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THE BEHAVIOR OF THE NORM OF AN
AUTOMORPHISM OF THE UNIT DISK

D. M. GlRARD

For f(z) analytic on the closed unit disk,

/(*) = Yμkz* ,

let

11/11 =ΣI**I
In this paper the following result is obtained: Theorem. Let
f(z) be an automorphism of the unit disk:

f(z) = e' c * f , 0 < I a I < 1, ζ real .
1 — αz

Then

as n —» oo where JP = 2-FΊ is the hypergeometric function and

l + M

1* Introduction* In a more general context we denote by A
the class of all functions with absolutely convergent Fourier series
and define

11 J? 11 "V~» j f ίh \ I

If f(z) is analytic on the closed unit disk, then f(eu) e A and

11/11 = II/IU.
The asymptotic behavior of | |/ Λ |U has been studied in several

recent papers. Kahane [5] has shown that if / is real, analytic,
periodic of period 2π, and nonconstant, then there exist two positive
constants Ct and C2 such that Cx τ/ΊκΓ < ||e i n f |U < CzV~n". More re-
cently in [3] the behavior of \\fn\\A has been studied in the case where
feA, \f(t)\ <; 1 and |/(ί)| = 1 for at most a finite number of points in
[0, 2π], Further results and connections with summability methods,
the stability of difference schemes and the structure theory of A may
be found, respectively, in [3], [4] and the recent monograph by
Kahane [6].

2Φ Preliminary lemmas. In this section we give several results

443
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which will be needed in the proof of the theorem. The first is a
weak form of Laplace's estimate for integrals (see, for instance [1]).

LEMMA 1. Let φ(t) be real valued and twice differentiate on
[α, b] and suppose that c is the unique point in [α, δ] satisfying
φ'(c) = 0, φ"(c) < 0. Then

= 0[enφlc)(n\φ"(c)\)~112] , n > oo .

A proof of the following lemma, due to van der Corput, may be
found in [8, p. 61].

LEMMA 2. Let h(t) be differentiable, h'(t) monotone and suppose
that h'{t) ̂  m > 0 (or that h'(t) ̂  - m < 0) in [a, b]. Then

)* m

The next result is a modification of Exercise 173 in [7].

LEMMA 3. Let snk, na ̂  k ̂  nb, 0 < a < δ, be such that
(i) 0^snk^l,
(ii) for each k, na ̂  k ̂  nb, and any integer j Φ 0,

% α Σ ^ e x p (2πijsnm) = o(n) , n > oo .

Further, let (ock) be a positive increasing sequence such that oίnhM~ι =
OOftΓ1), n—> oo where M — ^na<k^nbak. Then, if g(x) is a continuous
function on [0,1] with g(ϋ) — g(ΐ),

lim M-1 Σ «*£(*»*) = l ^(^)da .
w-»oo na<k£nb JO

Proof. For any ε > 0, there are trigonometric polynomials

p(aj) = Σ CJ e x P (2πijx), P(x) = Σ ^i e χ P (2mjx)

such t h a t for α? e [0,1] p(α?) ^ flf(a?) ̂  P(a?) and

\\P(X) - p(x)]dx £ ε .

We now write

M-1 Σ «*P(s»fc) = Σ CjM-1 Σ α* exp (2τriisκi;)
na<k£nb \j\&N na<k£nb

and by applying Abel's summation formula and (ii) to these inner
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sums we get, for j φ 0,

M-1 Σ *kexp(2πij8nk)
na<k£nb

-1) + oinM-1) Σ K ~ α*+i)

Thus

S i

p(x)dx
o

and in a similar fashion,

lim ilί""1 Σ akP(snk) = d0 =
%-^oo na<k^nb

Taking limits in the following inequality

Λf"1 Σ ^pίβ^) - [g(x)dx
na<k£nb JO

^ ilf-1 Σ α ^ O - [g(χ)dχ
na<k^nb JO

we obtain the limit of the middle term bounded below by

\ lp(x) - g(x)]dx ,
Jo

which is greater than — ε, and bounded above by

P(x) - g(x)]dx ,

which is less than ε. The result follows.

LEMMA 4. Let snk and g(x) satisfy the conditions of Lemma 3.
Then, for any polynomial p(x)y

lim Σ p(—)φnk)— = \ p(x)dx I g(x)dx .

Proof. It is sufficient to establish the result in the case when
p(x) = xm,m^> 0 an integer.

In Lemma 3 we take ak = km and then
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Σ ( -
Ύl

1 Σ
k^

where M = Σ»α<fcsίwb km. Taking limits yields the result since

Σ
na<k£nb

LEMMA 5 Let snk and g(x) satisfy the conditions of Lemma 3
and let f(x) be continuous on [a, 6]. Then

Mm 9(8nk)f(—)— = [g(x)dχ. [f(x)dx .

The proof follows directly by approximating f(x) uniformly by a
polynomial p(x) on [α, 6]. Our last lemma, also due to van der Corput,
is Theorem 5.9 in [8].

LEMMA 6. // φ(t) is twice differentiate and real, and 0 < λ <
φ"(t) < μx (or X < —φ"{t) ̂  μx) throughout the interval (c, d) and
d }t. c + 1, then

Σ exp (2πi φ{k)) = 0[μ(d - c)λ1/2] + 0[χ-1/2] .
k£d

3. Proof of the theorem. We first show that it suffices to
prove the result when ζ = 0 and a is real and positive. Indeed, if
we let Arg a = θ and

then

a X
1-azJ

-i0 - \ a \
\a\ze~iθ

— 2

and so

H ί z —

\ \
a
a\

V
z)

z — a
Vl — az

Thus, we will assume that 0 < a < 1.
We want to determine the asymptotic behavior of
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The essential ideas are these: using Cauchy's theorem and Laplace's
method for real integrals we will show that, depending on n and a,
there is only a small range of summation which is significant; then
over this range of summation we will apply a modification of the
method of stationary phase to further estimate the coefficients. For
convenience the proof is divided into three parts.

We shall omit the phrase "for n sufficiently large" finitely many
times in the course of the proof.

PART 1

Since 0 < a < 1, there is an R > 1 such that f(z) = (z — a)/(l - az)
is analytic in the disk [ z | ^ R and so for any r, 0 < r ^ R

In this section we show that

ΊI= Σ |
keT(n)

where T(n) = {k: n[β + en] ^ k ^ n[l/β - en]}, for

1 + a

and

V n

For simplicity set n[l/β — εn] = M. Then, if r > 1,

r- u u _
J — π

^ Σ — r - * ( exp

=

where

and by writing

Ψ(t) - log
1 — are*1

ψ(t) = λ log
2

log
2 1 + αV2 - 2αr cos t
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the following properties are easily verifiable:

Ψ'(0) = Ψ'(π) = Ψ'(-π) = 0

and

y"(0) = αr(l - r2)(l - α2)(r - a)~\l -

ψ"(π) = - α r ( l - r

2)(l - az){r + α)~2(l

Thus, for r > 1,

r'(0) < 0, Ψ"(π) > 0, Ψ"{-π) > 0

for r < 1,

?P'(0) > 0, ?P'(π) < 0, Ψ"(-π) < 0 .

Applying Lemma 1 in the case when r > 1 yields

[* exp[n¥(t)]dt = θ\( r ~" a )V 1 / 2 ( r - α)(l - αr) .
J-ff LVl — ar /

• [αr(l - r2)(l - α2)]"

and so

Σ I α * I = 0 wrιί2-±-—Ώ ί (r + I)"1/2 , n > oo .

*it w " L (1 - arγ~ι (r - 1)3/2 v ^ J
we choose our path of integration so that r = 1 + (wεj""1 and then
this last expression is asymptotic to

- L ^ ( T O 3 ' 2 exp [ ( ^ ^ [ ( l i ^ r c - ikf]] , w

and this finally yields

= 0[^1/2/log n] , n > oo .

By choosing a path of integration \z\ — 1 — (ne^1 we can, in a similar
way, show that

*\ [ / g ] , n > oo ,

where N = n[β + εΛ],

PART 2

Unless otherwise noted all sums in this part will be for k e T{n).
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To estimate ank for k e T(n) we integrate along the unit circle
so that

*dt

and by setting

bnk = ί exp [ih(t)]dt ,
Jo

- kt

where

we have

(1)

We will determine the behavior of bnk and show that

[h(tnk) - -̂( 2) Σ I &•* + δ * I = 21/ &F Σ I Λ " ( U l"1/21 cos

+ 0(^1/2/log n) , w > co

where tHjfc is the root of h'(t) = O
We begin by listing some properties of h(t): h(t) is real valued

and from the derivatives

h'(t) = n(l

K"(t) = - [

+ a2 - 2a cos t)"1 - A; ,

- α2) sin a2 2α cos ί)~2

we obtain that: h"(t) < 0 for 0 < t < π, h"(0) = Λ"(ττ) = 0 and h\t) is a
decreasing function on [0, π]. For ke T(n),h'(t) has a unique zero in
(0, π), say tnk, given by

( 3 ) cos tnk = [1 + a2 - n(l - a2)/k]/2a

and there are two constants Cα, C'a > 0 and independent of n and &
such that — 1 < — 1 + Caen < cos tnk < 1 — C«εw < 1 which implies

0 < Caen <tnk<π- Caεn < π .

A direct calculation, using the expression for cos tnk above, shows

that

(4) h"(t%h) = -Jc(k/n - /S)

which yields, for ke T(n)9
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Finally, for x e [0, π], \h'"(x)| ^ Kan where Ka is a constant depending
on a alone.

We set dn = cen where 0 < c < min [Cα, C'α, β/Ka] and define the
intervals

Ink — (̂ ίifc On, ^nk + ^Λ) >

£ * - [0, ί.» - «.] ,

ϋ * = [<.* + δn, π] .

This choice of c guarantees that tnk — dn > 0 and tak + δn < π. The
equality (2) will be established in two steps. First we replace

by

Σ ( exp I
J'nk L

To do this it suffices to show that

+ bn h n k iink\A

as n —»• oo. This expression is bounded above by

the integrands in each of these cases being exp [ih(t)\.
On the interval Γnk h'(t) is decreasing and h'(t) ^ h'{tnk — δn) > 0

for fixed % and &. From Lemma 2 we then infer that

- 5 , ) I ;\ f exp [ih(t)]dt

but for some value of ζ, tnk — dn < ζ < tnk,

S *nk
h"{t)dt

Using the lower and upper bounds on |&"(ί»fc)| and \h"'(t)\ respectively,
given above, we obtain

\h"(tnk) - λ" ^ Kan8Jnenβ

= Kac//3
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and so

\h"(tnk)\ |1 - \h"{tnk) - h"(Q\/\h"(tΛk)\\

where Mis a constant depending only upon a.
From this inequality we obtain

Σ I exp [ih(t)]dt

as n —• co. On the interval I"k h'{t) is again decreasing and in an
entirely similar fashion, now using the alternative hypothesis in van
der Corput's lemma, we obtain the above estimate for this interval
of integration.

We now show that this last sum is 0(1). Equation (4) allows us
to rewrite it as

Σ (k/n)~\k/n - β)~ιι\l/β - k/n)~^n^

and by recalling that k/n > β for k e T(n) we can majorize this by

β~ι Σ {kin - β)~1I2(l/β - k/nr^n-1 .

The function (x — β)~l!2(l/β — #)~1/2 takes its minimum value at
the point 7 = (β + Vβ)/2 and by splitting the sum we have

Σ (k/m - βTιl\Vβ - Jc/mr^n-1

klm<γ

^ (1//S - 7)-1/2 Σ (k/n - βY^rr1

-0(1)

and similarly the sum for k/n ^ 7 is 0(1) as w—> oo. Thus, we may
write

Σ 1 bnk + bn

(5)
ί exp [ίh(t)]dt +\ exp [ - ih(t)]dt
Jink JJnk

+ 0(^1/2/log n) .

Expanding h(t) about the point t = tnk we can write

exp[ih(t)] = A(t) + G*(t)

where

A(t) - exp [ih(tnk) + ih"(tnk)(t - tnk)
2/2] .



452 D. M. GIRARD

and G*(t) = O[n(t - tnkγ], n-+oo. Then

Σ I ( exp [ih(t)]dt + ( exp [ - ih(t)]dt
IJ^nfc Jink

is bounded above by

2 Σ I ( exp [iλ(ί)]dt - ( A(t)dt
\jlnk ilnk

= oΓ Σ
keTin)

n) .

as n —* oo and so we may write, using (5),

( 6 ) Σ I Kk + Ku I = ΣI j 7 [A(t) + Ά(t)]dt

We first note that

A(t)dt = 2('*βxp[ίΛ(ί.») + ih"{tnk)u2β]du
k J°

and a further change of variable, (1/2) | h"(tnk) \ u2 — v, produces

( A(t)dt = VΎI h"(tnk) I"1'2 exp [ih{tnk)\ \Wn"e-^v-^dv
Jink J°

where wnk = | h"(tnk) \ 82J2. Thus, the sum on the right hand side of
equation (6) may be written as

V^2"Σ I *"(<•*) Γ / f

+ exp [ — ih(tnk)

As a last step in establishing equation (2), we replace the integrals
e~ivv~~U2dv a n d \ eivv~1(2dv

o Jo

whose values are, respectively, λ/πe™1* and V π eriκli. To do this it
suffices to show that

exp [ih{tnk)\ e~iVv~ll2dv
Jo

1-1/2 Γ e-ivirιI*dv
Jwnk

n) ;

but this follows rather easily. Integration by parts yields an estimate
for the absolute value of the integral of 2/l/ wnk. The above sum
is then
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= 0(n1/2βog n), n > oo ,

as we have shown above. Equation (6) now becomes

Σ |δ»* + Kk\ = ΣV~2Ξ\h"{tnk)\-^Σ |δ»* + Kk\

. I exp [i(h(tnk) - τr/4)] + exp [-ί(h(tnk) - π/4)] |

+ 0(nl!2/\og n)

and this reduces to equation (2)

PART 3

We now complete the proof of the theorem by applying Lemma
5. By setting

F(x) = χ-^{x -

we can write

by using equation (4). Further, since 0 rg t ^ π,

-i log [{eu - a)/(I - aeιt)\ = Arg [(eu - α)

= COS"
•T (1 + a2) cos t - 2aΊ
L 1 + α2 - 2α cos t J

and we then get, by (3),

-i log [(e"»* - α)/(l - αe**»*)] - cos""1! - [1 + a2 - k(l - a2)/n]/2a]

We now define

2a V 1 — a2

and

and write

h(tnk) = nH(k/n) .

By combining (1) and (2) we then get
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= /|Σ|cos[Λfl"(*/Λ) - π/4]|jP(fc/Λ)A + O(l/logn)| Σ | [ ( / ) / ] | ( / )

where this sum is for ke T(n). The application of Lemma 5 to this
sum is delicate. For 0 < η < 1/β we set

Tf(n) = {k: n[β + τj\ g k ̂  ^[l//3 — ?)]}

and write

I JJL Σ COS [nH(k/n) - π/4] F{k/n)rΓι - fAV'T'V^)^!

where

2 1

and

= Σ F{kln)n~ι , Z 4 = Σ F(k/n)nrι ,
k<n{β+η) k>n(l/β~V)
keT(n) keT{n)

= I f AY'2 Σ I cos [nH(k/n) - π
7Γ / fte2"(«)

-(¥.
Since the integral of F(x) over the interval [β, 1/β] is convergent,
for ε > 0 we can choose ΎJ sufficiently small so that both Kx and K2

will be less than ε/5. Likewise, if rj < 1/β — β,

K* < β"1}2(Vβ - β - VΓ114 Σ (k/n - fiyv'n-1

k<n(β+η)

= o(l), η >0

A similar dominance argument applies to iΓ4 and thus, if we pick η
sufficiently small, we have Σ5=i -Ky < 4e/5.

With 37 sufficiently small and fixed, we now show that Kδ < ε/5
for n sufficiently large. In Lemma 5 we take g(x) = cos (2πx — π/4)
and snk = nH(k/n)/2π—[^ίZ"(fc/tι)/2τr] * jP(a?) is continuous on the interval
[/3 + 27,1//3 — 57] and so we must show that for each integer j Φ 0 and
each kfna^k^nb

Σ exp [2πijsnm] = o(π) , w > 00

* Here [ ] denotes the greatest integer function.



THE BEHAVIOR OF THE NORM OF AN AUTOMORPHISM OF THE UNIT DISK 455

where α = β + ηyb = 1/β — η. For each n we apply Lemma 6 with
c = na, d = k and 2πφ(x) = jHn(x) — nj H(x/n).

First, d - c ^ n(l/β - η) - n(β + η)< 4a n/(l - a2). Next, with
the aid of the identity

1 - G2(x) = x2(l - G2(l/x))

we compute

Hf:{x) = n~ιH"{xln)

= [(1 - a2)/2a][xV I - G\xjn) ]~ι

from which it follows that

H';{x) ^ [(1 -

= (1 - aγ/2an

and

ί ί '(a ) ^ [(1 -
• [ m i n V I - G\x/n) ]~ ι

[(1 -

where Ka,η depends only on a and ~η. Thus

(1 - a)z/2an £ H':{x) ^ Ka,η{l - a

and for j Ξ> 1

so that if we put 2πX = (1 — a)2/2an and μ = jKa,η, then, since j is
bounded in magnitude, by Lemma 6

Σ exp [2πijsnM] = 0\jKa,v[4anl(l - α2)](l - a)/V~2~an]
na<m<ik

+ 0[^1/2]

= 0(n112) , ^ > oo .

If i < 0 we apply the alternate form of van der Corput's estimate to
obtain the same result.

We now need only to calculate the integral. If we let

t = (1/β - x)/(x - β) ,

then



456 D. M. GIRARD

[UβF(x)dx = (1 - /S2)1 / 2(Y1 / 4(ί + 1)"H1 + β2t)~ll2dt.
}β Jo

However, this is an integral representation of the hypergeometric
function. From equation (5) in [2] we have, for Re c > Re b > 0 and
I arg z I < π,

F(α, 6; c; 1 - z) = Γ{f> Γ > ι ( l + ty-°(l + zt)-dt
I {o)Γ(c — 0) Jo

and taking α = 1/2, δ = 3/4, and c = 3/2 gives

Using the relations Γ(z)Γ(l — z) — π/sin π«,

Γ(« + 1) = zΓ(z) and Γ(l/2) = VΈ gives

[Γ(3/4)]2/Γ(3/2)

and so

S Vβ
F(x)dx

β

- 8T/2T-*(1/4)(1 -

This completes the proof of the theorem.
The author would like to thank Professor Bogdan Baishanski for

originally suggesting this problem.
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