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ISOMORPHIC CLASSES OF THE SPACES C(S)

M. A. LABBE and JOHN WOLFE

Jerison introduced the Banach spaces Cσ(S) of continuous
real or complex-valued odd functions with respect to an in-
volutory homeomorphism σ:S->S of the compact Hausdorff
space S. It has been conjectured that any Banach space of
the type Cσ(S) is isomorphic to a Banach space of all con-
tinuous functions on some compact Hausdorff space. This
conjecture is shown to be true if either (1) S is a Cartesian
product of compact metric spaces or (2) S is a linearly ordered
compact Hausdorff space and σ has at most one fixed point.

Introduction* Let S always denote a compact Hausdorff space.
C(S) well denote the Banach space of real or complex-valued con-
tinuous functions on S equipped with the supremum norm. A homeo-
morphism σ: S—> S is involutory if σ(σ(s)) = s for each se S. Jerison
[2] introduced the Banach space Cσ(S) = {feC(S):f(σ(s)) = -f(s)} of
odd functions with respect to an involutory homeomorphism σ: S-+ S.
If X and Y are Banach spaces then X is isomorphic (isometric) to Y,
and we will write X ~ Y (X ^ Y), if there is a bounded (norm pre-
serving) one-to-one linear operator from X onto Y.

A special case of a conjecture due to A. Pelczyήski [8] is as
follows: for any Banach space Cσ(S) there is a compact Hausdorff
space T with Cσ(S) ~ C(T). In this paper we prove this conjecture
when S is either a Cartesian product of compact metric spaces or
a linearly ordered compact Hausdorff space (in the second case we
assume σ has at most one fixed point). The results and techniques
of this paper generalize, and provide shorter proofs of, some results
of Samuel [11].

1. Linearly ordered spaces* A topological space A is a linearly
ordered topological space if the topology on A is the order topology
([4], page 57) arising from some linear ordering on the set A.
Examples of linearly ordered spaces are the closed interval [0,1],
every space of ordinal numbers, every totally disconnected compact
metric space ([5], Corollary 2a), and every compact subset of a
linearly ordered space.

THEOREM 1. Let S be an infinite linearly ordered compact Haus-
dorff space. If σ is an involutory homeomorphism on S with at
most one fixed point, then Cσ(S) ~ C(T) for some compact Hausdorff
space T.
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Proof. The function Ψ:S-+S defined by Ψ(s) = min {s, σ(s)} is
continuous on S. Set T — Ψ(S); the compact set T contains exactly
one point from each of the pairs {s, σ(s)} and thus T\J σ(T) — S and
Tf] σ(T) contains at most the fixed point of σ. If Tf] σ(T) = 0 ,
then Cσ(S) is isometric to C(T) via the restriction map. If T f] σ(T) =
{to}, where t0 is the fixed point of σ, then restriction of the functions
in Cσ(S) to T is an isometry of Cσ(S) onto the closed hyperplane
C(T, to) = {feC(T):f(Q = 0} of C(T). By [1], C(T, ί0) ~ C(Γ) if Γ
contains a convergent sequence with distinct terms. Since T is infinite,
it contains a strictly monotone sequence (tn). This sequence converges
either to its supremum or to its infimum and thus C(T, t0) ~ C(T).

REMARK. The first part of the proof shows that if σ S—>S is
an arbitrary involutory homeomorphism on a linearly ordered compact
Hausdorff space S, T is as in the proof, and To = {seS: σ(s) = s],
then Cσ(S) ̂  C(T, TQ) = {fe C(S):f(T0) c {0}}.

If S is a countable compact metric space, then S is linearly
ordered since it is homeomorphic to a closed subset of the Cantor set
([5]> page 286). Thus the following result due to Samuel [11] is an
easy consequence.

COROLLARY 2. Suppose S is a countably infinite compact metric
space and σ: S —> S is an involutory homeomorphism on S with at most
one fixed point. Then Cσ(S) ~ C(S).

Proof. If T is an infinite compact metric space, then C(T) ~
C(T)®C(T) ([10], page 514) where 0 denotes the Cartesian product
normed by taking the maximum of the norms of the two coordinates.
Now, if T is as in Theorem 1 so that S = T{jσT and T f] σT has
at most one point, it follows that C(S)-C(Γ)®C((j(Γ)): that is
immediate if T Γi σ(T) = 0; if T f] σ(T) = {£0}, then we have the
string of isomorphisms C(S) - C(S, ί0) ̂  C(Γ, ί0) φ C(σ(T), t0) - C(T) 0
C(σ(Γ)). Thus Cσ(S) - C(Γ) - C(T) 0 C(Γ) - C(T) 0 C(σ(Γ)) - C(S)
if S is countably infinite compact metric and σ has at most one fixed
point.

REMARK. In general, even for an involutory homeomorphism
σ: S—+ S having no fixed points on an ordinal space S, it is not true
that Cσ(S) - C(S). We are indebted to J. J. Schaffer for the follow-
ing example. Let ω1 be the first uncountable ordinal number and let
S — {OL: a an ordinal and 1 <̂  a <̂  α>x 2} Let Fλ = {ae S:a <£ ωλ}
and î 2 = {ae S:(x> ω,}. Then τ: α —• ^ + α: 2^ —> Ĵ 2 is a homeomor-
phism, and we define the involutory homeomorphism σ:S—+S by
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σ ( a ) = τ { a ) i f a e Fl9 σ{a) = T~\a) M a e F2. T h e n Cσ(S) i s i s o m o r p h i c
to C(Fi)- However, C{F^ is not isomorphic to C(S) ([12], Theorem 2).

2* Products of compact metric spaces* We begin this section
with some terminology and preliminary facts from [9] A subspace
Z of a Banach space X is complemented if there is a bounded linear
projection P:X^X with range Z, i.e., P2 = P and P(X) = ^. For
Banach spaces Y and X, Y is α factor of X if there is a comple-
mented subspace Z of I with Y ~ Z. If σ: S ~--• S is an involutory
homeomorphism, then the operator P: C(S) —> C(S) defined by (Pf)(s) =
(1/2)[/(a) — /(tf(s))] projects C(S) onto the subspace of odd functions
Cσ(S). Thus Cσ(S) is a factor of C(S).

Z> will denote the two point discrete space {0, 1} and, for each
cardinal number m, Dm will denote the generalized Cantor set which
is the Cartesian product of m copies of D. We will need the follow-
ing isomorphism criterion due to A. Peiczyήski ([9], Proposition 8.3):
if X is a Banach space and X is a factor of C{Dm) and C(Dm) is a
factor of X, then X ~ C(Dm).

Following [9], we say that a space S is an almost Milutin space
if, for some cardinal number m, there is a continuous onto map
θ:Dm->S such that the subspace X = {foθιfeC(S)} of C(Dm) is
complemented. If T is a closed subset of the space S, an extension
operator is a bounded linear operator E: C(T) —> C(S) such that, for
each feC(T), Ef\T = f where " | " denotes the restriction. A com-
pact Hausdorff space T is an almost Dugundji space if, for every
embedding i: T —> S of T into a compact Hausdorff space S9 there is
an extension operator E: C(i(T)) —> 0(5). Every Cartesian product of
compact metric spaces (in particular, every space Dm) is both an
almost Milutin and an almost Dugundji space ([9], Theorems 5.6 and
6.6). The weight of a space S is the smallest cardinal number m
such that there is a base for the topology of S consisting of m open
sets. If S is either an almost Milutin or an almost Dugundji space,
then C(S) is a factor of C{Dm), where m is the weight of S (see the
proof of [9], Proposition 8.4).

PROPOSITION 3. Let S be either an almost Milutin space or an
almost Dugundji space and let σ:S—>S be an involutory homeomor-
phism on S. Suppose there is a closed subset F of S with σ(F) D F — 0
such that F is homeomorphic to Dm, where m is the weight of S.
Then Cσ(S) ~ C(S).

Proof. Since C0(S) is a factor of C(S) and C(S) is a factor of
C(Dm)9 Cσ(S) is a factor of C(Dm). Thus, by Peίczyήski's criterion,
it suffices to show that C{Dm) is a factor of Cσ(S). Since F and σ(F)
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are disjoint and each is homeomorphic to Dm, F U β{F) is homeomor-
phic to the almost Dugundji space Dm+1. Hence there exists an
extension operator E:C(F\J σ(F))—*C(S). Let σr be the restriction
of σ to the invariant set F (J °{F) and let P: C(S) -> Cσ(S) be the
above-defined projection onto the odd functions. Then Cσ,(F (J σ(F))
is isomorphic to the range of the projection Q defined on Cσ(S) by
Qf = PE(f\ (F U σ(F))). Since Cσ,(F (J σ(F)) is trivially isometric to
C(F), which is isometric to C{Dm), it follows that C(Dm) is a factor
of Cσ(S).

LEMMA 4. If S is an infinite product of nontrivial compact
metric spaces and σ: S-+ S is an involutory homeomorphism on S
that is not the identity, then Cσ(S) ~ C(S).

Proof. Let S — ΐίieISi9 where each St has at least two points.
A basis for the topology of S is given by the open sets U of the
form U— (Jliei^Si) x (ILe^K) where A is a finite subset of I
and Ui is an open set in St for ieA. If / is infinite, then the
weight m of S is the cardinality of /. So it suffices, by Proposition
3, to construct a closed set F in S which is homeomorphic to Dm

with σ(F) Π F — 0 . There exists se S with σ(s) Φ s; choose a basic
neighborhood U of s with σ(U) Π U = 0 . Then U= (ILeiu^) x
(ΐίieΛUi) for some finite set A in I. For each i, let {t\, t\} be any
pair of distinct points in Si if i e I\A, and just any pair of points in
Ui if ieA. Let F= Π<ez {*<,**}• Then F is homeomorphic to Dm

and σ(F) Γ\ F = 0 .

LEMMA 5. If S is an uncountable compact metric space and σ
is an involutory homeomorphism on S such that {s: σ(s) — s} is
countable, then Cσ(S) ~ C(S).

Proof. Let P be the set of condensation points of S, i.e., seP
iff every neighborhood of s is uncountable. By the Cantor-Bend-
ixson Theorem ([5], page 253), the complement of P is countable.
Thus P is uncountable and there is a point seP with σ(s) Φ s. Let
Fo be a closed neighborhood of s with σ(F0) Π Fo = 0 . Since Fo is
an uncountable compact metric space, it must contain a closed subset
F homeomorphic to D*° ([5], page 445). Clearly σ(F)f]F=0.
Since the weight of S is ^0> the conclusion follows from Proposition 3.

THEOREM 6. If S is a product of compact metric spaces and σ
is an involutory homeomorphism on S that is not the identity, then
Cσ(S) ~ C(T) for some compact Hausdorff space T.



ISOMORPHIC CLASSES OF THE SPACES Cσ(S) 485

Proof. If S is an infinite product of nontrivial compact metric
spaces, then Cσ(S) ~ C(S) by Lemma 4. If S is a finite product of
compact metric spaces, then S is compact metric. Let T be the
quotient space obtained from S by identifying the fixed points of σ.
Let σr denote the involutory homeomorphism on T which is induced
by σ; it has at most one fixed point. Then Cσ(S) ^ Cσ,(T), and
CAT) ~ C(T) by Lemma 5 if T is uncountable; by Corollary 2 if T
is countably infinite. The conclusion is obvious if T is finite.

We conclude with an application to the problem of the isomorphic
classification of complemented subspaces of the Banach spaces of type
C(S). This result is due to Samuel [11].

COROLLARY 7. Let X be a subspace of C(S), where S is a com-
pact metric space. If X is the range of a norm-1 projection on C(S),
then X ~ C(T) for some compact metric space T.

Proof. By [7] or [3] (see also [6]), we have X & Cσ(K) where σ
is an involutory homeomorphism on a certain subspace K of a
Hausdorff quotient space of S. Since a Hausdorff quotient of a com-
pact metric space is metric, Cσ(K) ~ C(T) for some compact metric
space T by the preceding theorem.
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