight ^ . Then, as above, X
must have weight less than or equal to ^ The necessity of the
theorem implies that X has weight exactly fc$.

Since a completely regular topological space is separable and
metrizable if and only if it is second countable (see [4], p. 187 and
p. 195), we have the following result.

THEOREM 3. A completely regular topological space X is separable
and metrizable if and only if CC(X) is second countable.

COROLLARY, Let X be a completely regular topological space.
CC(X) is a separable and metrizable topological space if and only if X
is separable, metrizable and locally compact.

For a completely regular topological space X, one can verify that
CC(X) is topological space if and only if X is locally compact. (See
[3], p. 329.) Thus, in view of the discussion preceding the last
theorem, the proof is immediate.

4* We will extend two results that are well known for topologi-
cal spaces to the class of convergence spaces.



88 W. A. FELDMAN

THEOREM 4. Let X be a convergence space that has weight less
than ^ {respectively is second countable). Then any subspace of X
is upper ^-compact (respectively Lindelof).

Because of the remark in §3, it suffices to show that X itself is
upper y^-compact. Consider J7~ = {Ta} to be a basis for X of cardinal
number less than fc$. Let £f be an arbitrary covering system for
X. For each Tae^~ choose Sa to be a fixed element in S? such
that Sa i) Ta if such an element Sa exists. Denote by S/" the collec-
tion of these Sa. Clearly &" is collection of cardinal number less
than y$. We will verify that S?' is actually a basic subcovering of
Sf. Let φ be an arbitrary convergent filter in X, say φ—+x. By
assumption, there exists a filter φ' coarser than φ such that φf —> x
and φ' has a basis consisting of sets in ^Z Since y is a covering
system, there exists an S in Sf with Seφ'. Because S must contain
some element TaQ e ^", where Ta() is also in φf, we can find an Sao e
S?' such that SaQ ID ΓβQ. Thus Sαo is an element of both φ' and ψ.

EXAMPLES, It is now easy to demonstrate that there exist con-
vergence spaces that are upper ^-compact (respectively Lindelof) and
not topological, namely, CC(X) for X a completely regular topological
space having weight less than y$ (respectively second countable) and
not locally compact. Moreover, such a CC(X) has weight less than
^ (respectively is second countable) but is not topological.

For an example of a first countable convergence space that is
neither second countable nor topological, consider CC(X) where X is
a completely regular topological space which is Lindelof and neither
second countable nor locally compact.

In analogy with topological spaces, we say a subset S is dense
in a convergence space Y if the adherence of S is Y. The space Y
is said to be separable if it contains a countable dense subset.

THEOREM 5. Any subspace of a second countable convergence space
is separable.

Let Y be a second countable convergence space with

a countable basis. In light of the remark in §3, it is sufficient to
prove that Y is separable. For each Tte^~, pick a ^ e Γ such that
Vi e Ti. We claim that {̂ }Γ=i is dense in Y. Given yeY, there exists
a filter φ convergent to y in Y with the property that φ has a basis
consisting of sets in JT". Hence φ has a trace on {y%)T^, which completes
the proof.
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REMARK. We have shown (Theorems 3, 4, and 5) that if X is a
separable and metrizable topological space, then CC(X) is second
countable, first countable, Lindelδf, and separable.
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