A CHARACTERIZATION OF THE UNITARY AND SYMPLECTIC GROUPS OVER FINITE FIELDS OF CHARACTERISTIC AT LEAST 5

Michael Aschbacher

> The following characterization is obtained:
> Theorem. Let G be a finite group generated by a conjugacy class D of subgroups of prime order $p \geqq 5$, such that for any choice of distinct A and B in D, the subgroup generated by A and B is isomorphic to $Z_{p} \times Z_{p}, L_{2}\left(p^{m}\right)$ or $S L_{2}\left(p^{m}\right)$, where m depends on A and B. Assume G has no nontrivial solvable normal subgroup. Then G is isomorphic to $S p_{n}(q)$ or $U_{n}(q)$ for some power q of p.

A much larger class of groups satisfies the analogous property for $p=2$ or 3 , including many of the sporatic simple groups. The classification for $p=2$ appears in [3]. The classification for $p=3$ is incomplete, but a partial solution appears in [4].

For the most part the proof here mimics that in the papers mentioned above. The exception comes in handling certain degenerate cases. This is accomplished in § 4 by first showing a minimal counter example possesses a doubly transitive permutation representation, and then utilizing numerous results on doubly transitive groups.

1. Notation. In general G is a finite group and D a G invariant collection of subgroups generating G. G acts on D by conjugation with this representation denoted by G^{D}. If $\alpha \cong D$ is a set of imprimitivity for this action we define

$$
\begin{aligned}
D_{\alpha} & =\left\{\beta \in \alpha^{G}:[\alpha, \beta]=1, \alpha \neq \beta\right\} \\
\alpha^{\perp} & =\{\alpha\} \cup D_{\alpha} \\
A_{\alpha} & =\alpha^{G}-\alpha^{\perp} \\
V_{\alpha} & =\left\{\beta \in \alpha^{G}: \alpha^{\perp}=\beta^{\perp}\right\} \\
W_{\alpha} & =\left\{\beta \in \alpha^{G}: D_{\alpha}=D_{\beta}\right\} \\
D_{\alpha}^{*} & =\left\{B: B \in \beta \in D_{\alpha}\right\} .
\end{aligned}
$$

For $\Omega \subseteq \alpha^{G}, \mathscr{D}(\Omega)$ is the graph with point set Ω and edges (α^{g}, α^{h}) where $\alpha^{g} \in D_{\alpha^{h}} . \mathscr{B}(\Omega)$ is the geometry with point set Ω and block set $\left\{\beta^{\perp} \cap \Omega: \beta \in \Omega\right\}$. For $\alpha, \beta \in \Omega$ the line through α and β in $\mathscr{B}(\Omega)$ is

$$
\alpha * \beta=\bigcap_{\gamma \in \alpha \perp \cap \beta \perp \cap \Omega}\left(\gamma^{\perp} \cap \Omega\right)
$$

$\alpha * \beta$ is singular if $\beta \in D_{\alpha}$ and hyperbolic otherwise.

A triangle is a triple (A, B, C) with $A \in D, C \in D_{A}$, and $B \in A_{A} \cap A_{C}$.
If G is a permutation group on a set $\Omega, \Delta \subseteq \Omega$ and $X \subseteq G$, then $X_{\Delta}, X(\Delta)$ is the pointwise, global stabilizer of Δ in X respectively. $X^{s}=X(\Delta) / X_{\Delta}$ with induced permutation representation. $F(X)$ is the set of fixed points of X.
$O_{\infty}(G)$ is the largest normal solvable subgroup of G.
All groups are finite.
2. Locally D-simple groups. Let G be a finite group and D a collection of subgroups of G such that $D^{G}=D$. Represent G as a permutation group on G by conjugation. G is said to be D-simple if G is generated by any G invariant subset of $D . \quad G$ is locally D-simple if D generates G and for any A and B in D either $[A, B]=1$ or $\langle A, B\rangle$ is generated by $A^{\langle A, B\rangle}$. α is a set of imprimitivity for G^{D} if $\alpha \cap \alpha^{\prime}=\varnothing$ for $g \in G-N_{G}(\alpha)$, and $\varnothing \neq \alpha=\langle\alpha\rangle \cap D \neq D$.

Lemma 2.1. Let G be locally D-simple and $\Delta a G$ invariant subset of D. Then
(1) If H is a D-subgroup of G then H is locally $(H \cap D)$-simple.
(2) If α is a homomorphism of G then $G \alpha$ is locally $D \alpha$-simple.
(3) Let $\Gamma=\langle\Delta\rangle \cap D$. Then $[\Gamma, D-\Gamma]=1$.
(4) If G^{4} is transitive then $\langle\Delta\rangle^{4}$ is transitive.
(5) If $D \cap Z(G)$ is empty and $G=\langle\Delta\rangle$ for some orbit Δ of G^{ν}, then G is D-simple.

Proof. (1) and (2) are straightforward. Let $H=\langle\Delta\rangle$. Then $H \unlhd$ G. Let $A \in \Gamma, B \in D-\Gamma$ and assume $[A, B] \neq 1$. Let $X=\langle A, B\rangle$. Then $X=\left\langle A^{X}\right\rangle \leqq H$ so $B \in \Gamma$, contradicting the choice of B. Therefore, (3) holds.

Assume G^{s} is transitive. Let $K=\langle D-\Gamma\rangle$. Then by (3) G is the central product of H and K so for $A \in \Delta, \Delta=A^{G}=A^{K I I}=A^{H}$. Thus (4) holds.

Finally assume G^{A} is transitive, $G=\langle\Delta\rangle$ and $Z(G) \cap D$ is empty. Suppose Ω is an orbit of G^{D} with $K=\langle\Omega\rangle \neq G$. Then as $G=\langle\Delta\rangle, \Delta \cap K$ is empty, so by (3), $[\Delta, \Omega]=1$. Thus Ω is centralized by G, a contradiction. Thus (5) holds.

Lemma 2.2. Let G be locally D-simple and α a set of imprimitivity for G^{D}. Then
(1) If $A \in \alpha, B \in \alpha^{g} \neq \alpha$ and $[A, B]=1$, then $\left.] \alpha, \alpha^{g}\right]=1$.
(2) $\left\langle\alpha^{G}\right\rangle$ is locally $\langle\alpha\rangle^{G}$-simple.

Proof. (1) $A=A^{B} \in \alpha^{B}$, so $\alpha^{B}=\alpha$. Thus 2.1.3 applied to $\langle\alpha, B\rangle$ implies $[\alpha, B]=1$. But now the same argument shows $\left[\alpha^{g}, C\right]=1$ for each C in α. (2) Let $H=\langle\alpha\rangle \neq K=\left\langle\alpha^{g}\right\rangle$, and $X=\langle H, K\rangle$. Assume
$[H, K] \neq 1$ and let $A \in \alpha, B \in \alpha^{g}$. Then by (1), $[A, B] \neq 1$ so $B \in\left\langle A^{\langle A, B\rangle}\right\rangle \leqq$ $\left\langle H^{x}\right\rangle$. Thus $X=\left\langle H^{x}\right\rangle$.

Lemma 2.3. Let G be locally D-simple with G^{D} transitive, and A abelian. Then
(1) Either V_{A} or W_{A} equals $\{A\}$.
(2) V_{A} and W_{A} are sets of imprimitivity for G^{D}.
(3) $V_{V_{A}}=\left\{V_{A}\right\}$ and $W_{W_{A}}=\left\{W_{A}\right\}$.

Proof. Straightforward.
Lemma 2.4. Let G be locally D-simple with G^{D} transitive and $\mathscr{D}(D)$ connected. Let $A \in D$. Then A is contained in a unique maximal set of imprimitivity α of G and $\left\langle D_{\alpha}^{*}\right\rangle$ is D_{α}^{*}-simple.

Proof. Let $H=\left\langle D_{A}\right\rangle, \pi$ an orbit of H of maximal length on D_{A}, $\Delta=(\langle\pi\rangle-Z(\langle\pi\rangle)) \cap D, \Gamma=N_{D}(\Delta)$ and $\alpha=\langle\Gamma-\Delta\rangle \cap D$. As $\mathscr{D}(D)$ is connected, $|\pi|>1$, so Δ is nonempty. We will show α has the properties claimed in the conclusion of the lemma.

By 2.1.3, $[\alpha, \Delta]=1$. By 2.1.4 $\langle\pi\rangle$ is transitive on π. Thus transitivity of G^{D} and maximality of $|\pi|$ imply π is an orbit of $\left\langle D_{B}\right\rangle$ on D_{B}, for $B \in \alpha$. Therefore $B^{\perp} \subseteq \Gamma$.

Suppose $B \in \alpha \cap \alpha^{g} \neq \alpha$. Then $\Delta \subseteq B^{\perp} \subseteq \Gamma^{g}=\alpha^{g} \cup \Delta^{g}$. Now $\langle\pi\rangle$ is transitive on π so either $\pi \subseteq \Delta^{g}$ or $\pi \subseteq \alpha^{g}$. If $\pi \subseteq \Delta^{g}$ then $\Delta \subseteq$ $\langle\pi\rangle \subseteq\left\langle\Delta^{g}\right\rangle$, so $\Delta=\Delta^{g}$ and therefore $\alpha=\alpha^{g}$, a contradiction. Thus $\pi \cong \alpha^{g}$, so $\Delta \subseteq\langle\pi\rangle \cong\left\langle\alpha^{g}\right\rangle$ and therefore $\Delta \subseteq \alpha^{g}$.

So $\Gamma \cong \alpha \cup \alpha^{g}$. Further $\Delta^{g} \leqq \alpha$, so $\alpha^{g} \cong C^{\perp} \subseteq \Gamma$ for $C \in \Delta^{g}$. Thus $\Gamma=$ $\alpha \cup \alpha^{g}$. From the last remark of the second paragraph it follows that Γ is a component of $\mathscr{D}(D)$, contradicting the hypothesis that $\mathscr{D}(D)$ is connected.

It follows that α is a set of imprimitivity for G^{D}. By 2.2.1, $D_{\alpha}^{*}=$ $D_{A}-\alpha=\Delta-\alpha$. By construction, $Z(\langle\Delta\rangle) \cap \Delta$ is empty, so $D_{\alpha}^{*}=\Delta$ and by 2.1.5, $\langle\Delta\rangle$ is Δ-simple.

Finally let β be a set of imprimitivity for G containing A. Δ centralizes A, so Δ normalizes β. If $B \in \beta \cap \Delta$ then as $K=\langle\Delta\rangle$ is Δ simple, $\Delta \subseteq\left\langle B^{K}\right\rangle \leqq\left\langle\beta^{K}\right\rangle=\langle\beta\rangle$. Thus $\Delta \subseteq \beta$. As $N_{G}(\beta)$ is transitive on $\beta, \alpha \subseteq D_{\alpha^{g}} \subseteq \beta$ for $\alpha^{g} \in D_{\alpha}$. Thus $A^{\perp} \subseteq \beta$, and transitivity of $N_{G}(\beta)^{\beta}$ implies β is a component of $\mathscr{D}(D)$, contradicting the hypothesis that $\mathscr{D}(D)$ is connected.

So $\beta \cap \Delta$ is empty and by 2.1.3, $[\beta, \Delta]=1$. Thus $\beta \subseteq N_{D}(\Delta)-$ $\Delta=\alpha$. Thus α is maximal as claimed.

Lemmas 2.6 and 2.7 are from $\S 2$ of [4]. 2.6 is a slight generalization of its counterpart, but the same proof goes through.

Lemma 2.6. Let G be locally Ω-simple, let $\Lambda \subseteq \Omega$, and let H be a Ω-subgroup of G. Assume
(i) H takes the edge set of $\mathscr{D}(\Lambda)$ onto the edge set of $\mathscr{D}(\Omega)$ under conjugation.
(ii) There exists a partition $\Lambda=\Sigma \Lambda_{i}$ of Λ such that if $\alpha^{h} \in \Lambda$ for some $\alpha \in \Lambda_{i}, h \in H$, then there exists $r \in N_{H}\left(\Lambda_{i}\right)$ with $\alpha^{h}=\alpha^{r}$.
Let \bar{G} be a second group satisfying the hypothesis of G for which there exists a permutation isomorphism T of $H^{9} \bar{H}^{\bar{a}}$ and an isomorphism S of $\mathscr{D}(\Lambda)$ and $\mathscr{D}(\bar{\Lambda})$ such that
(iii) T restricted to $N_{H}\left(\Lambda_{i}\right)$ commutes with S and $N_{H}(\alpha) T=N_{\bar{H}}(\alpha S)$ for each $\alpha \in \Lambda$.
Then S extends to an isomorphism of $\mathscr{D}(D)$ and $\mathscr{D}(\bar{D})$.
A triangle in D is a triple (A, B, C) with $A \in D, C \in D_{A}$, and $B \in$ $A_{A} \cap A_{C} . \quad D$ is locally conjugate in G if for $A, B \in D, A$ is conjugate to B in $\langle A, B\rangle$, or $[A, B]=\perp$.

Lemma 2.7. Let Ω be locally conjugate in G with G^{Ω} primitive and $\mathscr{D}(\Omega)$ connected. Assume
$\left(^{*}\right)$ If (α, β, γ) is a triangle and $X=\langle\alpha, \beta, \gamma\rangle$, then $\beta^{\perp} \cap X \subseteq$ $\beta^{\langle\alpha \perp \cap X\rangle}$ and $\beta^{r} \subseteq\left(\beta^{\perp} \cap X\right)^{\alpha}$.
Then $\left\langle\alpha^{\perp}\right\rangle$ is transitive on A_{α} and G^{o} is rank 3.
3. p-transvections. Let G be a finite group, p a prime. A set of p-transvections of G is a G invariant collection D of subgroups generating G such that for any $A, B \in D,|A|=p$ and $\langle A, B\rangle$ is the homomorphic image of a subgroup of $S L_{2}\left(p^{n}\right)$, with n and the image depending on A and B.

If $p=2$ then D is a set of odd transpositions. Groups generated by odd transpositions have been classified [3]; they include the sporatic simple groups discovered by Fischer plus many infinite classes of simple groups. Conway's sporatic simple group $\cdot 1$ is generated by 3 -transvections, as is the Hall-Janko group and Suzuki's sporatic simple group.

Lemma 3.1. Let D be a set of p-transvections of $G, p>2$, and let $M=O_{\infty}(G)$. Then
(1) G is locally D-simple
(2) If G is a p-group then G is abelian
(3) If $G=M$ is not a p-group then $p=3$ and G is a $\{2,3\}$ group
(4) If $p>3$ then $M / O_{p}(G)=Z\left(G / O_{p}(G)\right)$.
(5) Let $M=1$. Then G is a simple unless $p=3$ and $G \cong$ $P G U_{3 n}(2)$.

Proof. Let $A, B \in D,[A, B] \neq 1$. Set $X=\langle A, B\rangle$. Then X is isomorphic to $S L_{2}\left(p^{n}\right)$ or $L_{2}\left(p^{n}\right)$ unless $p=3$ and $X \cong S L_{2}(5)$ or $L_{2}(5)$.

This implies (1) and (2). If $G=M$ then as $L_{2}(q)$ is simple for $q>3$, X must be isomorphic to $S L_{2}(3)$ or A_{4}. Therefore, 4.1 of [4] yields (3).

Assume $p>3$. To prove (4) we may assume $O_{p}(G)=1$. Let Q be a minimal normal subgroup of G contained in M. Then Q is a q-subgroup for some prime $q \neq p$. If A centralizes Q then Q is in the center of $G=\langle D\rangle$, so we can assume $[A, Q] \neq 1$. But then $\left\langle A^{Q}\right\rangle \leqq A Q$ is a solvable D-subgroup whose order is divisible by q, contradicting (3).

Finally assume $M=1$ and let H be a minimal normal subgroup of G. If $A \not \leq H$ and $x \in H$ then $\left\langle A, A^{x}\right\rangle$ has a normal subgroup of index p, so either $A^{x} \in A^{\perp}$ or $\left\langle A, A^{x}\right\rangle \cong S L_{2}(3)$ or A_{4}. If $A^{H} \cong A^{\perp}$ then $[H, A]$ is a normal abelian subgroup of H, so $[H, A]=1$. Thus H is centralized by $G=\langle D\rangle$, a contradiction. Therefore, if $A \not \leq H$, then [4] implies $A H \cong P G U_{3 n}(2) . \quad P G U_{m}(2)$ is normal in Aut $U_{m}(2)$ so $G=C_{G}(H) H A$. By induction on $|G|, G / H \cong C_{G}(H) A \cong Z_{p}$ or $P G U_{3 m}(2)$. But now [4] implies the latter case does not occur.

So we can take $A \leqq H$. So $G=\langle D\rangle=H$ is simple.
The proof of the following lemma is due to David Wales.
Lemma 3.2. Let $G \cong L_{2}(q)$ or $S L_{2}(q), q=p^{m}$ odd, with Sylow p subgroup P. Assume G acts irreducibly on a n-dimensional vector space over $G F(p)$, such that $n=2 \operatorname{dim} C_{V}(P)$ and P acts semiregularly on $V-C_{V}(P)$. Then $G \cong S L_{2}(q), n=2 m$, and G acts in its natural representation on V.

Proof. Let B be a basis of V, and $G F(r)$ the splitting field for the representation of G on V. Extend the action of G to a vector space W over $G F(r)$ with basis B. W is the sum of k absolutely irreducible G-invariant subspaces W_{i} of W. By inspection of the irreducible representations of $S L_{2}(q)$ (e.g. $\left.\S 30,[7]\right)$, $\operatorname{dim} C_{W_{i}}(P)=1$ for all i. Thus as $n=2 \operatorname{dim} C_{V}(P)$ and P acts semiregularly on $V-C_{V}(P), \operatorname{dim} C_{W_{i}}(P)=$ 2. Again by inspection of the representations of $S L_{2}(q), q=r, G \cong$ $S L_{2}(q)$, and G acts in its natural fashion on W_{1}. Further $G^{W_{i}}, 1 \leqq$ $i \leqq k$, are the m equivalent representations obtained from $G^{W_{i}}$ by Aut $G F(q)$. Thus $n=2 m$ and G acts in its natural fashion on V.

Lemma 3.3. Let D be a class of p-transvections of G, p odd, with $G / O_{\infty}(G) \cong L_{2}(q)$. Let $M=O_{p}(G), A \in D, m=\left|A^{M \mid}\right|$ and $Z=Z(G)$. Assume $O_{\infty}(G) / M=Z(G / M)$. Then for some $B \in D, G=M X$ where $X=$ $\langle A, B\rangle \cong S L_{2}(q), Z=\left[A^{\perp}, M\right] \cap\left[B^{\perp}, M\right], M=[A, M][B, M],|M / Z|=m^{2}$ where $m=\left|A^{M}\right|, Z=C_{M}(x)$ for any p^{\prime}-element of X, and $[M, \beta]$ is transitive on A^{M}.

Proof. As $G / O_{\infty}(G) \cong L_{2}(q)$ there exists $B \in D$ with $X=\langle A, B\rangle \cong$ $L_{2}(q)$ or $S L_{2}(q)$. Let $\alpha=A^{\perp} \cap X$, and $\Omega=\alpha^{X}$. Let $K=\Pi_{\Omega}[M, \beta]$.

By 3.1, $[M, \alpha]$ is elementary abelian, $G=\langle[M, \alpha], X\rangle$ normalizes K and $[A, M / K]=1$. So $M=K$. As $X^{?}$ is doubly transitive, $Z_{0}=$ $[M, \alpha] \cap[M, \beta]=[M, \gamma] \cap[M, \delta]$ for all pairs $(\alpha, \beta),(\lambda, \delta)$ from Ω. So as $[M, \alpha]$ is abelian, $Z_{0} \leqq Z$. Thus we can assume $Z_{0}=1$. Therefore, M is elementary abelian. A is in m groups $\langle A, C\rangle, C \in B^{M I}$, so there are m^{2} total D-subgroups isomorphic to $L_{2}(q)$ or $S L_{2}(q)$. $\operatorname{Set} \bar{G}=G / Z$. $Z=C_{M L}(X)$, so $m^{2} \geqq\left|\bar{X}^{\bar{G}}\right|=|\bar{M}| \geqq|[\bar{M}, \alpha][\bar{M}, \beta]|$. On the other hand $m=\left|A^{\bar{M}}\right| \leqq|[\bar{M}, \alpha]|$, so $m=|[\bar{M}, \alpha]|, \bar{M}=[\bar{M}, \alpha][\bar{M}, \beta]$, and $A^{\bar{M}}=A^{[\bar{M}, \beta]}$. Lemma 3.2 implies $\bar{X} \cong S L_{2}(q)$ and $C_{\bar{M}}(x)=1$ for all p^{\prime}-elements $x \in X$. So it suffices to show $Z=1$. Let $\langle u\rangle=Z(X)$. Then $M=Z[M, u]$, so $D \subseteq X[M, u] \unlhd G$. Thus $Z=1$.

Lemma 3.4. Let D be a class of p-transvections of G, p odd, with $M=O_{p}(G), X$ a D-subgroup with $X / Z(X) \cong U_{3}(q)$, and $G=M X$. Let $Z=Z(G), A \in M$ and $m=|A M|$. Then $Z \leqq\left[A^{\perp}, M\right]$ and $|M / Z|=m^{3}$.

Proof. Let $X=\left\langle A_{i}, 1 \leqq i \leqq 3\right\rangle, A=A_{1}$, let $\alpha_{i}=A_{i} \cap X$ and $\Omega=$ α^{x}. Set $Z_{0}=[\alpha, M] \cap\left[\alpha_{2}, M\right]$. As X^{2} is doubly transitive $Z_{0}=[\beta$, $M] \cap[\gamma, M]$ for $\beta, \gamma \in \Omega .[\alpha, M]$ is abelian so $G=\left\langle X, A^{3}\right\rangle$ centralizes Z_{0}. Thus we can assume $Z_{0}=1$.

Set $N=\Pi_{i=1}^{3}\left[M, \alpha_{i}\right]$. By 3.3, $\left[M, \alpha_{i}\right]^{\alpha_{j}} \leqq\left[M \alpha_{i}\right]\left[M, \alpha_{j}\right]$, so N is normalized by $G=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, M\right\rangle$. A centralizes M / N, so $M=N$. As $Z_{0}=1, M$ is abelian. Let u be the involution in $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ and v the involution in $\left\langle\alpha_{2}, \alpha_{3}\right\rangle$. We may assume $[u, v]=1 . \quad M=C_{M}(u) \times$ $[M, u]$ and by $3.3, C_{M}(u)=C_{M}\left(\alpha_{1}\right) \cap C_{M}\left(\alpha_{2}\right)$ and $[M, u]=\left[M, \alpha_{1}\right]\left[M, \alpha_{2}\right]$. Therefore, $C_{M}(u) \cap C_{M}(v)=Z$ and as X has one class of involutions, $\left|C_{m I}(u) / Z\right|^{3}=|M / \boldsymbol{Z}|=\left|C_{M}(u) / Z\right| m^{2}$. So $|M / \boldsymbol{Z}|=m^{3}$, and as $|M| \leqq m^{3}$, $Z=1$. That is $Z=Z_{0} \leqq[A, M]$.
4. Groups with $\mathscr{O}(D)$ disconnected. This section consists of a proof of the following theorem:

Theorem 4.1. Let D be a conjugacy class of p-transvections, $p \geqq$ 5, of the group G. Assume $\mathscr{D}(D)$ is disconnected and $O_{\infty}(G)=1$. Then $G \cong L_{2}(q)$ or $U_{3}(q)$ for some power q of p.

Throughout § 4, G is a counterexample of minimal order to Theorem 4.1. For $A \in D$ let \bar{A} be the component of $\mathscr{D}(D)$ containing A. Let \bar{D} be the set of components. Write $A \sim B$ if $A, B \in D$ and $\langle A, B\rangle$ is isomorphic to $L_{2}(p)$ or $S L_{2}(p)$. For $\bar{A} \neq \bar{B}$ define

$$
\Gamma_{A \bar{B}}=\{C \in \bar{A}: A \sim E \sim C \text { for some } E \in \bar{B}\}
$$

Now for $\bar{A} \neq \bar{B}, A \sim B$ if and only if $\bar{A} \cup \bar{B}^{A}=\bar{B} \cup \bar{A}^{B}$. Thus if $A \sim$
B then $X=\left\langle\Gamma_{A \bar{B}}, \Gamma_{B \bar{A}}\right\rangle$ acts on $\Gamma=\bar{A} \cup \bar{B}^{s}$ of order $p+1$, so $Y=$ $\left\langle\Gamma_{A \bar{B}}\right\rangle=A Y_{\Gamma}$ and $X=\langle Y, B\rangle=\langle A, B\rangle X_{\Gamma} . \quad$ By 3.1, $X_{\Gamma}=0_{\infty}(X)$ and Y is a p-group. Further for fixed $\bar{B} \neq \bar{A}$, the sets $\Gamma_{C \bar{B}}, C \in \bar{A}$, partition \bar{A}.

Let $m=\left|\Gamma_{A \bar{B}}\right|$, and let n be the number of classes $\Gamma_{C \bar{B}}$ in \bar{A}. If $m>1$ then applying 3.3 to X we have that $\langle A, B\rangle$ contains a central involution $u=u(A, B)$, and u centralizes only A in $\Gamma_{A \bar{B}}$.

Let $C \in \bar{A} . \quad\langle C, B\rangle$ contains $E \in \Gamma_{A \bar{B}}$ and $v=u(E, B)$ is in the center of $\langle C, B\rangle$. Indeed $v=u(C, F)$ where $C \sim F \in \bar{B} \cap\langle C, B\rangle$. As v centralizes a unique member of $\Gamma_{A \bar{B}}$ and $\Gamma_{C \bar{B}}$, each member C_{1} of $\Gamma_{C \bar{B}}$ determines a distinct member E_{1} of $\Gamma_{A \bar{B}} \cap\left\langle C_{1}, B\right\rangle$. Thus $m=\left|\Gamma_{C \bar{B}}\right|$ for all $C \in \bar{A}$. Further $u=u\left(C_{1}, F_{1}\right)$ for some $C_{1} \in \Gamma_{C \bar{B}}, F_{1} \in \Gamma_{F \bar{A}}$. So $C_{D}(u)$ intersects each $\Gamma_{C \bar{B}}$ in \bar{A} in a unique member. Set $K=\left\langle C_{D}(u)\right\rangle$ and $H=\langle K, \bar{A}\rangle$. Minimality of G implies $K \cong S L_{2}(q)$ for some power q of p. So the set Δ of components of $\mathscr{D}(D)$ containing an element of $C_{D}(u)$ has order $q+1$ and $Q=\left\langle C_{\bar{A}}(u)\right\rangle$ acts regularly on $\Delta-\{\bar{A}\}$.

Now there are m^{2} involutions $u\left(A_{1}, B_{1}\right), A_{1} \in \Gamma_{A \bar{B}}, B_{1} \in \Gamma_{B \bar{A}}$, and m^{2} pairs $\left(A_{1}, C_{1}\right), C_{1} \in \Gamma_{C \bar{B}}$, with $u\left(A_{1}, B_{1}\right)$ centralizing at most one pair. It follows there exists u with $A, C \in Q$. So as Q is abelian, $\langle\bar{A}\rangle$ is abelian. Notice that if $m=1$ then $A=\Gamma_{A \bar{B}} \cap\langle C, B\rangle$, so again [A, $C]=1$, and $\langle\bar{A}\rangle$ is abelian. Therefore:

Lemma 4.2. $\langle\bar{A}\rangle$ is abelian.
Let $\langle c\rangle=C \in \bar{A}$. We have shown there is an $\langle e\rangle=E \in C_{\bar{A}}(u) \cap \Gamma_{c \bar{B}}$, and we can choose e such that $\bar{B}^{c}=\bar{B}^{e}$. Thus as $\langle\bar{A}\rangle$ is abelian, $\bar{B}^{2 c}=$ $\bar{B}^{c Q}=\bar{B}^{e Q}=\bar{B}^{2}$, so H acts on $\Delta=\bar{A} \cup \bar{B}^{2}$, and $H=K H_{\Delta}=K O_{p}(H)$ by 3.1.

Summarizing:
Lemma 4.3. (1) If $m>1$ then $\langle A, B\rangle$ contains a central involution u. (2) If $\langle A, B\rangle$ contains a central involution u then $\langle\bar{A}, \bar{B}\rangle=$ $H=\left\langle C_{D}(u)\right\rangle 0_{p}(H)$ with $\left\langle C_{D}(u)\right\rangle \cong S L_{2}(q)$ for some power q of p.

Let $J=N_{G}(\bar{A}), I=C_{G}(\bar{A})$. For $X \subseteq G$ let $F(X)$ be the set of points in \bar{D} fixed by X.

Lemma 4.4. Assume u is an involution in the center of $\langle A, B\rangle$. Then
(i) If v is an involution in the center of $\langle A, C\rangle$ with $[u, v]=1$, then $u=v$.
(ii) $J=O(J) C_{J}(u)$.

Proof. Set $H=\left\langle C_{D}(u)\right\rangle$. Let v be as in (i). Then v acts on H and fixes \bar{A}. There are $q+1$ members of \bar{D} intersecting H, and $q+1$ is even, by 4.3. Thus v fixes a second member $\bar{E} \neq \bar{A}$ of \bar{D}
with $\bar{E} \cap H \neq \varnothing$. As $H \cong S L_{2}(q), v$ centralizes an element E of \bar{E}. Thus $\langle u\rangle=Z(\langle A, E\rangle)=\langle v\rangle$, yielding (i). (i) and Glauberman's Z^{*} theorem imply (ii).

Lemma 4.5. Assume $m(\bar{A}, \bar{B})=1$ with $A \sim B$. Let $x \in\langle A, B\rangle$ fix \bar{A} and \bar{B}. Then
(1) $B=\bar{B}(A)$ is the unique element of \bar{B} with $A \sim B$.
(2) x acts as scalar multiplication in $G F(p)$ on $Q=\langle\bar{A}\rangle$.
(3) Assume $y \in J$ has scalar action on Q and fixes \bar{B}. Then y has the same action on $\langle\bar{B}\rangle$ and if $|x I / I|>2$ then $F(x)=\{\bar{A}, \bar{B}\}$.
(4) If $\langle A, C\rangle \cong L_{2}\left(p^{n}\right)$ or $S L_{2}\left(p^{n}\right), n$ odd, for all $C \in \bar{B}$, then $\langle\bar{A}$, $\bar{B}\rangle \cong L_{2}(q)$ or $S L_{2}(q)$.
(5) If $p=5$ and $\langle A, C\rangle \cong L_{2}\left(p^{n}\right)$ or $S L_{2}\left(p^{n}\right)$, n even, for some $C \in \bar{B}$ then there exists y with $|I y / I|=4$ inducing scalar action on Q and $\langle\bar{B}\rangle$.
(6) $m(\bar{A}, \bar{C})=1$ for all $\bar{C} \neq \bar{A}$.

Proof. (1) is just a restatement of $m(\bar{A}, \bar{B})=1$. Let $C \in \bar{A} .\langle C$, $B\rangle$ contains an element A_{1} of D centralizing C with $A_{1} \sim B$. Thus by (1), $A_{1}=\bar{A}(B)=A$. So $x \in\langle A, B\rangle \leqq\langle C, B\rangle$ and thus has the same action on C as on A. This yields (2). Notice that (2) implies $J=I C_{J}(x)$.

Assume $y \in J$ is as in the hypothesis of (3). Then for $C \in \bar{A}, y$ fixes C and therefore $\bar{B}(C)$. So y acts on $\langle C, B\rangle$ with scalar action on $\bar{B} \cap\langle C, B\rangle$. So y acts on \bar{B} as on \bar{A}.

Assume y has order r^{n} for some prime r, r dividing $p-1$, and $\bar{C} \in F(y)-\{\bar{A}, \bar{B}\}$. Suppose first that $m(\bar{A}, \bar{C})>1$. Then by $4.3, K=$ $\langle\bar{A}, \bar{C}\rangle=H M$ where $H=\left\langle C_{D}(u)\right\rangle, u=u(A, C)$, and $M=O_{p}(K) . \quad y$ fixes A so y fixes $\Gamma_{C \bar{A}}$ for $A \sim C$. As $\left|\Gamma_{C \bar{A}}\right|$ is a power of p and $p \equiv$ $1 \bmod r, x$ fixes a point C of $\Gamma_{C \bar{A}}$. As this holds for each $A \in \bar{A}$, we can assume x normalizes H. Thus with 4.3, $F(y u)=\{\bar{A}, \bar{C}\}$ and $[y$, $u]=1$. Now $J=I C_{J}(y)$, so $[M, y] \leqq M \cap I=[A, M]$ by 3.3. So if y acts by scalar multiplication on \bar{C}, then $[M, y] \leqq[A, M] \cap[C, M]=$ $Z(K)$ by 3.3 , so that y centralizes $M / Z(K)$. But y does not even centralize $[A, M] / Z(K)$. So y does not have scalar action on \bar{C}.

Set $\bar{E}=\bar{B}^{u} . \quad y$ has scalar action on \bar{E} and \bar{B}, so as above $m(\bar{E}$, $\bar{B})=1$. $\langle E, B\rangle \cong S L_{2}(q)$ or $L_{2}(q)$ so there exists an involution t with cycle (\bar{E}, \bar{B}) inverting $y \bmod C(\bar{B})$. Thus $u t \in N(\bar{B})$ inverts $y \bmod C(\bar{B})$, while $N(\bar{B})=C(\bar{B}) C(y)$. So $|y C(\bar{B}) / C(\bar{B})|=|y I / y| \leqq 2$.

Assume $|y I / y|>2$. Then as above $m(\bar{E}, \bar{F})=1$ for all $\bar{E}, \bar{F} \in F(y)$ and $C_{G}(y)$ fixes $F(y)$ pointwise. Now if z is an element centralizing \bar{A}, \bar{B}, and y then $F(z)=\left\langle C_{D}(z)\right\rangle \cap \bar{D}$ and minimality of G implies $F(z) \cap$ $F(y)=\{\bar{A}, \bar{B}\}$. Thus z moves \bar{C}, so $z=1$. Now there exists an involution t with cycle (\bar{A}, \bar{B}) inverting y modulo $C(\bar{A}) \cap C(\bar{B})$. Thus $y^{t}=$ y^{-1}. Similarly there exists s with cycle (\bar{B}, \bar{C}) inverting y. So ts
moves \bar{A} to \bar{C} and centralizes y, a contradiction. Thus we have shown (3).

Assume the hypothesis of (4). Let $E \in \bar{A}$, and $C=\bar{B}(E)$. Then for $\alpha \in Q^{\sharp} \cap\langle A, C\rangle,\langle a\rangle \in \bar{A}$. So $\bar{A}=\left\{\langle a\rangle: a \in Q^{\sharp}\right\}$. Let $\Delta=\bar{A} \cup \bar{B}^{2}$. Clearly Q normalizes Δ. Further for $E=\langle e\rangle \in \bar{A}, \bar{B}^{e B} \subseteq \bar{A} \cup \bar{B}^{\langle E, B\rangle \cap)}$, so as $\bar{A}=\left\{\langle a\rangle: a \in Q^{*}\right\}, B$ normalizes Δ. Thus $X=\langle\bar{A}, \bar{B}\rangle$ normalizes 4. Further X^{s} is 2 -transitive with $Q^{s} \unlhd X_{A}^{A}$ and regular on $\Delta-\{\bar{A}\}$. Therefore, a result [11] of Kantor and Seitz implies $X^{s} \cong L_{2}(q)$. This yields (4).

Assume the hypothesis of (5). Then there exists $y \in\langle A, C\rangle$ with $|y I / I|=4$ inducing scalar action on $Q \cap\langle A, C\rangle$ and $\langle\bar{B}\rangle \cap\langle A, C\rangle$. By (2), $x=y^{2}$ inverts Q and $\langle\bar{B}\rangle$, so orbits of x on \bar{A} have order at most two. Suppose (A_{1}, A_{2}) is such an orbit. Let $B_{2}=\bar{B}\left(A_{2}\right)$ and set $X=$ $\left\langle A_{1}, B_{2}\right\rangle$. Then y normalizes X with x inverting $Q \cap X$, so y induces scalar action on $Q \cap X$ and fixes A_{1}, a contradiction. Thus y fixes \bar{A} pointwise and induces scalar action on Q. This yields (5).

It remains to show (6). Assume $m(\bar{A}, \bar{C})>1$ and let $u=u(A, C)$. By 4.4, $J=0(J) C_{J}(u)$. As $J=I C_{J}(y),[u, y] \leqq 0(I)$. Thus some conjugate v of u centralizes y. Now if $p>5$ or $p=5$ and $\langle A, E\rangle \cong L_{2}\left(5^{n}\right)$ or $S L_{2}\left(5^{n}\right), n$ even, for some $E \in \bar{B}$, then we can choose y with $|I y / I|>2$. So by (3), $F(y)=\{\bar{A}, \bar{B}\}$. As $[v, y]=1$ and v fixes \bar{A}, v fixes \bar{B}. So v centralizes some $B \in \bar{B}$, and by 4.3 , as $m(\bar{A}, \bar{B})=1, v \in I$. But this is impossible as $u \notin I$.

It follows from (4) that $\langle\bar{A}, \bar{B}\rangle \cong L_{2}(q)$ or $S L_{2}(q)$ with $q=p^{n}, n$ odd. So $\bar{A}=\left\{\langle a\rangle: a \in Q^{*}\right\}$. But by 4.3, $\langle\bar{A}, \bar{C}\rangle=H=\left\langle C_{D}(u)\right\rangle O_{p}(H)$ with $O_{p}(H) \neq Z(H)$. Thus there exists $a \in Q^{*} \cap O_{p}(H)$ with $\langle a\rangle \notin \bar{A}$, a contradiction.

Lemma 4.6. $m(\bar{A}, \bar{B})=1$ for all $\bar{B} \neq \bar{A}$.
Proof. Assume not. Then by 4.5.6, $m(\bar{A}, \bar{B})>1$ for all $\bar{B} \neq \bar{A}$. Let $u=u(A, B), v=u(A, C)$. By 4.4, u is conjugate to v under J, so J takes \bar{C} to a point of $F(u)$. But by 4.3 and 4.4, $C_{G}(u)^{F(u)}$ is 2-transitive. Thus J is transitive on $\bar{D}-\{\bar{A}\}$. Let $K=\langle\bar{A}, \bar{B}\rangle, H=$ $\left\langle C_{D}(u)\right\rangle$ and $M=O_{p}(K)$. Let $\Omega=\bigcup_{K \cap J} C_{Q}\left(u^{k}\right)$. Suppose $w \in u^{J}$ inverts $1 \neq x \in \Omega$. Then $w u^{k}$ inverts x while by 4.4, $w u^{k}$ has odd order. So $X=\left[Q, u^{J}\right] \leqq\langle Q-\Omega\rangle \leqq M \cap Q$ by 3.3. But $X \unlhd J, J$ is transitive on $\bar{D}-\{\bar{A}\}$ and $M \cap Q$ fixes \bar{B}, so X fixes \bar{D} pointwise, contradicting 3.1.5.

Lemma 4.7. (1) There exists a prime r such that for all $\bar{B} \neq \bar{A}$, $J=I N_{L}(R)$ for some r-group with $F(R)=\{\bar{A}, \bar{B}\}$.
(2) $G^{\bar{D}}$ is doubly transitive.

Proof. (1) implies that there exists a prime r such that for any $\bar{B} \neq \bar{A}$, a Sylow r-subgroup of $G_{\bar{A} \bar{B}}$ fixes only two points. This implies $G^{\bar{\nu}}$ is doubly transitive. So it suffices to proof (1). But unless $p=5$ there exists a prime r dividing $p-1$ and an r-element $y \in\langle A, B\rangle$ fixing \bar{A} and \bar{B} with $|I y / I|>2$. So 4.5 implies (1) unless $p=5$ and $\langle\bar{A}, \bar{B}\rangle=H \cong L_{2}\left(5^{n}\right)$ or $S L_{2}\left(5^{n}\right)$, n odd. As $5^{n}=|Q|=|\langle\bar{A}\rangle|$, this holds for all $\bar{B} \neq \bar{A}$.

Suppose u is an involution in I and let (\bar{C}, \bar{E}) be a cycle in u and $X=\langle\bar{C}, \bar{E}\rangle$. As u does not centralize X, u acts fixed point free on $X \cap \bar{D}$, so as n is odd, u induces an outer automorphism in $P G L_{2}\left(5^{n}\right)$ on X, and thus there exists a 2-element $y \in X$ inducing scalar action in $G F(5)$ on $\langle\bar{C}\rangle$ and $\langle\bar{E}\rangle$ with y^{2} not centralizing $\langle\bar{C}\rangle$. Thus by 4.5, $|F(y)|=2$, so $|\bar{D}|=m$ is even.

Assume m is odd. Then I has odd order. Let x be the involution in $\langle A, B\rangle \cap J$. By 4.5, $J=I C_{J}(x)$. But as m is odd J contains a Sylow 2 -subgroup of G, so the Z^{*}-theorem contradicts $O_{\infty}(G)=1$. Therefore, m is even.

If a Sylow 2-subgroup of $G_{\bar{A} \bar{B}}$ fixes exactly two points for every $\bar{B} \neq \bar{A}$, then G^{D} is doubly transitive. So choose \bar{B} such that a Sylow group of $G_{\overline{A B}}$ fixes more than two points. Then $H=\langle\bar{A}, \bar{B}\rangle \cong L_{2}\left(5^{n}\right)$, $C_{J}(H)$ has odd order and the involution $x \in H_{\overline{A B}}$ fixes three or more points. Suppose $y^{2}=x$ for some $y \in G$. If (\bar{C}, \bar{E}) is a cycle of y in $F(x)$ then y normalizes $X=\langle\bar{C}, \bar{E}\rangle$ so as $y^{2}=x$ and n is odd, y fixes two points in $X \cap \bar{D}$, which must be \bar{C} and \bar{E}. This is a contradiction, so x is not rooted in this manner.

Suppose I has odd order. Then by $4.5, J=I C_{J}(y)$ for any involution $y \in\langle\bar{A}, \bar{C}\rangle$ and any $\bar{C} \neq \bar{A}$. So $y \in x^{I}$. Let u be an involution. We may assume u has cycle (\bar{A}, \bar{B}). So u normalizes H, and as I has odd order and x is not rooted in $\langle u, H\rangle, u \in H$. Thus $u \in x^{G}$. Thus G has one class of involutions, so as x is not rooted, a Sylow 2 -subgroup of G is elementary abelian. Walter's classification of such groups [13] implies $G \cong L_{2}\left(5^{n}\right)$, a contradiction. So I has even order. Thus x centralizes some involution $u \in I$; as $|\bar{D}|$ is even, there exists $\bar{R} \in F(x) \cap F(u)-$ $\{\bar{A}\}$; minimality of G implies $\left\langle C_{\bar{L}}(u)\right\rangle \cong L_{2}\left(5^{n}\right), S L_{2}\left(5^{n}\right)$ or $U_{3}\left(5^{n}\right)$, so $F(x) \cap F(u)=\{\bar{A}, \bar{R}\}$.

Consider $C_{G}(x)^{F(x)}$. Arguments such as in 4.5.3 and in the last paragraph show that nontrivial elements of $C(x)^{F(x)}$ fix at most two points. Let (\bar{C}, \bar{E}) be a cycle of u in $F(x)$. We have shown x is rooted modulo $C(\bar{C}) \cap C(\bar{E})$, while x is not rooted. So $C(\bar{C}) \cap C(\bar{E})$ has even order and there exists an involution $v \in C(x)^{F(x)}$, fixing \bar{C} and \bar{E}, and centralizing $u . \quad v$ acts on $F(x) \cap F(u)=\{\bar{A}, \bar{R}\}$. Let $L=C_{\overline{A R}(x)} . \quad L$ acts semiregularly on $F(x)-\{\bar{A}, \bar{R}\}$ and $C_{L}(v)$ acts on $F(v) \cap F(x)=$ $\{\bar{C}, \bar{E}\}$, so $\langle v\rangle=C_{L}(u)$. So a Sylow 2-subgroup S of $\langle L, v\rangle=L^{*}$ is semidihedral or dihedral, and there are one or two classes of involu-
tions in $L^{*}-L$, respectively. But if $\bar{T} \in F(x)-\{\bar{A}, \bar{R}\}$ let t be the involution in $C(x)^{F(x)}$ fixing \bar{T} and \bar{T}^{u} and centralizing u. Then $t \in$ $v_{i}^{L}, i=1$ or 2 , one of the (at most) two classes of involutions in L^{*} L. So L takes $F(t) \cap F(x)=\left\{\bar{T}, T^{u}\right\}$ to $F(x) \cap F\left(v_{i}\right)$. Thus L has one orbit, or two orbits of equal length, on $F(x)-\{\bar{A}, \bar{R}\}$, for S semidihedral or dihedral, respectively. It now follows easily that $C(x)^{F(x)}$ is 2transitive. But J and therefore $C_{J}(x)$ cannot take \bar{B} to \bar{R} as there is no involution in I fixing \bar{B}. This last contradiction completes the proof of 4.7.

Set $L=G_{\bar{A} \bar{B}}, H=\langle\bar{A}, \bar{B}\rangle, K=C_{G}(H)$, and $Q=\langle\bar{A}\rangle$.
Lemma 4.8. (1) $J=I L$ and $K \neq 1$.
(2) $H \cong L_{2}(q)$ or $S L_{2}(q)$.

Proof. By 4.7.1 there exists a prime r such that a Sylow r subgroup R of L fixes only \bar{A} and \bar{B}, and $J=I N_{J}(R) . \quad N_{J}(R)$ acts on $F(R)=\{\bar{A}, \bar{B}\}$; so $N_{J}(R) \leqq L$. If $K=I \cap L=1$ then I is regular on $\bar{D}-\{\bar{A}\}$ by 4.7.2, so [11] implies $G \cong L_{2}(q)$ or $U_{3}(q)$. Thus $K \neq 1$. Minimality of G implies $H=\left\langle C_{D}(K)\right\rangle \cong S L_{2}(q)$ or $L_{2}(q)$.

Lemma 4.9. Suppose $x \in L^{\sharp}$ with $\left|C_{Q}(x)\right|=q_{0}>1$. Then $\left\langle C_{D}(x)\right\rangle \cong$ $L_{2}\left(q_{0}\right), S L_{2}\left(q_{0}\right)$ or $U_{3}\left(q_{0}\right)$ and $|F(x)|=q_{0}+1$ or $q_{0}^{3}+1$.

Proof. Minimality of G yields the desired form for $\left\langle C_{D}(x)\right\rangle$. If $\bar{C} \in F(x)$ then $[x, C]=1$ where $C=\bar{C}(A), A \in C_{\bar{A}}(x)$. Thus $|F(x)|=q_{0}+$ 1 or $q_{0}^{3}+1$.

Lemma 4.10. Set $n=|\bar{D}| . \quad$ Then $(n-1,|K|)$ is a power of p.
Proof. Let r be a prime divisor of $|K|$, and R a Sylow r-subgroup of K. By 4.9, $F(R)=q+1$ or $q^{3}+1$, so if $r \neq p$ then a Sylow r subgroup R_{1} of $N_{I}(R)$ fixes a second point \bar{B} of $F(R)$; that is $R_{1}=R$. So R is Sylow in I and r does not divide $n-1=|I: K|$.

Lemma 4.11. $\mid \bar{D}\}=n$ is even. If u is an involution then $n \equiv$ $|F(u)| \bmod 4 . \quad|L|$ is even.

Proof. Results of Bender on doubly transitive groups [5.6] imply L has even order. By 3.1, G is simple, so any involution u must act as an even permutation on \bar{D}. Thus $n \equiv|F(u)| \bmod 4$. If n is odd, 2-elements fix an odd number of points. So by 4.8 and $4.9,|K|$ and $|L / H K|$ are odd. And by 4.5.3, $|H \cap L| \neq 0 \bmod 4$. As L has even order, $|H \cap L| \equiv|L| \equiv 2 \bmod 4$. Thus $p \equiv q \equiv 5 \bmod 8$. Let u be the involution in $H \cap L$, and S a u-invariant Sylow 2-subgroup of I. As
n is odd and $J=I L, S\langle u\rangle$ is Sylow in G. As G has no subgroup of index two, $S \neq 1$. Let s be an involution in S, and (\bar{B}, \bar{C}) a cycle in s. Then s normalizes $X=\langle\bar{B}, \bar{C}\rangle$ and as $|F(s)|=1$, s acts fixed point free on $\bar{D} \cap X$. So as $p \equiv q \equiv 5 \bmod 8,\langle s, X\rangle \cong P G L_{2}(q)$ and there exists $y \in\langle s, X\rangle$ of order 4 inducing scalar multiplication on $\langle\bar{B}\rangle$ and fixing \bar{B} and \bar{C}. By 4.5.3, $|F(y)|=2$, contradicting n odd.

Lemma 4.12. If $J=O(I) L$ then $J=O_{\pi}(I) L$, where π is the set of primes dividing $n-1$. Also $O_{p}(K) \neq 1$, and $O_{\pi}(I)$ is not nilpotent.

Proof. Set $P=O_{\pi}(I)$. If $P \neq O(I)$ let R / P be minimal normal in $J / P, R<O(I) . R / P$ is an r-group for some prime r and by a Frattini argument, $J=P N_{J}\left(R_{1}\right)$ where R_{1} is a Sylow r-subgroup of R contained in K. By $4.9, N_{J}\left(R_{1}\right)=L P_{1}$ where $\left|P_{1}\right|=q$ or q^{3}, and $P_{1} \unlhd N_{J}\left(R_{1}\right)$. Thus $P P_{1} \unlhd J$, so $P_{1} \leqq P$ and $J=P L$. Results of Kantor and Seitz on doubly transitive groups [11, 12] imply P is not nilpotent or regular on $\bar{D}-\{\bar{A}\}$. Thus $1 \neq P \cap L=P \cap K=O_{p}(K)$ by 4.10.

Lemma 4.13. Let $X \subseteq L$ fix 3 or more points of \bar{D}. Then $C_{G}(X)^{F(X)}$ is doubly transitive.

Proof. It suffices to show there exists a prime r such that a Sylow r-subgroup of $C_{L}(X)$ fixes only \bar{A} and \bar{B}. Thus with 4.5 we can assume $q=5^{m}$ with $m>1$ odd. Thus there is an r-element $1 \neq$ $y \in H \cap L, r>2$, and as m is odd y is not inverted in J / I by 4.8. Thus arguing as in $4.5, F(y)=\langle\bar{A}, \bar{B}\rangle . \quad[y, X]=1$ unless $C_{Q}(X) \neq 1$, in which case 4.9 implies $C_{G}(X)^{F(X)}$ is doubly transitive.

Lemma 4.14. Assume $q \equiv-1 \bmod 4$ and x is an involution in L inverting Q with $|F(x)|>2$. Then $|F(x)|=q+1$.

Proof. As $q \equiv-1 \bmod 4, q$ is an odd power of p, so no element in $H \cap L$ is inverted in J / I. Thus if $y \in H \cap L$ with $|y|>2$ then $|F(y)|=2$. Therefore, with 4.9 and 4.13, $C_{G}(x)^{F(x)}$ is a Zaussenhaus group. So $C_{G}(x)^{F(x)}$ has a normal subgroup isomorphic to $L_{2}(m)$, of index at most two, with $|F(x)|=m+1$. Now if $m \equiv 1 \bmod 4$ then by 4.9 and $4.11, K$ has odd order, and $\langle x\rangle$ is Sylow in L, so that $\left|C_{L}(x)^{F(x)}\right|$ is odd, contradicting $m \equiv 1 \bmod 4$. So $m \equiv-1 \bmod 4$. Thus $C_{L}(x)^{F(x)}$ is cyclic and inverted by any $t \in C_{G}(x)$ with cycle (\bar{A}, \bar{B}). As we can choose $t \in H$, and $[K, t]=1$, it follows that $\left|C_{K}(x)\right|=\varepsilon \leqq 2$. Further $\varepsilon(m-1) / 2=\left|C_{L}(x)^{F(x)}\right|=\varepsilon|H \cap L|=\varepsilon(q-1) / 2$, so $m=q$.

Lemma 4.15. Suppose u is an involution in $Z^{*}(L)$ fixing 3 or more points. Then $u \in Z^{*}(J)$.

Proof. $u \in Z^{*}(L)$ so $u^{L} \cap C_{L}(u)=\{u\}$. Now 4.13 implies $u^{G} \cap L=u^{L}$. Further as $|\bar{D}|$ is even, if v is a conjugate of u in J centralizing u then we can assume $v \in L$, so $v \in u^{G} \cap C_{L}(u)=u^{L} \cap C_{L}(u)=\{u\}$. Thus by the Z^{*}-theorem, $u \in Z^{*}(J)$.

Lemma 4.16. If $H \cong L_{2}(q)$ then $H \cap \bar{D}=F(X)$ for any $1 \neq X \leqq K$.
Proof. If $F(X) \neq H \cap \bar{D}$ then by 4.9, $H \leqq\left\langle C_{D}(X)\right\rangle \cong U_{3}(q)$, so $H \cong S L_{2}(q)$.

Lemma 4.17. Assume u is an involution in L fixing $m+1 \geqq 3$ points, let $c=\left|L: C_{L}(u)\right|$ and let e be the number of conjugates of u with cycle (\bar{A}, \bar{B}). Then $|D|-1=m(m+1) e / c+m$.

Proof. Let Ω be the set of pairs (v, α) where $v \in u^{G}$ and α is a cycle in v. Then $\left|u^{G}\right|(n-m-1) / 2=|\Omega|=n(n-1) e / 2$ where $n=|\bar{D}|$. Further by 4.13, $\left|u^{G}\right|=n(n-1) c / m(m+1)$.

Lemma 4.18. (1) Let S be a 2-group such that $C_{Q}(S) \neq 1$. Then S has rank at most one.
(2) $J=O(I) L$.

Proof. Suppose $1 \neq\langle u\rangle=H \cap L$. Then by 4.15, $u \in Z^{*}(I)$, so $J=O(I) L$. Define $P=O_{\pi}(I)$ as in 4.12, and assume S has 2-rank at least two. Then $P=\Pi_{s \sharp} C_{P}(s)$, while by $4.9, C_{P}(s)$ is a p-group for $s \in S^{\ddagger}$. Thus P is a p-group, contradicting 4.12.

So $H \cap L=1$ and by $4.16, N_{I}(H)=Q K$ is strongly embedded in I. As $Q \leqq O(I)$ and $[K, H \cap L]=1$, Bender's classification of groups with a strongly embedded subgroup [6] implies $J=O(I) N_{J}(H \cap L)$. By 4.5, augmented by arguments such as in 4.13 for the case $q=5^{m}$, m odd, $N_{J}(H \cap L)=L$. Now arguing as above, S has 2 -rank at most one.

Define $P=O_{\pi}(I)$ as in 4.12. Set $P_{0}=O_{p}(K) . \quad P_{0} \neq 1$ by 4.12 and 4.18.

LEMMA 4.19. (1) $F(X)=H \cap \bar{D}$ for $1 \neq X \leqq P_{0}$.
(2) $H \cap K=1$.
(3) Assume u is an involution in K and let $v \in u^{G}$ have cycle (\bar{A}, \bar{B}). Let P_{1} be $a\langle u, v\rangle$ invariant Sylow p-group of $O(K)$. Then $\left[v, P_{1}\right]=P_{1}$ and $\left[u, P_{1}\right] \neq 1$.

Proof. Assume $1 \neq X \leqq P_{0}$ with $F(X) \neq H \cap D$. Then $Y=$ $\left\langle C_{D}(X)\right\rangle \cong U_{3}(q)$ by 4.9. So $H \cap K=\langle u\rangle \neq 1$. Further as $N_{K}(X)^{F(X)}$ is a p^{\prime}-group, $X=P_{0}$. Let (\bar{C}, \bar{E}) be a cycle in u and $v \in u^{G}$ fix \bar{C} and \bar{E}. Then $[u, v]=1$ so v acts on $\left\langle C_{D}(u)\right\rangle=H$ and thus also on P_{0}.
v induces an automorphism on $Y \cong U_{3}(q)$ and therefore fixes points $\bar{A}_{i} \in F\left(P_{0}\right)$. So $\bar{C} \in\left\langle\bar{A}_{1}, \bar{A}_{2}\right\rangle \leqq Y$ and therefore $F\left(P_{0}\right)=\bar{D}$, a contradiction. This yields (1).

Assume $1 \neq\langle u\rangle=H \cap K$. Then in particular $\left[u, P_{0}\right]=1$. Let $v \in u^{G}$ have cycle $(\bar{A}, \bar{B}) . \quad v$ acts on P_{0} and $F(v) \cap F(x)=F(v) \cap F(u)=$ \varnothing for $x \in P_{0}^{\sharp}$. Thus $C_{P_{0}}(v)$ acts fixed point free on $F(v)$ of order $q+$ 1, so $C_{P_{0}}(v)=1$. Define e and c as in 4.17. It follows that $c=1$ and $e \equiv 0 \bmod p . \quad$ So by 4.17, $|\bar{D}|-1=q[(q+1) e / c+1] \equiv q \bmod p q$. So $P_{0} Q$ is Sylow in P and u centralizes $P_{0} Q$, and inverts a Hall p^{\prime}-group P_{1} of P. Thus $P=P_{1} \times\left(P_{0} Q\right)$ is nilpotent, contradicting 4.12. This yields (2).

Assume the hypothesis of (3) and define c and e as in 4.17. Arguing as above, $\left[v, P_{1}\right]=P_{1}$, so p divides e. By $4.18, L=O(K) C_{L}(u)$, so if $\left[P_{1}, u\right]=1$, then p does not divide c. But then arguing as above we have a contradiction.

Lemma 4.20. $q \equiv 1 \bmod 4$.

Proof. Assume $q \equiv-1 \bmod 4$. By 4.9, 4.10, and 4.14, $C_{P}(x)$ is a p-group for any involution $x \in L$, while by $4.12, P$ is not a p-group. Thus L has 2 -rank one. Suppose K has odd order. By 4.11, L has even order so there exists an involution $x \in L$ and $\langle x\rangle$ is Sylow in J. If $|F(x)|=2$, then by 4.11, $n=|\bar{D}| \equiv 2 \bmod 4$, and [2] implies $G \cong$ $L_{2}(q)$. Thus by $4.14,|F(x)|=q+1$. Let v be a conjugate of x with cycle (\bar{A}, \bar{B}). We may choose $v=t$ or $t x$ where $t \in H$. By 4.16, $F\left(P_{0}\right)=$ $H \cap \bar{D}$, so $\left|F\left(P_{0}\right) \cap F(v)\right|=0$ or 2. Thus if $C_{P_{0}}(v) \neq 1$ then $1 \equiv q+$ $1=|F(x)| \equiv 0$ or $2 \bmod p$, so v inverts P_{0}. Thus $v=t x$, and x inverts P_{0}. Define e and c as in 4.17. Then $e=(q-1) c / 2$, so by 4.17, $n-$ $1=q\left(q^{2}+1\right) / 2$. In particular $Q P_{0}$ is Sylow in P and inverted by x. As $|F(x)|=q+1, x$ inverts an x-invariant Sylow r-subgroup of P for $r \neq P$, with 4.10. Thus x inverts P, and P is abelian, contradicting 4.12.

So K contains an involution u. Let $v \in u^{G}$ have cycle (\bar{A}, \bar{B}), with [$v, u]=1$. As $H \cap K=1$ and v acts fixed point free on $F(u)=H \cap$ $\bar{D}, v=t$ or $u t$ where $t \in H$. By $4.19\left[v, P_{0}\right] \neq 1$, so $v=u t$. Thus defining e and c as in 4.17, $e=(q-1) c / 2$, so by $4.17, n-1=q[(q+$ 1) $e / c+1]=q\left(q^{2}+1\right) / 2$. Let R be a $\langle u\rangle(H \cap L)$ invariant r-Sylow group of P, where $r \neq p$. Then $\langle u\rangle(H \cap L)$ acts semiregularly on R, $|R|>q$. As a p^{\prime}-Hall group of P has order $\left(q^{2}+1\right) / 2,\left(q^{2}+1\right) / 2$ is a prime power. Thus q is a prime (e.g. Lemma 3.1, [1]). P_{0} acts semiregularly on $\bar{D}-F\left(P_{0}\right)$ of order $q\left(q^{2}+1\right) / 2-q=q\left(q^{2}-1\right) 2$, so $\left|P_{0}\right|=$ q. Thus $Q=C_{P}(u) \leqq Z(P)$, or $[P, u]$ is a Hall p^{\prime}-group of P. In either event P is nilpotent, contradicting 4.12.

Lemma 4.21. $|K|$ is odd.

Proof. Assume K has even order and let u be an involution in K and v a conjugate of u, centralizing u, with cycle (\bar{A}, \bar{B}). By 4.1, $\left[v, P_{1}\right]=P_{1}$ and $\left[u, P_{1}\right] \neq 1 . \quad$ So $C_{P_{1}}(u v) \neq 1,|F(u v)| \equiv 0 \bmod p$ and $u v \notin u^{G}$. So by 4.11 and 4.18, $u v \in x^{G}$ or $(u x)^{G}$ where $x \in H$. Now $\left[x, P_{0}\right]=1$ so $|F(x)| \equiv 2 \bmod p$. Thus $u v \in(u x)^{G}$ and as $|F(u v)| \equiv 0$ $\bmod p$ and $\left|F\left(P_{0}\right) \cap F(u x)\right|=2, C_{P_{0}}(u x)=C_{P_{0}}(u)=1$. So $Q=C_{P}(u)$, yielding a contradiction as in 4.20.

Lemma 4.22. L has 2-rank one.

Proof. Assume not. Then as $|K|$ is odd by 4.21, there exists an involution $x \in H \cap L$ and an involution $u \in L$ with $\left|C_{Q}(u)\right|=r, q=r^{2}$, and $Q=C_{Q}(u) \times C_{Q}(u x)$. Notice $P=C_{P}(x) C_{P}(u) C_{P}(u x)=C_{P}(x) Q$. Set $m+1=|F(x)|$. As P_{0} acts semi-regularly on $F(x)-\{\bar{A}, \bar{B}\}, m \equiv 1$ $\bmod p$. Let P_{2} be a subgroup of $C_{P}(x)$ maximal with respect to being normal in $C_{J}(x)$ and semiregular on $F(x)-\{\bar{A}\}$. Let M / P_{2} be a minimal subgroup of $C_{J}(x) / P_{2}$ contained in $C_{P}(x)$. By $4.10, M / P_{2}$ is a p-group and as P_{2} is semi-regular on $F(x)-\{\bar{A}\}$ of order $m \equiv 1 \bmod p, P_{2}$ is a p^{\prime}-group. Thus $M=P_{2}\left(P_{0} \cap M\right)=P_{2} M_{0}$ and $C_{J}(x)=P_{2}\left(N\left(M_{0}\right) \cap\right.$ $\left.C_{J}(x)\right)=P_{2} C_{L}(x)$ as $F(x) \cap F\left(M_{0}\right)=\{\bar{A}, \bar{B}\} . \quad$ So $\left|P_{2}\right|=m \quad$ and $\quad P_{2} \leqq$ $Q C_{P}(x)=P$. Thus $P_{2} Q$ is regular on $\bar{D}-\{\bar{A}\}$. As u inverts $P_{2}, P_{2} Q$ is nilpotent and thus contained in Fit (P), the Fitting subgroup of P. So Fit (P) is transitive on $\bar{D}-\{\bar{A}\}$ and nilpotent, contradicting 4.12.

Lemma 4.23. $|\bar{D}| \equiv 2 \bmod 4$.
Proof. Assume not. Let x be the involution in $H \cap L$. By 4.11, $|F(x)| \equiv 0 \bmod 4$. As in 4.14, $C_{G}(x)^{F(x)}$ is a Zassenhaus group and t inverts $L^{F(x)}$ where $t \in H$ has cycle (\bar{A}, \bar{B}). But $\left[t, P_{0}\right]=1$ and $P_{0} \cong$ $P_{0}^{F(x)}$, a contradiction.
4.22 and 4.23 together with [2] imply $G \cong L_{2}(q)$ or $U_{3}(q)$. Thus the proof of Theorem 4.1 is complete.

5. Examples.

Hypothesis 5.1. Let V be a $2 m$ dimensional space over $G F(q), q$ a power of the odd prime p, with nondegenerate skew symmetric bilinear form (,). For $u \in V^{\#}$ the transvection u^{*} determined by u is the map

$$
u^{*}:\langle x\rangle \longrightarrow\langle x+(x, u) u\rangle
$$

considered as a projective transformation of V. Let $D=\left\{\left\langle u^{*}\right\rangle: u \in V^{*}\right\}$ and $G=\langle D\rangle$.
G is the $2 m$ dimensional projective symplectic group $S P_{2 m}(q)$ over $G F(q)$.

Lemma 5.2. Assume hypothesis 5.1. Let $A=\left\langle a^{*}\right\rangle$ and $B=\left\langle b^{*}\right\rangle$ lie in D with $[A, B] \neq 1$. Set $L=\left\langle D_{A} \cap D_{B}\right\rangle$. Then
(1) D is a class of p-transvections of G.
(2) $L / Z(L) \cong S P_{2 m-2}(q)$ for $m>1$.

Proof. Let $\left\langle c^{*}\right\rangle=C \in D$. Then $[A, C]=1$ if and only if $(a, c)=$ 0 . So (,) restricted to $\langle a, b\rangle$ is a nondegenerate skew symmetric bilinear form and therefore $\langle A, B\rangle$ is a homomorphic image of a subgroup of $S L_{2}(q)$. This yields (1). Similarly L acts as a symplectic group on $\langle a, b\rangle^{\perp}$ yielding (2).

Hypothesis 5.3. Let V be a n-dimensional vector space over $G F\left(q^{2}\right)$ with nondegenerate semibilinear form (,). For nonsingular vector u let u^{*} be the transvection determined by u considered as a projective transformation of V. Let $D=\left\{u^{*}:(u, u)=0\right\}$, and $G=\langle D\rangle$.
G is the n dimensional projective special unitary groups, $U_{n}(q)$.
Lemma 5.4. Assume hypothesis 5.3. Let $A=\left\langle a^{*}\right\rangle$ and $B=\left\langle b^{*}\right\rangle$ lie in D with $[A, B] \neq 1$. Set $L=\left\langle D_{A} \cap D_{B}\right\rangle$ then
(1) D is a class of p-transvections of G.
(2) $L / Z(L) \cong U_{n-2}(q)$ for $n \geqq 4$.
(3) G contains a unique class of D-subgroups K^{G} with $K / Z(K) \cong$ $U_{n-1}(q)$.

Proof. The proofs of (1) and (2) are as in 5.2. Assume K is a D-subgroup of G with $K / Z(K) \cong U_{n-1}(q)$. As [$\left.a^{*}, c^{*}\right]=1$ if and only if $(a, c)=0,\left\langle u:\left\langle u^{*}\right\rangle \in K \cap D\right\rangle$ is a nonsingular hyperplane of V preserved by K. As G is transitive on such hyperplanes, (3) follows.
6. Proof of main theorem. For the remainder of this paper G is a counter example of minimal order to the main theorem. Lemma 3.1 implies:

Lemma 6.1. G is simple.
Theorem 4.1 implies:

Lemma 6.2. $\mathscr{D}(D)$ is connected.
Let $A \in D$. By 2.4, A is contained in a unique maximal set of imprimitivity α of G^{D}. Set $H=\left\langle D_{\alpha}\right\rangle, M=O_{\infty}(H)$, and $\Omega=\alpha^{G}$. By 2.4, H is D_{α}^{*}-simple. Minimality of G implies $H / M \cong S p_{n}(q)$ or $U_{n}(q)$, for some power q of p.

Lemma 6.3. Let $\beta \in D_{\alpha}, \gamma \in D_{\beta} \cap A_{\alpha}$. Set $\Gamma=D_{\alpha} \cap D_{\gamma}$ and $L=$ $\langle\Gamma\rangle$. Then $L M=H, M \neq Z(H)$ and $\alpha * \beta=\{\alpha\} \cup \beta^{M}$.

Proof. Let $B \in \beta$. $H / M \cong S p_{n}(q)$ or $U_{n}(q)$ has $V_{B M / M}$ as a set of imprimitivity on $D_{\alpha}^{*} M / M$, so $\langle\beta\rangle$ is abelian. Set $K=\left\langle D_{\beta} \cap \Gamma\right\rangle, H_{1}=$ $\left\langle D_{\beta}\right\rangle$, and $M_{1}=O_{\infty}\left(H_{1}\right)$.

Assume $n \geqq 4$. Then by 5.2 and $5.4, K M_{1} / M_{1} \cong U_{n-2}(q)$ or $S p_{n-2}(q)$. Suppose L is not D-simple. Then by 2.1, L is the central product of two D-subgroups L_{i}. Let $B \in L_{1} . \quad K$ is D-simple, so $K=L_{2}$. Thus $\beta=B^{\perp} \cap L_{1}$, so $\mathscr{D}\left(L_{i} \cap D\right)$ is disconnected. Thus $L / O_{\infty}(L) \cong L_{2}(q) \times$ $L_{2}(q)$ or $U_{3}(q) \times U_{3}(q)$. As $U_{5}(q)$ contains no D-subgroup of the latter type, that case is eliminated. As $\beta=B^{\perp} \cap L_{1}, \beta=B^{\perp} \cap D_{\alpha}^{*}$. Now let $C \in \gamma$ with $X=\langle A, C\rangle \cong S L_{2}(q)$, and $x \in X$ fix α and γ with $|x| \geqq 4$. x centralizes L and normalizes H. Suppose $L \neq\left\langle C_{D_{\alpha}^{*}}^{*}(x)\right\rangle=Y$. Then there exists $\delta \in A_{r} \cap Y$. Minimality of G implies $\mathscr{D}(Y \cap D)$ is connected so we can choose $\delta \in D_{\sigma}$ for some $\sigma \subseteq L$. Let $Z=\langle\lambda, \delta\rangle$. As $\gamma, \delta \in$ $D_{o}, Z / O_{p}(Z) \cong S L_{2}(q)$. So as $[x, \delta]=1$, we get $[x, \lambda]=1$, a contradiction. So $L=Y$ and as x induces an automorphism on $H / M \cong S p_{4}(q)$ or $U_{4}(q)$ with $Y / O_{\infty}(Y) \cong L_{2}(q) \times L_{2}(q)$, this automorphism has order two. As $|x|>2,1 \neq x^{2}$ centralizes H / M. As $\left[x^{2}, B^{\perp} \cap D_{\alpha}^{*}\right]=1$, $\left[H, x^{2}\right]$, so $\left\langle x^{2}\right\rangle=Z(X)$ and $X \cong S L_{2}(5)$. But now $C_{D}\left(x^{2}\right)$ is a component of $\mathscr{D}(D)$, contradicting 6.2.

So L is D-simple. Therefore, minimality of G implies $L / O_{\infty}(L) \cong$ H / M and $O_{\infty}(K)=M_{1} \cap K \neq Z(K)$. As $D_{r} \cap\left(\alpha^{*} \beta\right)=\{\beta\}, \alpha^{*} \beta=\{\alpha\} \cup \beta^{M}$.

Thus we may assume $n \leqq 3$. Suppose $X=\langle A, E\rangle \cong S L_{2}(q)$ for $E \in D_{\beta}^{*}$. Then we may choose $C \in \gamma \cap X$. Let $\langle u\rangle=Z(X)$. Then $u \in$ $\langle A, C\rangle$, so $[u, L]=1 . \quad u$ acts on H / M and centralizes β, so $J=$ $\left\langle C_{D_{\alpha}^{*}}(u)\right\rangle$ contains a D-subgroup isomorphic to $S L_{2}\left(q_{0}\right)$ for some q_{0} dividing q. Let $\langle v\rangle$ be the center of that subgroup. If $J \neq L$ then considering $\langle J, X\rangle$, minimality of G yields a contradiction. So $J=L$ and $[v, X]=1$. $\left\langle C_{D_{\alpha}^{*}}^{*}(v)\right\rangle=X_{0} \cong S L_{2}(q)$, so arguing on v in place of u we get $X_{0}=L$ and $q_{0}=q$. If $H=L M$ then as $D_{\alpha} \neq D_{\gamma}, M \neq Z(H)$, and as above $\alpha^{*} \beta=\{\alpha\} \cup \beta^{M}$. So we may assume $H / M \cong U_{3}(q)$. Define x as above with $u \in\langle x\rangle . \quad[x, L]=1$ and x acts on $H / M \cong U_{3}(q)$, so as $2<|x|$ divides $q-1, u \in\langle x\rangle$ centralizes H / M, contradicting $L M \neq H$.

So X does not exist. Thus $H \cong L_{2}(q)$. Claim $\beta=B^{\perp} \cap D_{\alpha}^{*}=$ $\alpha^{*} \beta-\{\alpha\}$. For if not $\beta \subseteq\left\langle\alpha^{*} \beta-\{\alpha, \beta\}\right\rangle$ whereas $\alpha \nsubseteq\left\langle\alpha^{*} \beta-\{\alpha, \beta\}\right\rangle$.

Choose $1 \neq x \in H_{1}$ fixing α and $\lambda . \quad x$ acts on H and centralizes β, so $[x, H]=1$. Let $E \in D_{\alpha}^{*}-L$ and $C \in \gamma$. The action of x on $\langle C, E\rangle$ yields a contradiction.

Lemma 6.4. Let (α, γ, β) be a triangle in Ω. Then there exists σ with α, β, and γ in D_{σ}.

Proof. Claim $\mathscr{D}(\Omega)$ has diameter two. For if not $\alpha \beta \gamma \delta$ be a chain with $d(\alpha, \delta)=3$. Let $H_{1}=\left\langle D_{r}\right\rangle, M_{1}=O_{\infty}\left(H_{1}\right), \Gamma=D_{\alpha} \cap D_{r}$ and $L=\langle\Gamma\rangle$. Then by 6.3, $H_{1}=L M_{1}$, so $\delta M_{1}=\sigma M_{1}$ for some $\sigma \in \Gamma$. Thus $\sigma \in D_{\alpha} \cap D_{\dot{\delta}}$, contradicting $d(\alpha, \delta)=3$. Thus $\mathscr{D}(\Omega)$ has diameter two, so if (α, γ, β) is a triangle, by $6.3, L M=H$. So again there exists $\sigma \in \Gamma$ with $\sigma M=\beta M . \alpha, \beta$, and γ are in D_{σ}.

Lemma 6.5. Let $\gamma \in A_{\alpha}$. Then $\langle\alpha, \gamma\rangle \cong S L_{2}(q)$ and $|\langle\alpha\rangle|=q$.
Proof. Set $X=\langle\alpha, \gamma\rangle$. By 6.4, there exists $\beta \in D_{\alpha} \cap D_{r}$. Let $H_{1}=\left\langle D_{\beta}\right\rangle, M_{1}=O_{\infty}(H)$. Suppose $A \neq E \in \alpha$ with $A \equiv E \bmod M_{1}$. Then $A=\langle a\rangle, E=\langle e\rangle$ with $x=a e^{-1} \in M_{1}$. Thus x fixes every singular line $\beta^{*} \delta=\{\beta\} \cup \delta^{M_{1}}$ through β. As $H \leqq C_{G}(x)$ is transitive on D_{α}, x fixes all singular lines through any $\beta \in D_{\alpha}$. Let $\sigma \in A_{\alpha}$. By 6.3, there are distinct singular lines $\beta_{i}^{*} \sigma, i=1,2$, with $\beta_{i} \in D_{\alpha}$. Then x fixes $\left(\beta_{1}^{*} \sigma\right) \cap$ $\left(\beta_{2}^{*} \sigma\right)=\{\sigma\}$. Thus x fixes Ω pointwise. But this contradicts 6.1.

So $|\langle\alpha\rangle|=|\langle\alpha\rangle M / M|=q$ by 6.3. By $6.3, X / O_{p}(X) \cong S L_{2}(q)$, so $|\langle\alpha\rangle|=q, O_{p}(X)=1$.

Lemma 6.6. Ω is locally conjugate in $G,\left\langle\alpha^{\perp}\right\rangle$ is transitive on A_{α}, and G^{a} is rank 3.

Proof. By $6.5, \Omega$ is locally conjugate in G. Therefore, to show $\left\langle\alpha^{\perp}\right\rangle$ is transitive on A_{α} and thus that G^{a} is rank 3, it suffices to show (*) of 2.7. But if (α, γ, β) is a triangle in Ω, set $X=\langle\alpha, \gamma, \beta\rangle$. Then by $6.3, X / O_{p}(X) \cong S L_{2}(q)$ with $\alpha^{\perp} \cap X=\alpha^{o_{p(X)}}$. So 3.3 yields (*).

Following the notation of D. Higman let $k=\left|D_{\alpha}\right|, l=\left|A_{\alpha}\right|, \lambda=$ $\left|D_{\alpha} \cap D_{\beta}\right|$ for $\beta \in D_{\alpha}$, and $\mu=\left|D_{\alpha} \cap D_{r}\right|$ for $\gamma \in A_{\alpha}$. Let $m=\left|\beta^{M}\right|$. [10] implies:

Lemma 6.7. $l=k(k-\lambda-1) / \mu$ and either
(1) $k=l$ and $\mu=(\lambda+1) / 2=k / 2$ or
(2) $d^{2}=(\lambda-\mu)^{2}+4(k-\mu)$ is a square and d divides $2 k+(\lambda-$ $\mu)(k+l)$.

Lemma 6.8. $O_{\infty}(L)=Z(L)$.

Proof. Assume not. Then there exists $x \in O_{\infty}(L)=L \cap M$ with $B^{x} \neq B$. By $6.5, \beta^{x} \neq \beta$, so $\beta^{x} \in\left(\alpha^{*} \beta\right) \cap D_{r}=\{\beta\}$, a contradiction.

Lemma 6.9. $\alpha^{*} \gamma=\langle\alpha, \gamma\rangle \cap \Omega$ has order $q+1$. If $H / M \cong U_{3}(q)$ then $m=q^{2}$.

Proof. Assume $n \geqq 4$. Then a hyperbolic line $\beta \delta$ in $\mathscr{B}(\Gamma)$ is as claimed. But $\beta^{*} \delta \subseteq \beta \delta$ while clearly $\langle\beta, \delta\rangle \cap \Omega \cong \beta^{*} \delta$. Next assume $n=2$. Then by 6.3, $D_{\alpha} \cap D_{r}=\langle\beta, \delta\rangle \cap \Omega$ for $\beta, \delta \in D_{\alpha} \cap D_{r}$, and $D_{\beta} \cap$ $D_{o}=\langle\alpha, \gamma\rangle \cap \Omega$, so $\alpha^{*} \gamma$ is as claimed. Finally assume $H / M \cong U_{3}(q)$. Let $Z=Z\left(\left\langle\alpha^{\perp}\right\rangle\right) . \quad Z$ acts semiregularly on $\alpha^{*} \gamma-\{\alpha\}$. So if $\left|\alpha^{*} \gamma\right|=$ $q+1$ then $|Z|=q$. If $\left|\alpha^{*} \gamma\right| \neq q+1$ then $\alpha^{*} \gamma=D_{\beta} \cap D_{i}$, for $\beta, \delta \in$ $D_{\alpha} \cap D_{\gamma}$. So $\left|\alpha^{*} \gamma\right|=q^{3}$ and $N_{G}\left(\alpha^{*} \gamma\right)^{\alpha^{*} \gamma}$ acts as a subgroup of Aut $\left(U_{3}(q)\right)$. But by $3.4, Z$ is elementary abelian, while an elementary subgroup of Aut ($U_{3}(q)$) acting semiregularly on q^{3} letters has order at most q. Further $\left|\alpha^{*} \gamma\right|-1=\left|N_{M\langle\alpha\rangle}\left(\alpha^{*} \gamma\right)\right|=\left|C_{M\{\alpha\rangle}(L)\right|=|Z|=q$ by 3.4. So $\left|\alpha^{*} \gamma\right|=q+1$.

Finally $\mu=|\Gamma|=q^{3}+1, \lambda=m-1$, and $k=\mu m$ by 6.3 and 6.8 . Thus by 6.7, $q^{3} m^{2}=l$, while by 6.6, $l=\left|\left\langle\alpha^{\perp}\right\rangle: N_{\langle\alpha \downarrow\rangle}(\gamma)\right|=|M\langle\alpha\rangle|=$ $q m^{3}$ by 3.4. Thus $m=q^{2}$.

Lemma 6.10. If $H / M \cong L_{2}(q)$ then $m=q$ or q^{2}. If $H / M \cong S p_{n}(q)$ or $U_{n}(q), n \geqq 3$, then $m=q$ or q^{2} respectively.

Proof. Assume $H / M \cong L_{2}(q)$. Then $\mu=q+1, k=\mu m$ and $\lambda=$ $m-1$. So by 6.7, $l=m^{2} q$ and $\mu+\lambda=m+q$ divides $2 k+(\lambda-$ $\mu)(k+l) \equiv-2\left(q^{2}-1\right) q \bmod (m+q)$. By 3.3 , an element of order $q-1$ in L acts semiregularly on ($[A, M] / Z)^{*}$ of order $m-1$, so $q-$ 1 divides $m-1$. Thus q divides $m=q^{r+1}$. So $q^{r}+1$ divides $2\left(q^{2}-1\right)$ and therefore $r \leqq 1$. That is $m=q$ or q^{2}.

So with 6.9 we can assume $n \geqq 4$. Therefore, singular lines in L have order q or q^{2}, respectively. Thus as $\alpha^{*} \beta=\{\alpha\} \cup \beta^{n}$ these lines are also lines in G.

Lemma 6.11. $H / M \cong U_{n}(q)$ and $m=q^{2}$.
Proof. If not $\mu=\lambda+2$, so $\mathscr{B}(\Omega)$ is a symmetric block design. Further all lines have order $q+1$. Thus a result of Dembowski and Wager [8] implies $\mathscr{B}(\Omega)$ is $(n+1)$-dimensional projective space over $G F(q)$. As G is generated by the set of elations of $\mathscr{B}(\Omega)$ commuting with the symplectic polarity $\alpha \hookleftarrow \alpha^{\perp}, G \cong S p_{n+2}(q)$.

The case $n=2$ must be treated differently since in this case the existence of D-subgroups isomorphic to $U_{3}(q)$ are not assured. The following lemma treats this special case.

LEMMA 6.12. $n \geqq 3$.

Proof. Assume $n=2$. Let $\beta, \delta \in \Gamma$, and set $X=L_{\beta \delta}$. We first determine the fixed point sets of elements of L.

If $x \in\langle\beta\rangle^{\#}$ then $F(x)=\beta^{\perp}$. If $x \in X-Z(L)$, then $F(x)=\{\beta, \delta\} \cup$ $\alpha^{*} \gamma$. For if $\sigma \in F(x)$ is not as claimed, then by 3.3, $\sigma \in A_{\alpha} . \quad x$ normalizes $\langle\delta, \alpha\rangle \cong S L_{2}(q)$ and centralizes α, so x centralizes σ. Thus a similar argument on $\langle\sigma, \beta\rangle$ and $\langle\sigma, \delta\rangle$ shows $\sigma \in D_{\beta} \cap D_{\bar{o}}=\alpha^{*} \gamma$. If $\langle x\rangle=$ $Z(L)$ then $F(x)=\Gamma \cup\left(\alpha^{*} \gamma\right)$. For arguing as above $F(x)=C_{\Omega}(x)$, and minimality of G implies $\left\langle C_{\Omega}(x)\right\rangle / Z\left(\left\langle C_{\Omega}(x)\right\rangle\right) \cong L_{2}(q) \times L_{2}(q)$; that is $C_{\Omega}(x)=$ $\Gamma \cup\left(\alpha^{*} \gamma\right)$. Finally let $x \in L$ act fixed point free on Γ. As above $F(x)=C_{\Omega}(x)$ and as $D_{\alpha} \cap C_{\Omega}(x)$ is empty, $\left\langle C_{\Omega}(x)\right\rangle=Y_{F(x)} \cong S L_{2}(q)$ or $U_{3}(q)$. And if $Y \cong U_{3}(q)$ then Y is doubly transitive so $x \in\left\langle D_{\alpha} \cap D_{\sigma}\right\rangle$ for $\sigma \in F(x)-\{\alpha\}$. Thus x is in q^{2} distinct conjugate of L in H. However, with $3.3, C_{M}(x)=\langle\alpha\rangle$, so there are $m^{2} q(q-1) / 2$ conjugates of $\langle x\rangle$ in H. On the other hand there are m^{2} conjugates of L, each containing $q(q-1) / 2$ conjugates of $\langle x\rangle$, so $\langle x\rangle$ is in a unique conjugate of L. So $F(x)=\alpha^{*} \gamma$.

Let $\bar{G}=U_{4}(q)$, let \bar{D} be the class of subgroups generated by transvections in \bar{G}, let $\bar{\alpha}$ consists of the members of \bar{D} whose center is a given singular point of the associated projective space, and let $\bar{\Omega}=$ $\bar{\alpha}_{\bar{G}}$. Let $\bar{\gamma} \in A_{\bar{\alpha}}$ and $\bar{L}=\left\langle D_{\bar{\alpha}} \cap D_{\bar{\gamma}}\right\rangle$. The discussion above implies $\bar{L}^{\bar{w}}$ is permutation isomorphic to L^{n}.

Lemma 6.3 implies that every σ in $\Omega-\left(\alpha^{*} \beta\right)$ appears in a unique $D_{\beta_{1}}, \beta_{1} \in \alpha^{*} \beta$. Set $K=L_{\beta}$, and let $t \in L$ have cycle (β, δ). Let $\sum_{i=0}^{q+2} \beta_{i}^{K}$ be a partition of $\alpha^{*} \beta$ with $\beta_{0}=\alpha$ and $\beta_{1}=\beta$. Set $\Lambda_{i}=\left(\beta_{i}-\left(\alpha^{*} \beta\right)\right) \cup$ $\left\{\beta_{i}\right\}$, and $\Lambda=U \Lambda_{i}$. Then L maps the edge set of $\mathscr{D}(\Lambda)$ onto the edge set of $\mathscr{D}(\Omega)$, except for edges in $\mathscr{D}\left(\alpha^{*} \beta\right)$.

Let T be permutation isomorphism of L and \bar{L}, and let $\bar{\beta}=\beta T$. Let $\bar{\beta}_{i}^{{ }^{T} T}$ be orbits of $K T$ on $\bar{\alpha}^{*} \bar{\beta}$ and define $\bar{\Lambda}$ as above with respect to these $\bar{\beta}_{i}$. There exists an isomorphism S of $\mathscr{D}(\Lambda)$ and $\mathscr{D}(\bar{\Lambda})$ such that S restricted to $\mathscr{D}\left(\Lambda_{i}\right)$ commutes with T restricted to $N_{L}\left(\Lambda_{i}\right)$ and $N_{\bar{L}}(\sigma S)=$ $\left(N_{L}(\sigma)\right) T$ for $\sigma \in \Lambda$. For $\sigma \in \Lambda_{i}$ there exists $\bar{\sigma} \in \bar{\Lambda}_{i}$ with $N_{\bar{L}}(\bar{\sigma})=\left(N_{L}(\bar{\sigma})\right) T$ from the discussion above, so S can be defined in the obvious manner. So we can apply 2.6 to show $\mathscr{O}(\Omega) \cong \mathscr{D}(\bar{\Omega})$ and thus $G \cong \bar{G}$, if we show condition (ii) of 2.6 is satisfied.

Clearly (ii) holds on Λ_{0}. Suppose $\sigma, \sigma^{x} \in \Lambda_{1}, x \in L$. Claim $\sigma^{x}=\sigma^{y}$ for $y \in K$. As $L=K \cup K t K$ we can assume $x=t$. Thus $\sigma^{x} \in D_{\beta} \cap D_{\dot{\delta}}=$ $\alpha^{*} \gamma$, so $\sigma=\sigma^{t}$ is fixed by t. But $K=N_{L}\left(\Lambda_{1}\right)$, so (ii) holds here. Suppose $\sigma, \sigma^{x} \in \Lambda_{i}, i \geqq 2$. We consider the case $\left|\sigma^{L}\right|=q^{2}-1$; the case $\left|\sigma^{L}\right|=q\left(q^{2}-1\right)$ is analogous. Now $\langle\beta\rangle=N_{L}\left(\Lambda_{i}\right)$ and $q^{2}=\left|\Lambda_{i} \cap \bigcup_{\alpha^{*} \gamma} D_{\omega}\right|$ in q orbits of length q under $\langle\beta\rangle$. These are the points in orbits of length $q^{2}-1$ under L. Let θ be the set of edges (β_{i}^{y}, ω) with $y \in L$
and $\left|\omega^{L}\right|=q^{2}-1$. Let N be the number of orbits of L on θ. Then $q\left(q^{2}-1\right) N=\left|\left(\beta_{i}, \sigma\right)^{L}\right| N=|\theta|=\left|\beta_{i}^{L}\right| q^{2}=\left(q^{2}-1\right) q^{2}$, so $N=q$. Thus $\left(\beta_{i}, \sigma^{x}\right)=\left(\beta_{i}, \omega^{y}\right)$ for some $\omega \in \Lambda_{i}, y \in\langle\beta\rangle$. That is condition (ii) holds on Λ_{i}.

This completes the proof of 6.12 .
A unitary (α, β, γ) in Ω is a triple with $\beta \in A_{\alpha}$ and

$$
\gamma \in \bigcap_{\delta \in \alpha^{*} \beta} A_{\delta} .
$$

Lemma 6.13. If (α, β, γ) is a unitary triple then $\langle\alpha, \beta, \gamma\rangle / Z(\langle\alpha$, $\beta, \gamma\rangle) \cong U_{3}(q)$.

Proof. We can choose a unitary triple $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ in H. Set $X=$ $\left\langle\beta_{1}, \beta_{2}, \beta_{3}\right\rangle$. As $H / M \cong U_{n}(q), X / Z(X) \cong U_{3}(q)$. If $n=3$ we can count the number of unitary triples and the number of such triples centralizing some $\alpha \in \Omega$. These two numbers are equal. So assume $n \geqq 4$, and let ($\sigma_{1}, \sigma_{2}, \sigma_{3}$) be a unitary triple. Choose $\beta \in D_{\sigma_{1}} \cap D_{\sigma_{2}}$. If $\sigma_{3} \in$ D_{σ} set $\beta=\alpha$. If not let $\alpha^{*} \beta$ be a singular line in $D_{o_{1}} \cap D_{o_{2}}$. By 6.3, we can assume $\alpha \in D_{o_{3}}$. Thus as above we are through.

Let (α, γ, δ) be a unitary triple in $D_{\beta} . \quad$ Set $J=\left\langle D_{o} \cap \Gamma\right\rangle$.
Lemma 6.14. $J / Z(J) \cong U_{n-1}(q)$.
Proof. If $n=3,\langle\alpha, \gamma, \delta\rangle=D_{\beta} \cap D_{\sigma}$ for suitable $\sigma \in A_{\beta}$ and $J=$ $\left\langle\beta^{*} \sigma\right\rangle$. If $n=4, J$ has width one and a counting argument shows $|J \cap \Omega|=q^{3}+1$. Thus by minimality of $G, J / Z(J) \cong U_{3}(q)$. Finally if $n>4$, then arguing as in $6.3, J$ is transitive on $J \cap D$ and $\left\langle D_{\beta} \cap\right.$ $J\rangle / O_{\infty}\left(\left\langle D_{\beta}\right\rangle\right) \cong U_{n-3}(q)$, so minimality of G implies the desired result.

Lemma 6.15. Let $\theta=\Gamma \cup \delta^{L}$ and $K=\langle\theta\rangle$. Then $K \cong S U_{n+1}(q)$ and $\Omega=\theta \cup \alpha^{K}$.

Proof. Claim $\theta^{\theta}=\theta$. Clearly L normalizes θ, so it suffices to show δ normalizes θ. Let $\sigma \in \Gamma \cap A_{\dot{\delta}}$. Then $\langle\sigma, \delta\rangle \cong S L_{2}(q)$, so $\sigma^{\delta}=$ $\delta^{\sigma} \subseteq \theta$. Thus $\Gamma^{\delta} \subseteq \theta$. Using the fact that 6.15 is true in $U_{n+1}(q)$, one can check that

$$
L=J\left(\bigcup\left\langle\sigma_{1}{ }^{*} \sigma_{2}\right\rangle\right)
$$

where \mathscr{L} is the set of lines in $L-J$. Thus it suffices to show $X \cap$ $\Omega \subseteq \theta$ when $X=\left\langle\sigma_{1}, \sigma_{2}, \delta\right\rangle$. But if ($\left.\sigma_{1}, \sigma_{2}, \delta\right)$ is unitary, 6.13 implies $X \cap \Omega=\sigma_{1}{ }^{*} \sigma_{2} \cup \delta^{\left\langle\sigma_{1}{ }^{*} \sigma_{2}\right\rangle} \cong \theta$ and if ($\sigma_{1}, \delta, \sigma_{2}$) is a triangle then $X / O_{p}(X) \cong$ $S L_{2}(q)$ and 3.3 yields the same equality.

So $\theta^{\theta}=\theta . \quad \alpha \notin \theta$, so $K \neq G . \quad Y=\left\langle D_{\beta} \cap \theta\right\rangle=\left\langle D_{\beta} \cap \Gamma, \delta\right\rangle$, so
$Y / O_{\infty}(Y) \cong U_{n-1}(q) . \quad[L, \alpha]=1$ and $\delta \in A_{\alpha}$, so $\Gamma=D_{\alpha} \cap \theta$. Arguing as above $\theta \cup \alpha^{K}$ is self normalizing, so $\Omega=\theta \cup \alpha^{K}$.

Let $Z=Z(K) . \quad Z$ fixes θ pointwise and $K \leqq C_{G}(Z)$ is transitive on $\Omega-\theta$, so Z does not fix α. $\left|S U_{n+1}(q)\right| /\left|S U_{n}(q)\right|=\left|\alpha^{K}\right|=\left|K: N_{K}(\alpha)\right|$ and $L Z \mid Z \cong S U_{n}(q)$, so $|Z|=(n+1, q)$. Considering the covering group of $U_{n+1}(q)$ we get $K \cong S U_{n+1}(q)$.

Put K and $D_{\dot{\delta}}$ in the roles of H and Λ in 2.6. Then 6.15 and 5.4 together with 2.6 imply $G \cong U_{n+2}(q)$.

This completes the proof of the main theorem.

References

1. M. Aschbacher, Doubly transitive groups in which the stabilizer of two points is abelian, J. Algebra. 18 (1971), 114-136.
2. On doubly transitive permutation groups of degree $n \equiv 2 \bmod 4$, Illinois J. Math., 16 (1972), 276-279.
3. - Finite groups generated by odd transpositions, (to appear).
4. M. Aschbacher and M. Hall, Jr., Groups generated by a class of elements of order 3, (to appear, J. Algebra).
5. H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Zeitschr., 104 (1968), 175-204.
6. -, Transitive Gruppen gerader Ordnung in denen jede Involution genau eineu Punkt feslast, J. Algebra, 17 (1971), 527-554.
7. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.

8 P. Dembowski and A. Wagner, Some characterizations of finite projective space, Arch. Math., 11 (1960), 465-469.
9. G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. 10. D. Higman, Finite permutation groups of rank 3, Math. Zeitscher., 86 (1964), 145-156.
11. W. Kantor and G. Seitz, Finite groups having a split BN-pair of rank 1, (to appear).
12. -_, Some results on 2-transitive groups, Inventiones Math., 13 (1971), 125-142.
13. J. Walter, The characterization of groups with abelian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.

Received February 25, 1972 and in revised form February 26, 1973.
California Institute of Technology

