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PRIMITIVE GROUP RINGS

D. S. PASSMAN

Let K[G] denote the group ring of G over the field K.
Until recently it had been an open question as to whether
K[G] could be primitive, that is have a faithful irreducible
module, if G # {1)>. An affirmative answer has just been
given in the important paper of E. Formanek and R. L. Snider
where a large number of examples of primitive group rings
were exhibited. In this paper we continue this study.

LEMMA 1. Let F be an algebraic field extension of K and let A

be a torsion free abelian group. If I is a nonzero ideal in F[A] then
IN K[A] = 0.

Proof. Clearly I N F’[A] # 0 where F' is some finitely generated
and hence finite field extension of K. Therefore, it suffices to assume
that F' = F” or equivalently that F/K is finite. Now F[A] and K[A4]
are both integral domains since A is torsion free abelian and F[A] is
a finitely generated free K[A]-module. It then follows that every
nonzero element of F[A] satisfies an integral polynomial over K[A]
with nonzero constant term. Thus if ae I, = 0 then

a4 B e B+ B, =0

for some B; e K[A], B, # 0. Since a €I implies immediately that g, ¢
IN K[A4], the result follows.

THEOREM 2. Suppose K[G] ts primitive and let F be a field
extension of K. Suppose that either F|K is algebraic or 4(G) = (1).
Then F|G] ts primitive.

Proof. Let V = K[G]/M be the faithful irreducible K[G]-module
with M a maximal right ideal. Since F[G] is free over K[G] we have
MF[G] ++ F[G]. Thus we can choose a maximal right ideal N of F[G]
with N 2 MF[G]. Clearly NN K[G] = M and thus if W is the irre-
ducible F[G]-module W = F[G]/N, then Wxy; 2V where Wy, is of
course W viewed as a K[G]-module. Therefore, K[G] acts faithfully on
W. Let I be the primitive ideal of F[G] corresponding to W. Then
I is also a prime ideal and IN K[G] = 0.

We assume that I = 0 and derive a contradiction. By a result
of Martha Smith (Corollary 7.6 of [4]), we must have I N C % 0 where
C is the center of F[G]. Now C < F[4(G)] so I N F[4(G)] = 0. This
shows that 4(G) = <1) and hence by assumption F/K is algebraic.
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Now K[G] must be prime so by Connell’s theorem 4(G) is torsion free
abelian. Thus by Lemma 1, (I N F[4(G)]) N K[4(G)] +# 0, a contradic-
tion. Therefore, I = 0, W is a faithful irreducible F[G]-module and
F[G] is primitive.

The next result shows that the assumption 4(G) = (1) is really neces-
sary in the above.

THEOREM 3. Suppose K[G] is primitive and the cardinality of
| K| is larger than the cardinality of |G|. Then 4(G) = <{1).

Proof. By Theorem 1 we can clearly assume that K is algebraically
closed. Let D be the commuting ring for the faithful irreducible
module so that D is a division algebra over K. By the density
theorem, D is a homomorphic image of a subalgebra of K[G] so

dim; D < dim; K[G] = card |G| < card | K| .

We show that D = K. Thus let de D — K and consider the elements
{(d — a)*|ac K}. This set has cardinality larger than the dimension
of D so we have a linear dependence

Sb(d —a)t =0

with b;, a; € K, the a, distinct and b; = 0. Note that all such terms
commute so multiplying by J[7(d — @;) we obtain a nontrivial polynomial
over K satisfled by d. But K is algebraically closed so de K, a
contradiction. Hence D = K. Let xze 4(G) and let @ be the class sum
in K[G] of the conjugacy class of x. Then ae€ D = K so clearly x =
1 and 4(G) = {1).

We now work towards an extension of the Formanek-Snider
theorem on locally finite groups. The following is well known.

LEMMA 4. Let G be a finite group and let V' be an trreducible
K[G]-module. Then K[G] has a minimal right ideal I = V.

Proof. If @ = Ya,xe K[G], we let tra = a, be the coefficient of
1. Then we know that trag is a bilinear form on K[G]. Let M be
a maximal right ideal with K[G]/M = V. Since K[G] is a finite dimen-
sional vector space there exists « € K[G], &« # 0 with tr (a¢M) = 0. But
aM is a right ideal so this implies that aM = 0. Set I = aK[G] and
consider the map K[G]— I given by g—apB. This is a K[G]-homo-
morphism onto I = 0 and M is in the kernel. Since M is maximal we
have V = K[G]/M = I.

LEMMA 5. Let K be a field and let K, be its prime subfield. Let
G be a locally finite group. Then JK[G] = 0 if and only if JK|G] = 0.
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Proof. Suppose JK,[G] = 0. Then Theorem 18.2 of [4] implies
easily that JK[G] = 0. Now suppose that JK[G] = 0and let @ € K[G],
a # 0. Since JK[G] = 0 it follows that there exists ge K[G] with
ap not nilpotent. Since G is locally finite we can a finite subgroup H
of G with a, 8¢ K[H]. Suppose aK,[H] is a nil ideal in K[H]. Then
since H is finite this ideal is nilpotent and thus (@K [H]K is a
nilpotent ideal in K[H]. Since ag is in this ideal we have a con-
tradiction. Hence aK[H] is not nil so a¢JK[H]. Since K[H]N
JK,[G] & JK[H] we conclude that a ¢ JK[G] so JK|[G] = 0.

LEMMA 6. Suppose H S H, < --- is an ascending chain of sub-
groups of G with G = UrH;. For each 1, let V; be an irreducible
K[H,]-module and suppose that

@) V,& V., as K[H;]-modules.

(b) KI[H;] acts faithfully on V.

Then V = U7V, ts faithful irreducible K[G]-module and hence K[G]
is primitive.

Proof. It is easy to see that V is a K[G]-module. Moreover, since
each K[H] acts irreducibly on V;, K[G] acts irreducibly on V. Finally
let «e K[G],« + 0. Then for some 4, e K[H;]. Since K[H;] acts
faithfully on V;,, we have V@ = 0 so Va = 0 and K[G] acts faithfully.

The following is a generalization of Theorem 2 of [1] and its
proof is a modification of the original.

THEOREM 7. Let G be a locally finite countable group and suppose
that 4(G) = {1). Let K be a field and assume that JK[G] = 0. Then
K[G] s primitive.

Proof. If char K = 0 then this follows from [1] so we assume
here that char K = p>0. Then K, the prime subfield of K, is GF(p)
and by Lemma 5, JK,J[G] = 0. Furthermore by Theorem 2, since
4(G) = (1), it suffices to show that K,[G] is primitive. Thus we may
assume that K = K, = GF(p). Write G = {9, 9:, 95, »*+}+

We will define an ascending chain of finite subgroups H, of G and
irreducible K[H;]-modules V; satisfying

(@) 9:€H,;

(b)) H;= H;,, V; & Vi, as K[H;]-modules

(¢) KI[H;] acts faithfully on V.

We start by taking H, = <{g,) and V,, the principal K[H,]-module.
Let us assume that H;, V; are given. Now K is a finite field and H;
is finite so K[H,] is finite and let @,, a,, ---, @, be its finitely many
nonzero elements. Since 4(G) = (1), K[G] is prime and hence
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o, K[Gla.K[G] +++ a0, K[G]a, = 0 .
Therefore we can choose group elements x,, @, ++-, z,_, with
A= Q0% *vs Oy Bp_ 0, 7 0

Now JK[G] = 0 so aK[G] is not a nil ideal and hence there exists
B e K[G] with aB not nilpotent. Let H;,, be the subgroup of G
generated by H;, ¢;1,, ®,, %, *++, €,_, and the support of 8. Then H;,,
is a finitely generated and hence finite subgroup of G. Moreover, g;., €
H,., and H; < H;,,. Now ape K[H,,,] is not nilpotent so there exists
an irreducible K[H,,]-module V;,, with V,,ag # 0. By definition
of a and the fact that K[H,] = {0, @, a,, -+, ,} we see that K[H]
acts faithfully on V;,,. Finally let I be a minimal right ideal of
K[H;] which affords V; by Lemma 4. Since K[H;] acts faithfully
on V,,, there exists ve V,,, with v1 = 0. Then clearly as K[H;]-modules
Vi 20vI=V,;. We have therefore shown that the sequence H;, V; exists.

Since g¢;€ H; we have G = Uy H; and Lemma 6 applies. We
conclude that V = UV, is a faithful irreducible K[G]-module. Hence
K[G] is primitive and the result follows.

In view of Formanek’s result in [2], we have immediately

COROLLARY 8. Let S, denote the countably infinite symmetric
group. If K s any field, then K[S.] is primitive.

We now discuss a method of constructing faithful irreducible
modules starting from normal torsion free abelian subgroups. Let K
be a field and let A be a torsion free abelian group. Then K[A] is
an integral domain with quotient field F' = K[A]"'K[A]. We will
study the group ring F[G].

THEOREM 9. Let K be a field and let G be a group with a normal
torsion free abelian subgroup A. Let F be a field isomorphic to
K[A]"K[A]. If AN 4GQ) = <1), then F[G] has an irreducible module
V on which F[A] acts faithfully.

Proof. Let G be a group isomorphic to G with isomorphism G —
G given by ¢ —Z. Then A = A and we let F = K[A]"'K[A]. Letx
denote the natural homomorphism of A into F' defined by Ma) = @ ¢
K[A] S F. Then ) extends to 4, an F-homomorphism, 4: F[A] — F
given by

A2 fia) = 2 fiMa;) = 2 fa; .

If M denotes the kernel of 4, then M is a maximal right ideal
of F[A]. Now FI[G] is free over F[A] so MF|[G] # F[G] and we can
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choose N to be a maximal right ideal of F[G] with N 2 MF|[G]. We
set V = F[G]/N so that V is an irreducible F[G]-module.

Let I be the kernel of the action of F[G] on V. Then I is a
two-sided ideal of F[G] and we will show that I N F[A] = 0. Observe
that NN F[A] = M so F[G]/N 2 F[A]/M as F[A]-modules and this
shows that A(IN F[A]) = 0. Moreover, since I is an ideal in F[G]
and A<]|G we see that I N F[A] is invariant under conjugation by the
elements of G.

Suppose by way of contradiction that I N F[A] = 0 and choose

a=2f,;ai, a¢0
1

in this ideal. By multiplying a by a suitable element of A if necessary
we may assume that 1eSupp a so say a, = 1, f, # 0. Moreover, since
F = K[A]"'K[A] we may further assume by rationalizing denominators
that all f;e K[A]. If x¢ G then

™ =3 farte In FIA]

So

0= @) = 3 FMai) = 3 fiaaa) .

We view the above equation as an equation in K[G]. As such
we have f;e K[A] and za;x™ = Za@,Zz~'. So

0="13 FEaE" .
Multiplying this on the right by Z yields

[iZ@, + fiZG, + +oo + foZd, =0

and this is a linear identity in K[G] since it holds for all z eG. If
6 denotes the natural projection #: K[G] — K[4(G)] we conclude from
a slight modification of Lemma 1.3 of [4] that

[10@@) + f:.0(@) + <+ + f.0(@,) =0.

Now @, = 1s0 6(a@,) = 1. _Moreover, for ¢ > 1, a; # 1 so by assumption
a; ¢ 4(G) and thus @; ¢ 4(G) and 6(@;) = 0. Therefore, the above yields
f. =0, a contradiction. The theorem is proved.

We can now apply this result to certain special types of solvable
groups. We will need the following important theorem of A. E.
Zalesskil which we quote below.
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ProprosiTION 10. ([6]). Let G be a solvable group. Then G has
a normal d-subgrowp H with the following property. If K is any
field and if I is a monzero ideal of K[G] then I N K[H] # 0.

Let G be a polycyclic group, that is a group with a finite subnormal
series with cyclic quotients. We call the number of infinite eyeclic
quotients which occur the rank of G. Since any two such series have
a common refinement it is easy to see that the rank is well defined.
If K is a field we let t.d. K denote the transcendence degree of K
over its prime subfield K, so that t.d. K is some cardinal number.

COROLLARY 11. Let G be a polycyclic group with 4(G) = (1> and
let K be a field with

t.d. K = rank G .

Then K|[G] is primitive.

Proof. Let K, be the prime subfield of K and let H be the
subgroup of G given by Proposition 10. Then H = 4(H) and since G
is polycyclic so is H with rank H < rank G. Now by Lemma 2.2 of [4]
the finitely generated 4-subgroup H has a finite torsion subgroup H
with H/H torsion free abelian. Since H is characteristic in H, it is
a finite normal subgroup of G and hence H = (1) since 4(G) = {1).
Thus H is torsion free abelian.

By Theorem 9, if F' = K [H]|K,[H] then F[G] has an irreducible
module V on which F[H] acts faithfully since 4(G) = {1). Thus by
Proposition 10, F[G] acts faithfully on V and therefore F[G] is a
primitive group ring. Finally we observe that since H is a finitely
generated torsion free abelian group, F'is just a purely transcendental
extension of K, of transcendence degree equal to the rank of H. Thus
since K 2 K, and

t.d. K= rank G = rank H = t.d. F

we see that K contains an isomorphic copy of F. Therefore, by
Theorem 2, since 4(G) = (1), K[G] is primitive and result follows.
It is an interesting question as to whether the transcendence
degree assumption is needed in the above. It is apparently not true
that a polycyclic group G with 4(G) = (1) will have a primitive group
algebra over all fields K. For example, let K be the algebraic closure
of GF(p) and let G be polycyclic. Then it is conjectured by Ph. Hall
in [3] that all irreducible K[G]-modules must in fact be finite dimen-
sional over K. It was proved in [3] that this is always the case if
G is nilpotent. Recently, J. Roseblade ([5]) has proved this conjecture
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in general. Therefore, we conclude easily that if G is polycyclic and
if K is as above, then K[G] is primitive if and only if G = (1). Since
nonidentity polycyclic groups exist with 4(G) = (1> we see that at
least some assumption on the field is required.

If G is solvable we cannot get as good a result as above but we
can prove

COROLLARY 12. Let G be a torsion free solvable group with
4Gy = ). If K is any field then there exists F 2 K such that F[G]
18 primitive.

Proof. Let H be the subgroup of G given in Proposition 10. Then
H = 4(H) and G is torsion free so Lemma 2.2 of [4] implies that H
is torsion free abelian. Let FF = K[H]|'K[H] 2 K. Since 4(G) = (1),
Theorem 9 implies that F[G] has an irreducible module V on which
F[H] acts faithfully. Thus by Proposition 10, F[G] acts faithfully
and hence F[G] is primitive.

In Theorem 3 of [1], it is shown that if G and K are given then
there exists G* 2 G such that K[G*] is primitive. In the following
we give a more concrete construction of such a group G* provided we
limit K somewhat. Let Z denote the infinite cyeclic group.

COROLLARY 13. Let G be an tnfinite group and let K be a field
with

t.d. K = card |G| .

If G* is the Wreath product G* = Z U G then K[G*] is primitive.

Proof. Let K, denote the prime subfield of K. Observe that
G* = AG where A is a normal torsion free abelian subgroup of G*
which is equal to the direct sum of copies of Z indexed by the elements
of G. Since A is torsion free it is easy to see that if xe G* and
[A: C(x)] < oo then x ¢ A. Moreover, from this and the fact that G
is infinite we get easily 4(G*) = ().

Let F = K JA]7'K,[A]. Then by Theorem 9, F[G*] has an irre-
ducible module V' on which F[A] acts faithfully. By the above
remarks and Lemma 21.1 of [4] we conclude that F[G*] acts faithfully
and hence F[G*] is primitive. From the nature of A, it is clear that
F is a purely transcendental extension of K, with t.d. F/ = card |G|.
Thus since K 2 K, and t.d. K = card |G| we see that K contains an
isomorphic copy of F. Finally 4(G*) = (1> so Theorem 2 implies that
K[G*] is primitive.
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