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PEANO DERIVATIVES AND GENERAL INTEGRALS

P S BϋLLEN AND S. N. MUKHOPADHYAY

It is known that if a function / has a finite derivative
(or approximate derivative) on a set E on which / is con-
tinuous then / is ACG* (or ACG) on E and that if / is
ACG* (or ACG) on a set E then a finite derivative (or
approximate derivative) of / exists almost everywhere in E.
These results are extended by Sargent in the case of gener-
alized derivatives of higher order. She has proved that if
fn+u the generalized derivative of / of order n + 1, exists in
an interval [α, b] then the derivative fn is Vn — ACG* on [α, b]
and that if /» is Vn~ ACG* on [a, b] then fn+i exists and is
equal to the approximate derivative of fn almost everywhere
in [a, b].

The present work is concerned with extending still further
these results of Sargent by introducing a more general defini-
tions of absolute continuity for the nth derivatives. It also
introduces an approximate Pn-integral which generalizes the
Pn-integral of James and Bullen.

1* Definitions and notations* Let / be defined and finite in

some neighborhood N of a point xQ If

n

(1.1) f(x) = S (s ~ x«Yar + 0{{x _ Xo)n}

as x —• x09 where a0 = f(x0) and al9 a2f an are finite and independent
of x but depends on x0 only, then ar is called the rth Peano derivative
(also called rth de la Vallee Poussin derivative [4]) of / at x0 and
is denoted by /r(a?0) From the definition it follows that if fn(xQ)
exists, then fr(x0) exists for 0 ^ r ^ n. Also if the ordinary nth.
derivative f{n)(x0) exists then fn(x0) exists and equals fin)(x0) and so
fr(x0) also exists and equals f(r)(x0) for 0 ^ r ^ n. The converse is
true only for n — 1.

Let us suppose that fn(x0) exists. Then the upper and the lower
(n + l)th Peano derivative of / at x0 are defined to be the upper and
the lower limits of

(1-2)
h +

as x —* x0 and will be denoted by fn+ι(xQ) and fn+ι(x0) respectively.
Further, by restricting x suitably one can define one sided Peano
derivatives of / at x0 and denoted by fϊ+1(x0), /»+i(α?0)f etc.

The approximate upper and approximate lower (n + l)th Peano
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derivatives of / at x0 are defined to be the approximate upper and
the approximate lower limits of the expression (1.2) as x —* xQ and
are denoted by fn+uap(x0), fn+1>ap(x0) respectively.

If fn(xQ) exists we can write from (1.1)

(1.3) f(x) = Σ ^ ~ ^ fr(%) + ^ ~ ®Ό' en(x0, x)

which gives

a Λ\ C (rγ rγ\ — "" J f (γ\ V \ ^ %θ) f (rγ \ L

( # — £C0) ^ r = 0 ^ ! J

Then sn(xθ9 x) is defined for all xe N except for x — χ0. We complete
the definition by setting εn(x0, x0) = 0. Then εn(x0, x) is defined through-
out N and is a continuous function of x when / is continuous.

Let / be defined in the interval [a, b] and let a ^ c < d ^ b.
If fn{c) and /n(d) exist we define

ώn(f; c, d) = max supc eΛ(c, »), sup {- εn(d, x)}\

(1.5) &*(/', c, d) — min inf εn(c, x), inf {— εw(d, a;)}

ωn(f] c> d) — ώn(f; c, d) — (on(f°> c, d) .

Since con(f; c, d) ^ 0 g ώ f t(/; c, d), we have α>Λ(/; c, d) ^ 0. If there
is no confusion we shall simply write ώn(c, d) etc. to denote ώn(f; c, d)
etc.

Let us suppose that fn exists on a set E<z. [a, 6]. Then / is said
to be ACl below (resp. above), written ACl (resp. ACl) on E if for
every ε > 0 there is a δ > 0 such that

Σ ^ O i , &i) > - e (resp. Σ &»{(*>&) <

for every sequence of non overlapping intervals {(α, , 6̂ } whose end
points are in E and

Σ (δ* - a%) < δ .

If / is both ACl and AC* on £7 then / is said to be ACl on E. It
is clear from the definition that / is ACl on E iff for every ε > 0
there is δ > 0 such that

Σ

for every sequence of non overlapping intervals {(α{, &{)} with end points
in ί/ and

Σ (h - a ( ) < δ .
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The function / is said to be ACnG* below (resp. above) written
ACnG* (resp. ACnG*) on E if E can be expressed as a countable
union of sets on each of which / is AC* (resp. ACt). The function
/ is ACnG* on E if E is a countable union of sets on each of
which / is AC*. Clearly / is AC%G* on E iff / is both ACjG*
and AC^G* on i?. We shall use the notation [ACnG*] etc. instead of
AGnG* etc. to mean that the set E can be expressed as a countable
union of closed sets on each of which / is ACZ. For a function /
to be AC, AC* etc. on a set E we refer to the definition given in
[7]. Since fn is the function / when n — 0, AC0* is the same as AC*
and ACQG* is the same as ACG* in [7]

The function / is AC below (resp. above) written AC (resp. AC)
on I? if for every ε > 0 there is δ > 0 such that

Σ {/(&<) - /(<*<)} > - ε (resp. Σ {fΦd - f(a$ < e)

for every sequence of non overlapping intervals {(<&*&*)} whose end
points are in E and

Σ (hi - α,)< δ .

The function / is [ACG] or [ACG1 on E according as E can be ex-
pressed as a countable union of closed sets on each of which / is AC
or AC and / is [ACG] if and only if / is both [ACG] and [ACG].

Throughout, μ(A) will denote the Lebesgue measure of the meas-
urable set A and the approximate derivative and the Dini derivatives
of / are denoted by f'ap and D+f, etc.

2* Preliminary lemmas*

LEMMA 1. Let fn exist and be bounded above on [a, b] Iff is
ACt on Ed [α, 6] then fn is AC on E.

Proof. Let sup fn = M. We suppose M = 0. Then since / is
ACt on E, given ε > 0 there is δ > 0 such that

(2.1) Σ ω.^, 6*) > - 4

for every sequence of non overlapping intervals {(aif 6̂ } with end points
in E satisfying

(2.2) Σ (δ< - α*)< δ .

Now
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i.e.,

— en-i(fm9&i9 h) — /»(#•) — εΛf> Ui, h

Similarly

-T—^ ε n-i(/ ; h, a{) + fnih) = — εn(f; bi9

Oi — di

Hence

f (J)\ — -f (n\ — P ( f- π. h.\ — P ( f' h. nλ
(2.3)

Since / Λ satisfies the mean value property [5] there are points ζ{ and
f{ in (α, , δ j such that

εn-ΛJ, oi9 α j = jn(ξi) .

Since fn{x) ^ 0 for all x in [α, δ], from (2.3) and (1.5)

Λ(δ<) ~ Λ(α<) ^ e (/; α<, h) ~ εΛf; K ad
^ 2α>%(αί, δί) .

Hence from (2.1)

Σ {/.(&<) - Λ(α,)} ^ 2 Σ ω.ία^ί) > - ε
i i

whenever the intervals {(ai9 bt)} satisfy (2.2). This shows that fn is
AC on E.

If M Φ 0, consider g(x) = /(α?) - M(xn/nl).
Then flrr(a?) = /r(α?) - M(xn~r/(n - r ) ! ) , r = 0, 1, ••• w. So,

sup #„ = sup / Λ — ikf = 0. Also ^ is ACt on ί7 and hence by the above
argument gn is AC on £7. Since gn = fn — M, fn is AC on JE7.

LEMMA 2. Let f be defined in [α, δ] and let fn exist on the closure
E of a set Ed [a, b]. If f is ACt on E then f is ACt on E.

For proof we refer to an analogous Lemma of Sargent [8].
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LEMMA 3. Let f be defined in [a, b] and let fH(c) and fn{d) exist
where a ^ c < d rg b. Then

(2.4) \fn(d)-Uc)\

where K is a constant depending on n only.

Proof. As in [8] putting h — (d — c)/n we have

(2.5) fn(d) - fn(c) = £ (- ^ ^ f ΐ ^ f e c + rh)- e.(d, d - rh)} .

Denoting by Σ ( + ) the summation over the terms in the right hand
side of (2.5) for which en(c, c + rh) — en(d, d — rh) is positive and by
Σ ( ~ } for which it is negative and noticing that

2ωn(c, d) ̂  en(c, e + rh) — εn(d, d — rh) ̂  2ώn{c, d), r — 0,1, n

we get from (2.5)

fM - fjp) = Σ ( + ) (~ l)- rfΛ)Sίe.fe c + rh)- εn(d, d - rh)}

i {εM(c, c + rh) — εn(d, d — rh)}

nYn,o- ( AW . ^< ln^rn

where

The other inequality can be similarly proved.

COROLLARY 4. Leέ / &e defined in [α, &] αt̂ cZ let fn exist in Ea
[α, 6]. Iff is AC* on E then f is absolutely continuous on E.

LEMMA 5. Let f be defined in [α, b] and let fn exist on a closed
set Ed [a, b]. Iff is ACS on E then there exists a function λ in
[α, b] with the following property:

( i ) X{n) exists and is continuous in [a, b]
(ii) λ w is AC* on E, and
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(iii) XM(x) = fr(x) for x e E; r = 0, 1, n.

Proof. We define a function g in [α, b] such that g = fn on E
and £ is linear and continuous in the closure of each contiguous
intervals of E. Then since / is ACt on E, fn is absolutely continuous
on E by Corollary 4, and hence g is continuous in [a, b] and is AC*
on JB. Let X be the function obtained by taking the indefinite
integral of g of order n in [α, 6]. Then λ satisfies the requirements
(i), (ii) and Xίn)(x) — fjx) for x e E; the rest follows by an induction
method due to Marcinkiewicz (Fund. Math. 27 (1937), p. 48-50; see
also [8]).

LEMMA 6. The function X defined in Lemma 5 is AC* on E.

Proof. Let c and d, c < d, be any two points in E. Then for
c < x ^ d we have

ε%(λ; c, x) - ^ ! { x c ) \{λ(s) M e ) . \ ( c ) }
(x — c)n nl

= X^(ζ) - X{n)(c), c < ζ < x .

Hence

\εn(\;c,x)\ = \X^(ξ)-X^(c)\

^ 0(X{n); c, d)

where 0(λu ); c, d) denotes the oscillation of X{n) in [c, d]. Similarly for
c ^ x < d

Thus

(2.6) ωn(\; c, d) £ 2 0(λ(%); c, d) .

Since X{n} is AC* on E by Lemma 5, it follows from (2.6) that λ is
ACt on # .

LEMMA 7. 1/ / is a function of Baire class 1 in [a, b] then for
any perfect set Pa [α, b] there is a portion of P on which f is bounded.

This follows from the fact that P contains a point of continuity
of / relative to P.

LEMMA 8. If f is AC on [α, b] and D+f ^ 0 almost everywhere
in [a, b] then f is nondecreasing in [a, b].

Proof. Since / is AC on [α, 6], for any ε > 0 there is δ > 0 such
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that

(2.7) Σ {/(&<) - /(α*)} > - ε

for every sequence of non overlapping intervals {(aif b{)} with the
property

Σ Φi - α,)< δ .
i

L e t E = { x : x e [ α , b]; D + f ( x ) ^ 0 } . T h e n μ ( E ) = b - a a n d f o r x e E
there is a sequence {/̂ } such that hk—+0+ and

(2.70 / ( * + feJ-/(*)> _ e , fc = 1, 2

Let c ^ be the family of closed intervals {[x, x + hk]: xeE; k = 1, 2,
•••}• Then E is covered by ^ in the sense of Vitali So, there is
a finite number of non overlapping intervals in

[ x u x [ ] , [x2, α?ί], •••, [ x m , x ' m ]

say, such that

μ(E - Qjxt, x'ή < δ

i.e.,

(2.8)

From (2.8) and (2.7) we deduce

(2.9) Σ ( / W - /(*ί-i)} > - e

where a = α?ί and & = &m+1. Also from (2.7')

(2.10) f(x'i) — /(&*) > — e(x'i — xt) , i = 1, 2, .

Hence from (2.9) and (2.10)

fφ) - fi°) > - ε - ε(6 - α) .

Since ε > 0 is arbitrary, f(a) ^ f(b). Applying this argument to any
subinterval, the proof is complete.

LEMMA 9. If f% is AC in [a, b] and /++ 1 ^ 0 almost everywhere
in [α, b] then fn is nondecreasing in [a, b\.

Proof. Let Q be the set of all points x in [α, b] such that there
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is a neighborhood of x in which fn is bounded. Then Q is an open
set. Let (c, d) be any component interval of Q and let c < a < β < d.
Then fn is bounded in [a, β] and hence it is the ordinary nth deriva-
tive f{n) in [α, β] [5] and so all the previous derivatives / ( 1 ), / ( 2 ), •••,
y(tt~D e x i s t a n ( j a r e continuous in [α, /3]. Also for any xe[a, β], if
x + ft 6 [a, β], we have

θh

for some 0, 0 < 0 < l Hence it follows that

(2.11) D+fn(x)^f:+1(x).

Thus the relation (2.11) holds for all x in [a, β]. Since / n is AC in
[<*, /3], by Lemma 8, /„ is nondecreasing [a, β]. Since [a, β] is arbi-
trary, /„ is nondecreasing in (c, d). By the Darboux property of fn

[5] we conclude that fn is continuous and nondecreasing in the closed
interval [c, d\.

Let H = [α, 6] — Q. Then ί ί is closed. Also H has no isolated
point. For, if x0 is an isolated point of H then there are points p
and q such that p < x0 < q and / Λ is nondecreasing and continous in
the intervals [p, x0] and [x0, q] and so fn is nondecreasing and continuous
in the interval [p, q] contradicting the fact that x0 e H. Thus H is
perfect. We shall show that H is empty.

If possible suppose that H is nonempty. Since fn is a function
of Baire class 1 [5] by Lemma 7 there is a portion of H, say [α, β] fl
jff such that /» is bounded on [a, β] π i ϊ . Since /» is monotone and
continuous in the closure of each complementary intervals of H in
[a, β]9 fn is bounded in [ac, β]. But this is a contradiction since [α, β]
contains points of H. This completes the proof.

LEMMA 10. Let fn be \ACG] on [a, b] and let fi+1 ^ 0 almost
everywhere in [a, b]. If P is any perfect set on [a, b] such that fn is
nondecreasing on the complementary intervals of P, then there is an
interval [I, m] containing points of P such that fn is nondecreasing
in [I, m].

Proof. Since fn is \ACG] on [a, b], [α, b] is a countable union of
closed sets on each of which fn is AC. Let {E{} be the sequence of
closed sets such that [a, b] = U; E* &nd f% is AC on Et for each i.
Then P = U*( PΠ-E<). So, by Baire's theorem there is a i0 and an
interval [I, m] such that P Π [ ί , m ] c P Π EiQ. Hence f% is AC on
PC\ [I, m]. Since fn is nondecreasing in the complementary intervals
of P, and since / , is a Darboux function, /„ is continuous and non-
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decreasing in the closure of each contiguous interval of P in [I, m]
Hence fn is AC on [I, m]. Since fi+ι ^ 0 almost everywhere in [£, m],
the proof is completed by Lemma 9.

LEMMA 11. Let f be [ACnG*] on [α, b] and let fϊ+1 ^ 0 almost
everywhere in [α, b]. If P is any perfect subset of [α, b] such that
fn is nondecreasing on the complementary intervals of P then there
is an interval [I, m] containing points of P such that f% is nondecreasing
in [I, m].

Proof. As in the proof of Lemma 10, there is an interval [I, m]
such that / is AC* on P Π [I, m\. By Lemma 7 we may suppose that
fn is bounded on PΠ [I, m]. Also since fn is nondecreasing on the
contiguous intervals of P in [I, m], and since fn is a Darboux function,
fn is bounded on [I, m]. So, by Lemma 1 fn is AC on PΠ [l> m].
To complete the proof one is to apply the argument of Lemma 10.

3* Properties of generalized derivatives*

THEOREM 12. Let f be defined in [a, b] and let fn exist on Ecz
[a, b]. If fn+1 < oo on E then f is ACnG* on E.

Proof. For a positive integer r let Er denote the set of all points
x of E such that

(3.1) 0 < \t - x\ ^ — implies 6*&> *\ < r .

Let Eri = Er Π [i/r, (i + l)/r]. Then

(3.2) E = U U Eri .

We shall show that / is ~ACZ on each Eri. Let x1 e Eri, x2 e EH, x1 <
xi9 and let x1^t^ x2. Then from (3.1)

en(xl9 t) <
%+V w - n + 1

a n d

% 2 > n + 1 = n + 1

Hence

sup eΛ(α?1, ί) ^ — ^ - r f e - »i), sup {- εn(x2, t)} ^ — 7 - r f e - »i)
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which gives

Unix,, ®2) ̂  ^-rr fe ~ ffi)

% + 1

It is now easy to prove that / is ACi on each Eri. The proof
is completed by (3.2).

By using the analogue of Theorem 12 for ACnG* and the Corollary
4 we get with the help of the Denjoy-Hincin theorem [7, p. 223].

COROLLARY 13. If fn exists on Ed [α, b] and if — oo < / Λ + 1 <;
fn+1 < CXD on E then f is ACnG* on E and (fn)

r

ap exists almost every-
where in E.

THEOREM 14. // fn exists and is [ACG] in [α, δ] and if fn+1 ^ 0
almost everywhere in [a, b] then fn is continuous and nondecreasing
in [a, b].

Proof. Let G be the set of all points x in [α, b] such that there
exists a neighborhood of x in which fn is nondecreasing. Then the
set H = [a, b] — G is perfect. If possible suppose that H is nonempty.
Let {(ak, bk)} by the set of complementary intervals of H in [α, δ].
Then fn is nondecreasing in each interval (αΛ, δΛ). By Lemma 10 there
is an interval [Z, m] containing points of H such that fn is nondecre-
asing in [I, m]. This contradicts the fact that [I, m] contains points
of H. Thus H is empty and hence fn is nondecreasing in [a, b]. The
continuity follows from the Darboux property of fn.

COROLLARY 15. // fn is [ACG] on [a, b] and if one of the deriva-
tives fi+i,fn+i9 fi+ι, fn+ι vanishes almost everywhere in [a, δ], then f
is a polynomial of degree at most n.

THEOREM 16. If f is [ACnG*] on [a, b] and if f++ι :> 0 almost
everywhere in [a, b] then fn is continuous and nondecreasing in [a, δ].

The proof is similar to that of Theorem 14, but applying Lemma 11
instead of Lemma 10.

COROLLARY 17. If f is [ACnG*] on [a, b\ and if one of the
derivatives fi+u f~+l9 /J+ 1, _/-+1 vanishes almost everywhere in [a, b] then
f is a polynomial of degree at most n.

THEOREM 18. If f is [ACnG*] on Ea [α, δ] then for almost all x
in E, fn+i(x) and {fn)aP(x) exist and equal each other.
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Proof. We shall follow the argument of Sargent [8] with some
essential modifications. Since / is [ACnG*] on E, there is a sequence
of closed sets {<?<} such that E = (J* Qi a n ( i / * s ΆC£ on each Q̂
The theorem will therefore be proved if we prove that if / is ACt
on a closed set Q c [a, b] then / Λ + 1 exists and equals (/»)£„ almost
everywhere in Q.

Set flr(a?) = f(x) — λ(α?), where λ is the function obtained by applying
Lemma 5 on Q. Then

gr(x) = 0 for α? e Q , r = 0, 1, 2, n .

By Lemma 6, g is ACt on Q. Let {(α,-, β{)} be the set of complementary
intervals of Q in [α, 6]. Define

= «>»(g, ai, βi), ai < % < βi

Since g is ACί on Q, ft is AC* on Q. Also λ(%+1) is AC* on Q by Lemma
5. Hence h{1) and λ(%+1) exist almost everywhere in Q. Since fn —
Xin) on Q, it follows that

holds whenever α? is a point of density of Q and λ(%+1)(ίc) exists. By
a routine calculation it can be shown that fn+1(ξ) = λ(ίl+1)(f) holds
w-henever f is a point of density of the set where X{n) and ha) exist
finitely. This completes the proof.

THEOREM 19. Let f be defined on [α, b] and let f be AGnG* on
a measurable set Ed [a, b]. Then for almost all points x in E, fn+ί(x)
and (/»)£p(ίB) exist finitely and equal each other.

Proof. There is a sequence of closed sets {F{} such that

(3.3)

Clearly for a fixed i, f is ACnG* on Fi and hence Ft can be expressed
as the union of a sequence of sets {F^} such that / is AC* on FiS

for each j . By Lemma 2 / is ACt on the closure Fi3 for each j .
Since

F—F — WF-
3

f is [ACnG*] on F{. By Theorem 18, fn+ι and (/Λ)iP exist and equal
each other at almost all points of F{. Hence the result follows from
(3.3).
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COROLLARY 20. Let f be measurable on [α, 6] and let fn exist
finitely on Ed [α, 6] and let

(3.4) ~ oo < / Λ + 1 ^ Λ + 1 < oo

hold on E. Then for almost all points in E, fn+1 and (fnyap exist
finitely and equal each other.

Proof. Let G be the set of all points in [α, δ] where fn exists
finitely and the relation (3.4) holds. Then it is sufficient to prove that
for almost all points of G, fn+1 and (fnyap exist finitely and equal each
other.

Since

fn(x) = lim-ί Σ (~ iy-{n)f(x + iu)

fn is measurable. In a similar manner it can be shown that/% + 1 and
£n+1 are measurable. So, the set G is measurable. Also by Corollary
13, / is ACnG* on G. So, applying Theorem 19, / n + 1 and (fn)'ap exists
finitely and equal each other at almost all points in G.

COROLLARY 21. Let f be measurable on [a, b] and let fn exist
finitely on a set Ecz [a, b]. If for xeE, we have

f(x + t) = f{x) + tfx{x) + + -£-/.(»)
nl

+ , * Λ.Mχ, t) ,
(n + 1)!

where 7(x, t) — 0(1) as t —• 0, then for almost all x in E, fn+ί exists
and equals (fn)'ap.

Corollary 20 sharpens a result of Zygmund [9, Vol. II, p. 77] that
if the nth. derivative fn exists on a set E of positive measure, then
for almost all x in E

Corollary 21 offers a simple proof of Lemma 7 of Marcinkiewicz
and Zygmund [4] with the aid of which they proved their very
interesting main theorem. The original proof of their lemma is
long and involves certain results in the theory of Fourier series and
analytic functions. Here the proof depends only on the properties of
generalized derivatives. The last result also sharpens another result
of Zygmund [9, Vol. II, p. 76].

4. The Pw-integraL The preceding results allow the PΛ-integral,
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[2, 3] to be defined in a method introduced by Ridder for the classical
Perron integral, the case n = 1 of the PΛ-integral; [6].

Let / be a finite real valued function on [a, δ] Then a continuous
function M is called a <^ "-major function of / if and only if

(a) Mr exists and is finite, l<Lr^n — l;
(b) Mn(x) ^ f(x), for almost all x;
(c) M is [ACn^G*] below on [a, b];
(d) Mr(ά) = 0,l£r£n-l.
In a similar way ^"-minor functions can be defined and then by

a standard procedure [2, 3, 6], this leads to a definition of an integral
of Perron type—the ^"-integral, say.

When n = 1 this reduces to Bidder's definition of the Perron
integral, [6], except that in (c) above Ridder uses ACG* below rather
than [ACG*] below; however for continuous functions, the case of
interest here, these two classes coincide so the two definitions are
equivalent. Whether it is possible in general, n 7> 2, to use ACn_xG*
below rather than [AC^G*] below is an interesting open question; in
particular is this weakening of the requirements of Theorem 16 possible?

The properties given in [2] for the P"-integral can be obtained
in a similar manner for this new integral. However this is unnecessary
since as we will see the two integrals are equivalent.

It follows from the above definition that the function / need only
be finite, or indeed defined, almost everywhere.

LEMMA 22. // M is any έ^n-major function of /, m any ^n-
minor function of f then M — m is n-convex.

Proof. This follows immediately from Theorem 16 above and
Corollary 8, [1].

COROLLARY 23. If f is 0>n-integrable, M, m as in Lemma 22
then M — F and F — m are n-convex.

COROLLARY 24. If f is έ^n-integrable9 F its indefinite integral
then Fr(x) exists, at^x^b, l^r^n — 1.

Both these corollaries follow using the arguments used in [2]; in
particular Theorem 10 (c), (d) and Corollary 11 of [2].

The following simple lemma that can be proved similarly for any
integral of Perron type does not seem to have been proved before.

LEMMA 25. // / is ^n-integrable with zero as its indefinite
integral then f(x) = 0 for almost all x.
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Proof. The case n — 1 is slightly different but the general proof
can easily be adapted to this case; we assume then that n ^ 2.

From Corollary 23 every ^ "-major function M of / is w-convex
and so M{n) exists almost everywhere, [1, Corollary 15].

Suppose that / > 0 on some set of positive measure then for some
a9 β, a<a<β < b and some k > 0, ε > 0 there is a set Aa[a, β]
such that μ(A) > ε and x e A implies f(x) > k.

If M is any ^ "-major function of / then by Corollary 23, M is
w-convex and so M{n) exists almost everywhere, [1, Corollary 15]. Let
B = {x; Min)(x) Ξ> k}; then by (b) in the above definition of ^ "-major
function AczB and so

(4.1) μ(B) > ε .

However, since M is ^-convex, by Theorem 12 of [1], we have that

(4.2) μ(B) ^ ^L{M{n-ι){β) - ΛΓ—1}(α)} .

But M can be chosen so that M(β) can be made arbitrarily small and
so by Corollary 8 (b), [1], the right-hand side of (4.2) can, by the
right choice of M be made less than ε

This contradiction of inequality (4.1) prove that f(x) ^ 0 almost
everywhere.

In a similar way it can be shown that f(x) ^ 0 almost everywhere,
which completes the proof.

COROLLARY 26. If / , and g are both ̂ n-integrable with the same
indefinite integrals then f(x) — g(x) for almost all x.

THEOREM 27. The ^n-integral is equivalent to the Fn-integral
defined in [2].

Proof, (a) Suppose / is P"-integrable. Then by Theorem 22,
[2], / is Dw-integrable. That is to say, there is a function F such that
F is ACn^G* on [a, b], Fr(a) = 0,1 ^ r ^ n - 1, and Fn(x) = f(x)
almost everywhere.

By Lemma 5, [8], (also repeated in Lemma 17 (c), [2]), F is
[ACn^G*] on [a, b] and so is both a ^"-major and a ^Vminor function
of / . Hence / is ^Mntegrable with F as its indefinite ^"-integral;
but by Theorem 22, [2], F is also the indefinite PΛ-integral of / .

(b) Now suppose / is ^Mntegrable with indefinite integral F.
Proceeding as in part (a) of the proof of Theorem 22, [2], it follows
that F is [AC^G*] on [α, ft]. (Due to hypothesis (c) of the ^"-major
functions the proof here is easier as there is no need to appeal to
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either Lemma 21, [2], — Theorem 12 above, — or to Lemma 5, [8].)
By Theorem 18 above Fn exists almost everywhere and so from

the above definition, Fn is DMntegrable with F as its indefinite Dn-
integral By part (a) above then Fn is ^Mntegrable with F as its
indefinite ^"-integral. Hence by Corollary 26, Fn(x) = f{x) almost
everywhere; that is to say, / is DMntegrable, and so PMntegrable
with F its indefinite PMntegral; this completes the proof.

The critical step in being able to construct an integral of Perron
type is a result analogous to Lemma 22. As a result it is possible
to vary the definition given above of major functions to obtain different
wth order Perron integrals.

Firstly we could replace hypothesis (c) by

(c)* Mn^ is [ACG] below on [α, 6]

By appealing to Theorem 14 (rather than Theorem 16 as in proof
of Lemma 22) the analogue of Lemma 22 still holds; so in the usual
way we define a new integral the ίΓMntegral, say. The case n = 1
of this new integral is equivalent to Ridder's definition of a Perron
integral equivalent to the Hincin totalization, [6, Section 6]; the dif-
ference as before is in the use of [ACG] below rather than ACG below.
The relation of this new integral to the Pw-integral is not known since
at present no relationship is known between Mn^ being [ACG] below
and M being [ACn^G*] below, other than that given by Corollary 4.

A second possibility is to replace (c) by (c)* but in addition to
replace (b) by

(b)* M%tUP{x) ^ f(x) for almost all x .

Again appealing to Theorem 14, (noting that gi(x) ^ gn,ap(®) for all x)
the analogue of Lemma 22 still holds; so in the usual way a new
integral can be defined. The relation of this integral to the other
integrals introduced here, and to the general Denjoy integral, when
n = 1, will be taken up in a later paper.
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