STRUCTURE HYPERGROUPS FOR MEASURE ALGEBRAS

CHARLES F. DUNKL

An abstract measure algebra A is a Banach algebra of measures on a locally compact Hausdorff space X such that the set of probability measures in A is mapped into itself under multiplication, and if μ is a finite regular Borel measure on X and $\mu < < \nu \in A$ then $\mu \in A$. If A is commutative then the spectrum of A, Δ_A , is a subset of the dual of A, A^* , which is a commutative W^* -algebra. In this paper conditions are given which insure that the weak-* closed convex hull of Δ_A , or of some subset of Δ_A , is a subsemigroup of the unit ball of A^* . This statement implies the existence of certain bypergroup structures. An example is given for which the conditions fail.

The theory is then applied to the measure algebra of a compact P^* -hypergroup, for example, the algebra of central measures on a compact group, or the algebra of measures on certain homogeneous spaces. A further hypothesis, which is satisfied by the algebra of measures given by ultraspherical series, is given and it is used to give a complete description of the spectrum and the idempotents in this case.

A hypergroup is a locally compact space on which the space of finite regular Borel measures has a commutative convolution structure preserving the probability measures. The spectrum of the measure algebra of a locally compact abelian group is the semigroup of all continuous semicharacters of a commutative compact topological semigroup (Taylor [7], or see [2, Ch. 1]). In this paper we consider the spectrum of an abstract measure algebra and investigate the question of whether the spectrum or some subset of it has a hypergroup structure.

Section 1 of the paper contains a general theorem on the existence of hypergroup structures on the spectrum of an abstract measure algebra. The fact that the dual space of an appropriate space of measures is a commutative W^* -algebra is of basic importance in the proof of this theorem. This section also contains an example of a compact hypergroup whose measure algebra does not satisfy the hypotheses of the theorem.

In §2 we recall the definition of a compact P^* -hypergroup from a previous paper [1] and apply the main theorem of §1 to this situation. The result is that the closure of the set of characters of the hypergroup in the spectrum is a compact semitopological hypergroup and is a set of characters on another compact semitopological hypergroup.

CHARLES F. DUNKL

Section 3 defines a class of P^* -hypergroups of which ultraspherical series form a particular example. A complete description of the spectrum and the idempotents of the measure algebra is given. The results are much like those which Ragozin [6] obtained for the algebra of central measures on a compact simple Lie group.

1. The general situation. We will use the following notation; for a locally compact Hausdorff space $X, C^{\mathbb{B}}(X)$ is the space of bounded continuous functions on $X, C_0(X)$ is the space $\{f \in C^{\mathbb{B}}(X): f \text{ tends to} 0 \text{ at } \infty\}$, M(X) is the space of finite regular Borel measures on $X, M_p(X)$ is the set $\{\mu \in M(X): \mu \ge 0, \mu X = 1\}$ (the probability measures), δ_x is the unit point mass at $x \in X$, and $M(X)^*$ is the dual space of M(X). If X is compact we write C(X) for $C^{\mathbb{B}}(X)$. We let w^* denote either of the topologies $\sigma(M(X), C_0(X))$ or $\sigma(M(X)^*, M(X))$.

Note that $M(X)^*$ may be interpreted as the space of generalized functions on X, (the projective limit of the spaces $\{L^{\infty}(X, \mu): \mu \in M_p(X)\}$ ordered by absolute continuity) and is thus seen as a commutative W^* -algebra (see [2, p. 9]). We will write $f \to \overline{f}(f \in M(X)^*)$ for the involution, $f \cdot \mu$ for the action of $M(X)^*$ on M(X), and $\langle \mu, f \rangle$ for the pairing of M(X) and $M(X)^*$, $(\mu \in M(X), f \in M(X)^*)$. Note $\langle f \cdot \mu, g \rangle =$ $\langle \mu, fg \rangle$ for $f, g \in M(X)^*, \mu \in M(X)$, and $\langle \mu, 1 \rangle = \int_x d\mu$. The unit ball B (the set $\{f: ||f|| \leq 1\}$) of $M(X)^*$ is w^* -compact and is a commutative semitopological semigroup under multiplication and the w^* -topology. We will be concerned with compact convex subsemigroups of B.

Suppose there is given for each $x, y \in X$ a measure $\lambda(x, y) \in M_p(X)$ such that for each $f \in C_0(X)$ the map $(x, y) \mapsto \int_x f d\lambda(x, y)$ is separately continuous. Then for each $\mu, \nu \in M(X)$ the function

$$x\mapsto \int_{x}\int_{x}fd\lambda(x, y)d
u(y)$$

is continuous and

$$\int_{\mathcal{X}} d\mu(x) \int_{\mathcal{X}} d\nu(y) \int_{\mathcal{X}} f d\lambda(x, y) = \int_{\mathcal{X}} d\nu(y) \int_{\mathcal{X}} d\mu(x) \int_{\mathcal{X}} f d\lambda(x, y) \cdot$$

This fact was proved by Glicksberg [3]. We will use this to define semitopological hypergroups.

DEFINITION 1.1. A locally compact space H is called a semitopological hypergroup if there is a map $\lambda: H \times H \longrightarrow M_p(H)$ with the following properties:

(1) $\lambda(x, y) = \lambda(y, x), (x, y \in H),$ (commutativity);

(2) for each $f \in C_0(H)$ the map $(x, y) \mapsto \int_H f d\lambda(x, y)$ is separately continuous, $(x, y \in H)$;

(3) the convolution on M(H) defined implicitly by

$$\int_{H} f d(\mu * \nu) = \int_{H} d\mu(x) \int_{H} d\nu(y) \int_{H} f d\lambda(x, y), (\mu, \nu \in M(H), f \in C_{0}(H))$$

is associative, (note $\delta_x * \delta_y = \lambda(x, y)$, $(x, y \in H)$).

If there is a point $e \in H$ such that $\lambda(e, x) = \delta_x$, $(x \in H)$, then e is called the identity of H. A bounded continuous function ϕ on H such that $\int_{u} \phi d\lambda(x, y) = \phi(x)\phi(y)$, $(x, y \in H)$, is called a character of H.

If H is a compact semitopological hypergroup then it is easily shown that convolution on M(H) is separately w^* -continuous, and that $M_p(H)$ is a compact commutative semitopological affine semigroup ("affine" means $\mu * (s_1\nu_1 + s_2\nu_2) = s_1(\mu * \nu_1) + s_2(\mu * \nu_2)$ for $s_1, s_2 \ge 0, s_1 + s_2 = 1, \mu, \nu_1, \nu_2 \in M_p(H)$). The converse to the latter holds (Pym [4] proved a form of this statement; we will give a proof of it in the present context).

PROPOSITION 1.2. Let H be a compact space and suppose $M_p(H)$ is a commutative semitopological affine semigroup (in the w^{*}-topology), then H can be given the structure of a compact semitopological hypergroup, so that convolution restricted to $M_p(H)$ gives the original semigroup structure.

Proof. Let * denote the semigroup operation on $M_p(H)$. This operation extends uniquely to M(H), and M(H) becomes a commutative Banach algebra. For each $x, y \in H$ let $\lambda(x, y) = \delta_x * \delta_y \in M_p(H)$. Now we must show that λ satisfies Definition 1.1, and the convolution induced by λ is the same as the given. By hypothesis, the function $Tf(x, y) = \int_H f d\lambda(x, y) = \int_H f d(\delta_x * \delta_y)$ is separately continuous $(x, y \in H)$. Glicksberg's result [3] shows that $x \mapsto \int_H Tf(x, y)d\mu(y)$ is continuous

for each $\mu \in M(H)$. Let μ, ν be finitely supported (discrete) measures in $M_{\nu}(H)$, then by an easy computation we have

$$\int_{H}\int_{H}Tf(x, y)d\mu(x)d\nu(y) = \int_{H}fd\mu*\nu, \qquad (f\in C(H)).$$

For fixed ν the set of μ for which this identity holds is w^* -closed. Thus the identity holds for all $\mu \in M_p(H)$, all finitely supported $\nu \in M_p(H)$. Repeat the argument to show the identity holds for all $\nu \in M_p(H)$.

It is convenient to isolate the following situation as a lemma.

LEMMA 1.3. Suppose X is a locally compact space, S is a completely regular Hausdorff space, and there is a bounded linear map $j: M(X) \to C^{\mathbb{B}}(S)$ with the following properties (we will write $||\mu||_s$ for $\sup \{|j\mu(s)|: s \in S\}$:

(1) ||j|| = 1;

(2) there exists $\iota \in M_{\nu}(X)$ such that $j\iota = 1$ (the constant function);

(3) $||j_1s \cdot \mu||_s \leq ||\mu||_s$, where $j_1s \in M(X)^*$ is defined by $\langle \mu, j_1s \rangle = j\mu(s)$, $(s \in S, \mu \in M(X))$.

Then the w*-closed convex hull of j_1S , denoted by w* co (j_1S) , is a compact (semitopological) subsemigroup of B, the unit ball in $M(X)^*$. Each map $f \mapsto \langle \delta_x, f \rangle$, $(x \in H)$, is an affine semicharacter on w* co (j_1S) . Further, if S is compact and jM(X) is sup-norm dense in C(S), then S has a semitopological hypergroup structure, and the functions $\{j\delta_x: x \in X\}$ are characters of S.

Proof. Let S_i be a compactification of S such that $jM(X) \subset C(S_i)$, and let j^* denote the adjoint map: $M(S_i) \to M(X)^*$,

$$\left(ext{given by } \langle \mu, j^* \lambda
angle = \int_{S_1} j \mu d\lambda, \ \mu \in M(X), \ \lambda \in M(S_1)
ight).$$

Denote $w^* \operatorname{co}(j_1S)$ by S_c . We claim $j^*M_p(S_1) = S_c$. The map j^* is w^* -continuous $M(S_1) \to M(X)^*$ thus j^* maps $w^* \operatorname{co} \{\delta_s \colon s \in S_s\}$ (in $M(S_1)$) into S_c . That is, $j^*M_p(S_1) \subset S_c$. Conversely let $f \in S_c$, then there exists a net $\{f_a\} \subset \operatorname{co}(j_1S)$, (the convex hull of j_1S) so that $f_a \longrightarrow f(w^*)$. But for each α there exists a finitely supported $\lambda_{\alpha} \in M_p(S_1)$ so that $j^*\lambda_{\alpha} = f_a$. By the w^* -compactness of $M_p(S_1)$ there exists $\lambda \in M_p(S_1)$ so that $j^*\lambda_{\alpha} = f$. Thus $j^*M_p(S_1) = S_c$.

We observe for $g \in M(X)^*$ that $g \in S_c$ if and only if $|\langle \mu, g \rangle| \leq ||\mu||_s$, $(\mu \in M(X))$ and $\langle \iota, g \rangle = 1$. The latter condition and the Hahn-Banach and Riesz theorems imply that there exists $\lambda \in M_p(S_1)$ so that $j^*\lambda = g$. We now show for $s \in S, \lambda \in M_p(S_1)$ that $(j_1s)(j^*\lambda) \in S_c$. Indeed for $\mu \in M(X)$, |

Also $\langle \ell, (j_1s)(j^*\lambda) \rangle = \langle j_1s \cdot \ell, j^*\lambda \rangle = \langle \ell, j^*\lambda \rangle = 1$, (note $j_1s \cdot \ell = \ell$, since $||j_1s|| \leq 1, \langle \ell, j_1s \rangle = j\ell(s) = 1$ and $\ell \in M_p(X)$). Thus $(j_1s)(j^*\lambda) \in S_c$ and we conclude from the separate w^* -continuity of multiplication that $S_cS_c \subset S_c$; so S_c is a subsemigroup of B.

For each $x \in X$, $f \in M(X)^*$ we have that $f \cdot \delta_x = \langle \delta_x, f \rangle \delta_z$ so the maps $f \mapsto \langle \delta_x, f \rangle$ are affine semicharacters of S_c .

Now suppose that S is a compact and jM(X) is norm dense in C(S). Then j^* maps $M_p(S)$ one-to-one, w^* -continuous, and onto S_c . Thus $M_p(S)$ with the w^* -topology is homeomorphic to S_c . We define a semigroup structure on $M_p(S)$ by using this isomorphism (that is, for $\lambda, \nu \in M_p(S)$ define $\lambda * \nu = (j^*)^{-1}((j^*\lambda)(j^*\nu)))$. Thus $M_p(S)$ is a commutative affine w^* -semitopological semigroup. By Proposition 1.2 S is a compact semitopological hypergroup. Further for $x \in X, \lambda \in M(S)$, $\int_{S} (j\delta_x) d\lambda = \langle \delta_x, j^*\lambda \rangle$, which shows that $j\delta_x$ is a character of S.

Note that in the lemma M(X) may be replaced by an L-subspace A of M(X), (that is, A is a closed subspace of M(X) and $\mu \in M(X)$ and $\mu \in M(X)$ and $\mu < < \nu \in A$ implies $\mu \in A$). The dual of A is a w^* -closed ideal in $M(X)^*$ and so is itself a commutative W^* -algebra. However, the point masses δ_x may not be in A.

DEFINITION 1.4. Suppose X is a locally compact Hausdorff space and A is an L-subspace of M(X). Say A is an abstract measure algebra if it is a Banach algebra in the measure norm, and $A_pA_p \subset A_p$ (where $A_p = A \cap M_p(X)$). We say A has an identity if there exists an algebra identity $\epsilon \in A_p$. If A is commutative we let Δ_A denote the spectrum (maximal ideal space) of A, considered as a subset of the unit ball of the dual A^* of A. Further $\tilde{\mu}$ denotes the Gelfand transform of $\mu \in A$, so $\tilde{\mu} \in C_0(\Delta_A)$.

THEOREM 1.5. Suppose A is a commutative abstract measure algebra with identity ι , and E is a w^{*}-closed subset of Δ_A with the following properties: (1) $1 \in E$; (2) $f \in E$ implies $\overline{f} \in E$; (3) $g \in E, \mu \in A$ imply $||(g \cdot \mu)^{\sim}||_{E} \leq ||\widetilde{\mu}||_{E}$, (where $||\widetilde{\mu}||_{E} = \sup\{|\widetilde{\mu}(f)|: f \in E\}$). Then the norm-closed linear span of w^{*} co E is isomorphic to C(Y), where Y is a compact semitopological hypergroup with an identity, and the natural map $\sigma: A \to M(Y)$ is a homomorphism with w^{*}-dense range. Further $\sigma \iota = \delta_{\epsilon}$, where e is the identity in Y. If A contains a point mass δ_{x} , then $\sigma \delta_{x}$ is a point mass in Y. The set E considered as a subset of C(Y) consists of characters of Y.

Proof. The Gelfand transform maps $A \to C(E)$. By Lemma 1.3 $w^* \operatorname{co}(E)$ is closed under multiplication. Thus the norm closure of sp $(w^* \operatorname{co}(E))$ is a self-adjoint closed subalgebra of A^* , hence is isomorphic to C(Y), (Y is its spectrum). We define the natural map $j: M(E) \to C(Y)$ so that $\langle \mu, j\lambda \rangle = \int_E \tilde{\mu} d\lambda$, $(\mu \in A, \lambda \in M(E))$; note $j\lambda \in C(Y) \subset A^*$. Observe $j\delta_1 = 1$, and $jM_p(E) = w^* \operatorname{co}(E)$. We show that j satisfies the hypotheses of Lemma 1.3. Note that $||j\lambda||_Y$ is given by

$$egin{aligned} \||j\lambda\||_{ extsf{r}}&=\sup\left\{|\langle\mu,j\lambda
angle|:\mu\in A,\|\mu\|&\leq1
ight\}\ &=\sup\left\{\left|\int_{\mathbb{R}} ilde{\mu}d\lambda
ight|:\mu\in A,\|\mu\|&\leq1
ight\}. \end{aligned}$$

Let $y \in Y$ and define $j_1: Y \to M(E)^*$ by $\langle \lambda, j_1 y \rangle = j\lambda(y)$, $(\lambda \in M(E))$. For $\mu \in A, \lambda \in M(E)$ we have

$$\langle \mu, j(j_1y \cdot \lambda)
angle = \int_E \widetilde{\mu} d(j_1y \cdot \lambda) = \langle \widetilde{\mu} \cdot \lambda, j_1y
angle = j(\widetilde{\mu} \cdot \lambda)(y) \; .$$

Thus

$$||j_1y \cdot \lambda||_r \leq \sup \{||j(\widetilde{\mu} \cdot \lambda)||_r \colon \mu \in A, ||\mu|| \leq 1\}$$
.

Now

$$egin{aligned} ||j(ilde{\mu}\cdot\lambda)||_{ ext{r}}&=\sup\left\{|\langle
u,j(ilde{\mu}\cdot\lambda)
angle|:
u\in A,\,||
u||&\leq 1
ight\}\ &=\sup\left\{\left|\int_{ au} ilde{
u} ilde{\mu}d\lambda
ight|:
u\in A,\,||
u||&\leq 1
ight\}\ &\leq\sup\left\{||
u||\,||\mu||\,||j\lambda||_{ ext{r}}:
u\in A,\,||
u||&\leq 1
ight\}\ &=||
\mu||\,||j\lambda||_{ ext{r}}, \end{aligned}$$

(since $\tilde{\nu}\tilde{\mu} = (\nu\mu)^{\sim}$ and $||\nu\mu|| \leq ||\nu|| ||\mu||$). Thus $||j_1y \cdot \lambda||_{\mathbb{Y}} \leq ||\lambda||_{\mathbb{Y}}$. Further $jM(E) = \operatorname{sp}(w^* \operatorname{co} E)$ is dense in C(Y), so by Lemma 1.3 Y is a compact semitopological hypergroup. Note that $E \subset C(Y)$ consists of characters of Y.

Let σ be the natural map $A \to M(Y)$. Clearly σA is w^* -dense in M(Y). Further the convolution on M(Y) is defined in terms of multiplication in $M(E)^*$, but the map $A \to C(E) \subset M(E)^*$ is a homomorphism, so σ is a homomorphism.

Since $\tilde{\iota} = 1$ on E we have $\langle \iota, f \rangle = 1$ for all $f \in w^* \operatorname{co} E$. For $f, g \in w^* \operatorname{co} (E)$, $\langle \iota, fg \rangle = 1 = \langle \iota, f \rangle \langle \iota, g \rangle$ (since $fg \in w^* \operatorname{co} E$) thus $f \to \langle \iota, f \rangle$ is multiplicative and norm bounded on sp $(w^* \operatorname{co} (E))$, so there exists a unique point $e \in Y$ so that $\langle \iota, f \rangle = f(e), (f \in C(Y))$. Thus $\sigma \iota = \delta_e$ and e is the identity of Y. If there is a point mass $\delta_x \in A$ then $f \to \langle \delta_x, f \rangle$ is multiplicative on A^* , so $\sigma \delta_x$ is a point mass in Y.

It would be interesting to know whether Y has any characters other than the elements of E, but the answer is presently unknown to the author. If Δ_A has the properties specified for E, then the set characters of Y is Δ_A , since σA is w^* dense in M(Y) and characters of Y give multiplicative linear functionals on M(Y).

This line of investigation was motivated partly by Taylor's work [7] on structure semigroups of convolution measure algebras. Pym [5] has a result similar to Theorem 1.5 for the spectrum of a commutative Banach measure algebra M(X) in which multiplication is separately w^* -continuous and the map $\mu \mapsto f \cdot \mu$ is bounded in the spectral norm $(\mu \mapsto || \tilde{\mu} ||_{\infty})$, for each $f \in \Delta_{M(X)}$.

A compact hypergroup H is defined by Definition 1.1 with "separately continuous" in condition (2) replaced by "jointly continuous". We write \hat{H} for the set of characters of H, and Δ_H for the spectrum of M(H). For $\mu \in M(H)$, $\phi \in \hat{H}$, let $\hat{\mu}(\phi) = \int_{H} \bar{\phi} d\mu$. In the sequel we will refer to [1] for necessary details.

We will now construct a compact hypergroup H for which neither Δ_{H} nor the closure of \hat{H} in Δ_{H} satisfy the hypotheses of Theorem 1.5.

EXAMPLE 1.6. There exists a compact hypergroup H and $\psi \in \kappa \hat{H}$ (the closure of \hat{H} in Δ_H) such that $\mu \mapsto \psi \cdot \mu$, $(\mu \in M(H))$, is bounded in neither the $||\hat{\cdot}||_{\infty}$ nor the $||\hat{\cdot}||_{\infty}$ norm.

Proof. Let H_1 be the finite hypergroup described in Example 4.6 of [1]. Briefly the points of H_1 correspond to rows of the matrix

$$e \begin{bmatrix} \phi_0 & \phi_1 & \phi_2 \\ 1 & 1 & 1 \\ r_1 & 1 & -1/2 & 0 \\ r_2 & 1 & 1/4 & 0 \end{bmatrix}$$

and multiplication is pointwise. That is, the columns correspond to the characters of H_1 . Note that $\phi_1^2 = (1/8)(\phi_0 - 2\phi_1 + 9\phi_2)$. Let ν be the measure $\delta_e + \delta_{r_1} - 2\delta_{r_2}$ on H_1 , then $\tilde{\nu}(\phi_0) = 0$, $\tilde{\nu}(\phi_1) = 0$, and $\tilde{\nu}(\phi_2) = 1$.

Let *H* be the Tikhonov product $\prod_{n=1}^{\infty} H_1$, so *H* is a compact hypergroup. For $n = 1, 2, \dots$, let $H_n = \prod_{i=1}^{n} H_i$. We identify $M(H_n)$ with a subalgebra of M(H) under the map

$$\int_{H} f d\sigma \mu = \int_{H_n} f(x_1, \cdots, x_n, e, e, \cdots) d\mu(x_1, \cdots, x_n) ,$$

 $(f \in C(H), \mu \in M(H_n))$. By a multi-index I we mean a sequence $I = (i_1, i_2, \cdots)$ where $i_s = 0, 1, 2$ and $i_s = 0$ for all but finitely many s. For a multi-index I let $\phi_I(x) = \phi_{i_1}(x_1)\phi_{i_2}(x_2)\cdots$, then $\phi_I \in \hat{H}$. Let $\nu_n = \nu \times \cdots \times \nu$ (n times), an element of $M(H_n)$, and let $\mu_n = \sigma\nu_n \in M(H)$. The spectrum of $M(H_n)$ is isomorphic to $S_n = \{\phi_I: I \text{ multi-index}, i_s = 0 \text{ for } s > n\}$. Thus the spectral norm of a measure in $M(H_n)$ (or $\sigma M(H_n)$) is realized on S_n . Let $\psi_n^m \in \hat{H}$ be given by $\psi_n^{(m)}(x) = \phi_m(x_1) \cdots \phi_m(x_n)$ $(x \in H, m = 1, 2)$. We claim $||\tilde{\mu}_n||_{\infty} = ||\hat{\mu}_n||_{\infty} = 1$, in fact for $\phi_I \in S_n$, $\langle \mu_n, \phi_I \rangle = \prod_{s=1}^n \langle \nu, \phi_{i_s} \rangle = 0$ if $\phi_I \neq \psi_n^{(2)}$, and $\langle \mu_n, \psi_n^{(2)} \rangle = 1$. Let $m \ge n$, then $\langle \psi_m^{(1)} \cdot \mu_n, \psi_n^{(1)} \rangle = (9/8)^n$. Indeed $\langle \psi_m^{(1)} \cdot \mu_n, \psi_n^{(1)} \rangle = \int_H \psi_m^{(1)} \psi_n^{(1)} d\mu_n = \prod_{s=1}^n \langle \nu, \phi_1 \phi_1 \rangle = (9/8)^n$. Let ψ be a w^* -cluster point of $\{\psi_n^{(1)}\}$ in Δ_H .

CHARLES F. DUNKL

Then $\langle \psi \cdot \mu_n, \psi_n^{(1)} \rangle = (9/8)^n$ and $||\tilde{\mu}_n||_{\infty} = ||\hat{\mu}_n||_{\infty} = 1$, but $||(\psi \cdot \mu_n)^{\sim}||_{\infty} \ge ||(\psi \cdot \mu_n)^{\sim}||_{\infty} \ge (9/8)^n$.

2. P^* -hypergroups. See [1] for a reference for this section.

DEFINITION 2.1. A compact hypergroup H is called a P^* -hypergroup if:

(1) there exists an invariant measure $m_{H} \in M_{p}(H)$ and a continuous involution $x \mapsto x'$, $(x \in H)$ such that

$$\int_{_{H}}(R(x)f)ar{g}dm_{_{H}}=\int_{_{H}}f(R(x')g)^{-}dm_{_{H}}$$
 ,

and such that $e \in \text{support } \lambda(x, x')$, $(f, g \in C(H), x \in H)$, $(R(x): C(H) \rightarrow C(H)$ is defined by $R(x)f(y) = \int_{H} f d\lambda(x, y), f \in C(H), x \in H)$;

(2) $\hat{H}\hat{H} \subset \operatorname{co} \hat{H}$, that is, for each $\phi, \psi \in \hat{H}$ there exists a nonnegative function $n(\phi, \psi; \cdot)$ on \hat{H} with only finitely many nonzero values such that $\phi(x)\psi(x) = \sum_{\omega \in \hat{H}} n(\phi, \psi; \omega)\omega(x)$, $(x \in H)$.

Recall from [1] that each subhypergroup K of H is, by definition, closed and is normal $(x \in K \text{ implies } x' \in K)$, if H is P^* . Furthermore, K is itself a P^* -hypergroup with invariant measure m_{κ} .

DEFINITION 2.2. Let H be a compact P^* -hypergroup and let $\mu \in M(H)$. Define $\mu^* \in M(H)$ by

$$\int_{H} f d\mu^* = \left(\int_{H} (f(x')) d\mu(x) \right)^{-}, (f \in C(H)) .$$

Then $\mu \to \mu^*$ is an algebra involution and $(\mu^*)^{\hat{}}(\phi) = (\hat{\mu}(\phi))^{\hat{}}, (\phi \in \hat{H})$ (see Theorem 3.5 [1]).

DEFINITION 2.3. The set $B(\hat{H}) = \{\hat{\mu}: \mu \in M(H)\} \subset C^{B}(\hat{H})$ is a selfadjoint separating algebra of continuous functions on \hat{H} and contains the constants. Let $\kappa \hat{H}$ be the compactification of \hat{H} induced by this algebra. Equivalently $\kappa \hat{H}$ is the spectrum of the sup-norm closure of $B(\hat{H})$, and \hat{H} is a dense open subset.

THEOREM 2.4. $\kappa \hat{H}$ is a compact semitopological hypergroup, and \hat{H} is a discrete subhypergroup. Further $\kappa \hat{H}$, as a subset of Δ_H (the spectrum of M(H)), is w*-closed, contains 1, and is self-adjoint.

Proof. Let j be the bounded linear map: $M(H) \to C(\kappa \hat{H})$ which is determined by $(j\mu)(\phi) = \hat{\mu}(\phi) = \int_{H} \bar{\phi} d\mu$, $(\mu \in M(H), \phi \in \hat{H})$. Observe $||j\mu||_{\infty} = ||\hat{\mu}||_{\infty}$. Also $j\delta_e = 1$. For $\phi, \psi \in \hat{H}, \mu \in M(H)$ we have

420

$$j(\bar{\phi} \cdot \mu)(\psi) = \int_{H} \overline{\phi} \overline{\psi} d\mu = \sum_{\omega \in \hat{H}} n(\phi, \psi; \omega) \int_{H} \overline{\omega} d\mu = \sum_{\omega \in \hat{H}} n(\phi, \psi; \omega) \hat{\mu}(\omega) .$$

But $|j(\bar{\phi} \cdot \mu)(\psi)| \leq \sum_{\omega \in \hat{H}} n(\phi, \psi; \omega) |\hat{\mu}(\omega)| \leq ||\hat{\mu}||_{\infty} = ||j\mu||_{\infty}$. Thus we can apply Lemma 1.3 and obtain that $\kappa \hat{H}$ is a semitopological hypergroup. Further $M_p(\kappa \hat{H})$ is isomorphic to $w^* \operatorname{co}(\hat{H}) \subset M(H)^*$, and the functions $\{j\partial_x : x \in H\}$ are characters of $\kappa \hat{H}$.

We now apply Theorem 1.5 to $\kappa \hat{H}$ and obtain the following:

THEOREM 2.5. Suppose H is a compact P^* -hypergroup, then there exists a compact semitopological hypergroup Y such that $\kappa \hat{H}$ is a set of characters of Y, the norm-closed span of $w^* \operatorname{co}(\hat{H})$ is isomorphic to C(Y), and there is a monomorphism $\sigma: M(H) \to M(Y)$ with w^* -dense range.

3. Simple P^* -hypergroups. In this section H will always denote a compact P^* -hypergroup. We will describe an additional hypothesis which allows a complete description of \mathcal{A}_H . This hypothesis is realized in the algebra of ultraspherical series (see Example 4.3 [1]). The author suspects that the algebra of central measures on a compact simple Lie group also satisfies the hypothesis.

Recall from [1] that the center of H, Z(H), is $\{x \in H: y \in H \text{ implies}$ that $\lambda(x, y)$ is a point mass}. Further Z(H) is a compact subgroup of H and is the set $\{x \in H: |\phi(x)| = 1, (\phi \in \hat{H})\}$.

DEFINITION 3.1. Let *n* be a positive integer. Say *H* has property S_n if for each compact set $K \subset H \setminus Z(H)$ the sum $\sum_{\phi \in \hat{H}} c(\phi)(\sup_K |\phi|)^{2n} < \infty$, (where $c(\phi) = \left(\int_H |\phi|^2 dm_H\right)^{-1}$). (The letter "S" suggests "simple" in the sense that if *K* is a subhypergroup of *H* such that $K \not\subset Z(H)$ then *K* is open; see 3.4.) Say *H* is an *SP*-* hypergroup if it has property S_n for some *n*.

DEFINITION 3.2. Let $M_h(H) = \{\mu \in M(H) : |\mu|Z(H) = 0\}$, an L-subspace of M(H). Note $M(H) = M(Z(H)) \bigoplus M_h(H)$. Let π be the normbounded projection: $M(H) \to M(Z(H))$. For $\mu \in M(H)$ we write $\mu = \pi\mu + \mu_h$, so $\mu_h \in M_h(H)$.

We will show that if H is an SP-* hypergroup and $m_H(Z(H)) = 0$ then $M_h(H)$ is an ideal in M(H) and its annihilator in Δ_H is $\Delta_H \setminus \hat{H}$. Thus $\Delta_H \setminus \hat{H}$ is isomorphic to $\Delta_{Z(H)}$. The case $m_H(Z(H)) > 0$ will also be discussed.

PROPOSITION 3.3. Suppose H is an SP-* hypergroup with property S_n for some positive integer n and $\mu \in M_h(H)$, then $\mu^n \in L^1(H)$, (note $\mu^n = \mu * \mu \cdots * \mu$ (n times)).

Proof. First suppose $\mu \in M_{\mu}(H)$ has compact support K with $Z(H) \cap K = \varnothing$. Then for $\phi \in \hat{H}$, $|\hat{\mu}(\phi)| = \left| \int_{K} \bar{\phi} d\mu \right| \leq ||\mu|| \sup_{K} |\phi|$. We claim $\mu^n \in L^2(H) \subset L^1(H)$; indeed $\sum_{\phi \in \hat{H}} c(\phi) | (\mu^n)^{(\phi)} |^2 = \sum_{\phi} c(\phi) | \hat{\mu}(\phi) |^{2n} \leq 1$ $\||\mu||^{2n}\sum_{\phi} c(\phi) (\sup_{K} |\phi|)^{2n} < \infty$. The set of such μ is norm-dense in $M_{h}(H)$ and the map $\mu \mapsto \mu^{n}$ is norm-continuous taking a dense subset of $M_h(H)$ into $L^1(H)$, a closed subspace of M(H).

For $M_{t}(H)$ to be a nontrivial ideal it is necessary that $L^{t}(H) \subset$ $M_{h}(H)$. We present a lemma which gives several equivalent characterizations of this.

LEMMA 3.4. Let K be a subhypergroup of a compact P^* -hypergroup H. The following statements are equivalent: (Recall $K^{\perp} = \{\phi \in H : \phi \mid K = 1\}$)

- (1) K is open;
- (2) $m_{H}(K) > 0;$
- (3) each hypercoset of K^{\perp} is finite;
- (4) some hypercoset of K^{\perp} is finite;
- (5) m_{κ} is a nonzero multiple of $m_{\mu} | K$.

Proof. We first observe that each of (3) and (4) is equivalent to K^{\perp} being finite. It K^{\perp} is finite then each hypercoset $\phi \cdot K^{\perp}$, $(\phi \in H)$, is finite, since $\phi\psi$ has finite support in \hat{H} , $(\psi \in \hat{H})$. Further K^{\perp} is contained in the support of $\phi \cdot (\phi \cdot K^{\perp})$ for each $\phi \in H$, so if some hypercoset is finite then K^{\perp} is finite (for more details see 3.16 [1]).

(1) implies (2): Note that the support of m_H is H, (3.2 [1]). (2) implies (3): The characteristic function $\chi_K \in L^2(H)$ and ∞ , thus K^{\perp} is finite, (since $c(\phi) \ge 1$).

(3) implies (1) and (5): Recall $(m_{\kappa})^{\uparrow}$ is 1 on K^{\perp} and 0 off K^{\perp} (3.14 [1]). Since K^{\perp} is finite we have $m_K = f \cdot m_H$ where $f \in C(H)$; in fact $f \in \operatorname{sp} \hat{H}$. Since the support of m_H is H we see that $f \ge 0$ and f = 0 off K. We will show that f is constant on K, which implies that K is open and m_K is a nonzero multiple of $m_H | K$. Since $f \cdot m_H$ is the invariant measure on K, the identity $(f \cdot m_H) * \mu = f \cdot m_H$ holds for each $\mu \in M_p(K)$, (1.12 [1]). By Proposition 3.4 [1] this implies that

$$f(x) = \int_{\kappa} R(x) f(y') d\mu(y) , \qquad (x \in K) .$$

Thus f(x) = R(x)f(y') for each $x, y \in K$. Let $a = \sup_{K} f$ and let $K_1 =$ $\{x \in K : f(x) = a\}$. For $x \in K_1$, $y \in K$, $a = f(x) = R(x)f(y') = \int_{K} f d\lambda(x, y')$, but this implies that f is constant with value a on the support of $\lambda(x, y')$. Thus K_1 is a nonempty (closed) ideal in K, but K is normal so $K_1 = K$ and f is constant on K.

(5) implies (2): Clear.

Note if H is an SP-* hypergroup and $x \in H \setminus Z(H)$ then

$$\{\phi \in \hat{H}: |\phi(x)| = 1\}$$

is finite, so if K is a subhypergroup of H with $K \not\subset Z(H)$ then K^{\perp} is finite implying K is open (by 3.4).

The following will be needed for the case where Z(H) is open in H.

LEMMA 3.5. Suppose K is an open subhypergroup of a compact P^* -hypergroup $H, \psi \in \hat{K}$ and $\mu \in M(H)$ with $|\mu|K = 0$, then

$$\sum \left\{ c(\phi) \widehat{\mu}(\phi) \colon \phi \in \widehat{H}, \, \phi \, | \, K = \psi
ight\} = 0$$
 ,

(note this is a sum over a (finite) hypercoset of K^{\perp}).

Proof. We will show that $\sum_{\phi \mid K = \psi} c(\phi)\phi$ is equal to a multiple of ψ on K and is zero off K. By Lemma 3.4 there exists $d \ge 1$ such that $m_K = dm_H \mid K$. Let $f \in C(H)$ be defined by $f = \psi$ on K and f = 0 off K. Then $\hat{f}(\phi) = \int_{K} \bar{\phi} \psi dm_H = (1/d) \int_{K} \bar{\phi} \psi dm_K$, so $\hat{f}(\phi) = (dc(\psi))^{-1}$ for $\phi \mid K = \psi$ and $\hat{f}(\phi) = 0$ otherwise, $\left(\text{note } c(\psi) = \left(\int_{K} |\psi|^2 dm_K \right)^{-1}, \text{ see 3.17}$ [1]).

Thus $f \in \operatorname{sp} H$ and is given by the series $(dc(\psi))^{-1} \sum_{\phi \mid K = \psi} c(\phi) \phi$. Now

$$egin{aligned} 0 &= \int_{H} &ar{f} d\mu = (dc(\psi))^{-1} \sum\limits_{\phi \mid K = \psi} c(\phi) \! \int_{H} &ar{\phi} d\mu \ &= (dc(\psi))^{-1} \sum\limits_{\phi \mid K = \psi} c(\phi) \hat{\mu}(\phi) \; . \end{aligned}$$

For the following H will be an SP-* hypergroup, and for notational convenience we will write G for Z(H).

PROPOSITION 3.6. If $m_{H}G = 0$ then the projection $\pi: M(H) \to M(G)$ is a homomorphism and is bounded in the \hat{H} -sup-norm $(||\hat{\mu}||_{\infty})$.

Proof. For $\mu \in M(H)$ we set $\mu = \pi \mu + \mu_h$. By 3.3 there exists an integer *n* so that $\mu_h^n \in L^1(H)$. Thus $\hat{\mu}_h \to 0$ at ∞ on \hat{H} . Let $\gamma \in \hat{G}$, then $E_{\gamma} = \{\phi \in \hat{H} : \phi \mid G = \gamma\}$ is a hypercoset of G^{\perp} and is infinite (see 3.17 [1]). Let $\psi \in \kappa \hat{H} \setminus \hat{H}$ ($\kappa \hat{H}$ is the closure of \hat{H} in Δ_H) be the limit of an infinite convergent net $\{\phi_a\} \subset E_{\gamma}$. Then $\tilde{\mu}(\psi) = \lim_{\alpha} \tilde{\mu}(\phi_{\alpha}) =$

CHARLES F. DUNKL

 $\lim_{\alpha} ((\pi\mu)^{\widehat{}}(\gamma) + (\mu_{\hbar})^{\widehat{}}(\phi_{\alpha})) = (\pi\mu)^{\widehat{}}(\gamma). \text{ Note also } |\tilde{\mu}(\psi)| \leq ||\hat{\mu}||_{\infty}. \text{ Thus } ||(\pi\mu)^{\widehat{}}||_{\infty} \leq ||\hat{\mu}||_{\infty} \text{ and the functional } \mu \mapsto (\pi\mu)^{\widehat{}}(\gamma) \text{ is multiplicative for each } \gamma \in \hat{G}. \text{ Hence } \pi \text{ is a homomorphism.}$

The following is now evident, (note for $\mu_h \in M_h(H)$ that $\tilde{\mu}_h = 0$ off \hat{H}).

THEOREM 3.7. If $m_{\scriptscriptstyle H}G = 0$ then each element of $\Delta_{\scriptscriptstyle H} \backslash \hat{H}$ is of the form $\mu \mapsto (\pi\mu)^{\sim}(\psi)$ for some $\psi \in \Delta_{G}$. This correspondence is an isomorphism (of compact semitopological semigroups) of $\Delta_{\scriptscriptstyle H} \backslash \hat{H}$ with Δ_{G} . The hypergroup $\kappa \hat{H}$ is isomorphic to $\hat{H} \cup \kappa \hat{G}$ (where $\kappa \hat{G}$ is the closure of \hat{G} in Δ_{G}), and \hat{H} is attached to $\kappa \hat{G}$ so that an unbounded net $\{\phi_{\alpha}\} \subset \hat{H}$ clusters at a point $\psi \in \kappa \hat{G}$ if $\{\phi_{\alpha} | G\} \subset \hat{G}$ clusters at ψ .

In this particular situation, co Δ_H is already a semigroup. Let S be the spectrum of the norm-closed span of Δ_G in $M(G)^*$, then S is a compact semitopological semigroup (Taylor [7], or see [2, Ch. 1]). Let σ_1 be the canonical homomorphism: $M(G) \to M(S)$. Let Y be the spectrum of the norm-closed span of co (Δ_H) in $M(H)^*$. Then Y is the disjoint union of H and S. The homomorphism $\sigma: M(H) \to M(Y)$ is given by $\sigma\mu = \sigma_1(\pi\mu) + \mu_h$; recall $\pi\mu \in M(G)$ so $\sigma_1(\pi\mu) \in M(S)$ and $\mu_h \in M(H)$. Since σ has w^* -dense range we see that H is an ideal in Y.

THEOREM 3.8. Suppose $m_{\scriptscriptstyle H}G = 0$ and μ is an idempotent in M(H), then $\pi\mu$ is an idempotent in M(G) and $\hat{\mu}_{\scriptscriptstyle h}$ has finite support in \hat{H} . Thus $\{\phi \in \hat{H}: \hat{\mu}(\phi) = 1\}$ is in the hypercoset ring of \hat{H} .

Proof. Since π is a homomorphism, $\pi\mu$ is idempotent in M(G). Thus $(\mu_{\hbar})^{\uparrow} = \hat{\mu} - (\pi\mu)^{\uparrow}$ is integer-valued, but tends to zero at ∞ on \hat{H} , so is zero for all but finitely many points in \hat{H} . By Cohen's theorem [2, Ch. 5], $S = \{\gamma \in \hat{G} : (\pi\mu)^{\uparrow}(\gamma) = 1\}$ is in the coset ring of \hat{G} . The set $\{\phi \in \hat{H} : (\pi\mu)^{\uparrow}(\phi) = 1\} = \{\phi \in \hat{H} : \phi \mid G \in S\}$, which is in the hypercoset ring of \hat{H} (see 3.18 [1]).

If G is open in H then each hypercoset of G^{\perp} is finite. In this case $M_{\hbar}(H)$ is not an ideal (unless H = G), but $\mu \in M_{\hbar}(H)$ does imply $\tilde{\mu} = 0$ off \hat{H} . Each element of $\Delta_{\Pi} \setminus \hat{H}$ is of the form $\mu \mapsto (\pi \mu)^{\sim}(\psi)$, $(\mu \in M(H))$ for some $\psi \in \Delta_{G}\hat{G}$. (Note if $\pi \mu \in L^{1}(G) \subset L^{1}(H)$ then $(\pi \mu)^{\sim}$ is zero off $\hat{G} \subset \Delta_{G}$ and is zero off $\hat{H} \subset \Delta_{\Pi}$.) Thus $\Delta_{\Pi} \setminus \hat{H}$ is isomorphic to $\Delta_{G} \setminus \hat{G}$. It can be shown that Δ_{Π} is isomorphic to $(\Delta_{G} \setminus \hat{G}) \cup \hat{H}$ with \hat{H} attached to $\kappa \hat{G} \setminus \hat{G}$ in the obvious way.

THEOREM 3.7. If G is open in H and μ is an idempotent in M(H) then $\{\phi \in \hat{H}: \hat{\mu}(\phi) = 1\}$ is in the hypercoset ring of \hat{H} .

424

Proof. Set $\mu = \pi \mu + \mu_h$. We will show $\hat{\mu}_h$ is finitely supported on \hat{H} , thus $\pi \mu$ differs from an idempotent in M(G) by a trig polynomial on G (an element of sp $\hat{G} \subset C(G)$). Since $\hat{\mu}_h \to 0$ at ∞ on \hat{H} , the set $F = \{\phi \in \hat{H}: |(\mu_h)^{\frown}(\phi)| > 1/3\}$ is finite. Let $F_1 = \bigcup_{\phi \in F} \phi \cdot G^{\perp}$, a finite union of hypercosets of G^{\perp} , then F_1 is finite since G^{\perp} is finite (see 3.4). We claim $(\mu_h)^{\frown} = 0$ off F_1 . Indeed, let $\phi \in \hat{H} \setminus F_1$ and suppose $\phi_1 \in \hat{H}$ with $\phi \mid G = \phi_1 \mid G$, then $\phi_1 \notin F_1$ and $(\pi \mu)^{\frown}(\phi) = (\pi \mu)^{\frown}(\phi_1)$. Thus $|\hat{\mu}(\phi_1) - \hat{\mu}(\phi)| = |(\mu_h)^{\frown}(\phi_1) - (\mu_h)^{\frown}(\phi)| \leq 2/3$. But $\hat{\mu}$ is integer valued so $\hat{\mu}(\phi_1) = \hat{\mu}(\phi)$ and $(\mu_h)^{\frown}(\phi_1) = (\mu_h)^{\frown}(\phi)$. Thus $\hat{\mu}_h$ is constant on $\phi \cdot G^{\perp}$ and by Lemma 3.5 we have $(\mu_h)^{\frown} = 0$ on $\phi \cdot G^{\perp}$.

References

 C. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math.
 C. Dunkl and D. Ramirez, Topics in Harmonic Analysis, Appleton-Century-Crofts, New York, 1971.

I. Glicksberg, Convolution semigroups of measures, Pacific J. Math., 9 (1959), 51-67.
 J. Pym, Weakly separately continuous measures algebras, Math. Annalen, 175 (1968), 207-219.

5. ____, Dual structures for measure algebras, Proc. London Math. Soc., (3), **19** (1969), 625-660.

6. D. Ragozin, Central measures on compact simple Lie groups, J. Functional Anal., 10 (1972), 212-229.

7. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., **119** (1965), 150-166.

Received May 10, 1972. This research was partly supported by NSF Grant GP-31483X.

UNIVERSITY OF VIRGINIA