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DIMENSION THEORY IN ZERO-SET SPACES

M. J. CANFELL

The main purpose of this paper is to show that the zero-
set spaces of Gordon provide a natural and very general
setting in which to develop dimension theory. Defining cover-
ing dimension for zero-set spaces in the natural way, it is
shown that the subspace theorem, the product theorem, and
sum theorem hold. As a consequence it is possible to give a
subspace theorem for arbitrary topological spaces.

1* A subspace theorem for arbitrary topological spaces* From

the general theory in zero-set spaces it is possible to deduce a
subspace theorem in arbitrary topological spaces. To express the
result it is convenient to have on hand a definition of the dimension
of a ring as defined in [1]. This notion also allows the simplification
of certain proofs in dimension theory.

Let R be a commutative ring with identity. By a basis of R we
mean a finite set of elements which generate R. The order of a basis
is the largest integer n for which there exist n + 1 members of the
basis with nonzero product. A basis {αj of R is said to refine the
basis {bj} of R if each α̂  is a multiple of some b3 . The dimension of
R, denoted by d(R)f is the least cardinal m such that every basis of
R has a refinement of order at most m.

Let C(X) denote the ring of continuous real-valued functions on
a topological space X. It is shown in [1] that dim X — d(C(X)). For
subspaces A of X, the statement d(C(A)) ^ d(C(X)) is equivalent to
dim A ^ dim X} the assertion of the subspace theorem. These state-
ments are not always true in arbitrary topological spaces [9, p. 264],
However we obtain a subspace theorem by replacing C(A) by another
ring of functions associated with A. Let CZ{A) denote the set of all
real-valued functions / defined on A such that for each real number
r, the sets {x e A \ f(x) ^ r) and {x e A \ f(x) ^ r} are the intersections
with A of zero-sets of X. Here a zero-set of X is the set of zeros
of a continuous real-valued function on X. For general information
about zero-sets the reader is referred to [9]. It follows from
Theorem 3.5 of [10] that CZ{A) is a uniformly closed ring and is
also a lattice.

The proof of the following subspace theorem will be discussed
after Theorem 10.

THEOREM 1. If A is a subspace of an arbitrary topological space
X, then d(Cz(A)) ^ d(C(X)).
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It is also possible to formulate analogous versions of the product
theorem and the sum theorem in arbitrary topological spaces. However,
it will become apparent that the most natural way to formulate these
results is in the context of zero-set spaces.

The ring CZ(A) introduced above seems to have been little studied
in the literature and we digress to give some further information
about it.

It is clear that CZ(A) is contained in C(A). A condition for equality
may be given using the concept of "z-embedding" from [11]. A subspace
A of a topological space X is said to be z-embedded in X if every
zero-set of A is the intersection with A of a zero-set of X. In par-
ticular, if X is perfectly normal, every closed set of X is a zero-set
of X, and it follows that every subspace of X is z-embedded in X.

THEOREM 2. Let A be a subspace of a topological space X. Then
CZ(A) = C(A) if and only if A is z-embedded in X.

Proof. Suppose A is z-embedded in X and / e C(A). For each
real number r, the sets {x e A \ f(x) ^ r) and {x e A \ f(x) ^ r} are zero-
sets of A and by hypothesis are the intersections with A of zero-sets
of X. Hence feCz(A). It follows that CZ(A) = C(A).

Conversely, suppose CZ(A) = C(A) and let Z be a zero-set of A.
Then Z = {x e A \ f(x) = 0} for some / e C(A). Since / e CZ(A), it
follows that Z is the intersection with A of a zero-set of X. Hence
A is z-embedded in X.

If feC(X), the restriction of / to a subspace A clearly belongs
to CZ(A). In the case when A is a zero-set of X, we have a Urysohn
extension theorem for members of CZ{A).

THEOREM 3. Let A be a zero-set of an arbitrary topological space
X. Then each f e CZ(A) has a continuous extension to X.

Proof. Except for notation, the proof is the same as in Gillman
and Jerison [9, pp. 18,19].

2* Zero-set spaces* In the following, R will denote the real
numbers and N the positive integers. For information on zero-set
spaces, the reader is referred to Gordon [10]. In this section we
review some of the main facts and give some further results.

A zero-set space is a pair (X, %) where JΓ is a family of subsets
of X satisfying certain axioms. The sets in % are called zero-sets
and their complements with respect to X are called cozero-sets. The
first of the axioms given by Gordon concerning the separation of
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distinct points of X by a set in % is not needed in dimension theory
and we will omit this requirement. Further, we find it convenient
to give the axioms for the cozero-sets rather than the zero-sets. Thus
by a zero-set space we mean a pair (X, 3f) where ^ is a family of
subsets of X such that the family ^ of all complements in X of
members of 3£ satisfies the following conditions.

(1) ^ is closed under countable unions; in particular, I e ^ .
(2) ^ is closed under finite intersections; in particular, φz^.
(3) Whenever A and B are disjoint zero-sets of X, there exist

disjoint cozero-sets C and D with AczC and BdD.
(4) Each cozero-set of X is the countable union of zero-sets of X.

It is interesting to note that these conditions differ from the
axioms for the open sets of a perfectly normal topological space only
in the requirement that we have closure under countable unions rather
than arbitrary unions. It is significant that a good theory of dimen-
sion is available for perfectly normal spaces [2], [3].

The family of all cozero-sets in an arbitrary topological space
satisfies the conditions (1)—(4), [9, Chapter 1]. It is again significant
that the most satisfactory theory of dimension in topological spaces
involves the use of cozero-sets [9, p. 243], [8].

If X and Y are zero-set spaces, a mapping a: X—>Y is called a
zero-set mapping if the inverse image of every cozero-set is again
a cozero-set. When Y — R, the cozero-sets are taken to be the open
sets of R. If X is a zero-set space, S(X) will denote the set of
real-valued zero-set mappings on X. It is shown in [9] that

(i) S(X) is a uniformly closed ring and is also a lattice:
(ii) For each cozero-set C of X, there is a zero-set function / e

S(X) such that C = [xeX\f(x) Φ 0}.
Part (ii) is the justification for calling members of ^ cozero-sets,

and may be derived from a Urysohn's lemma argument in almost the
same way that an open set in a perfectly normal topological space is
shown to be the cozero-set of a continuous real-valued function as in
[6, p. 148].

With subspaces defined in the natural way as in [10], we also
have the Urysohn extension theorem holding for zero-set spaces.
Again the proof is the same as in [9].

THEOREM 4. Let X be a zero-set space and let A be a zero-set of
X. Then each f e S(A) has an extension to a zero-set function of S(X).

By a basic cover of a zero-set space, we mean a covering of X by
cozero-sets. In defining locally finite families in zero-set spaces, we
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use a condition which is somewhat stronger than the condition for
local finiteness in topological spaces.

DEFINITION. A family {Ua\<xeA} of subsets of a zero-set space
X is said to be locally finite if there exists a countable basic cover
{Vi I i e N} of X such that each F* meets at most finitely many of
the Ua.

We now give a result which is crucial in the development of
dimension theory in zero-set spaces. This says in effect that every
zero-set space is countably paracompact. Countably paracompact spaces
were discussed by Dowker [4] who showed that each perfectly normal
topological space is countably paracompact.

THEOREM 5. Let {U7J be a countable basic cover of a zero-set space.
Then there exists a countable locally finite basic cover {FJ of X such
that V{ c Ui for each i.

Proof. Choose zero-set functions f5 such that

and let

BJt = {x\Ux)<l^9

Vi= Di Π (Π BSi) ,

and

Wjk = {x\fj(x)>l/k}.

It is clear that Vi is a cozero-set and that F< c ϋi For each x e
X, there is some first i for which xe Ui but x <£ Uk for ft < i. Suppose
that x e V^ Then x $ BH for some j < i and therefore f, (x) ̂  1/i > 0.
Thus xe Uk for some k ̂  j < i. This contradiction shows that xe Vi
and so {FJ is a basic cover of X.

Given ίi G l there is some j for which fό(x) > 0. Hence α; e Wjk

for some ft and therefore {Wjk} is a countable basic cover of X. If
i > i and i > ft, then # e T7ifc implies that /.(T/) > I/ft > 1/i so that
ί/ ί J5, i. Thus ?/ ί Fi and TFiA; Π F* = 9. Therefore, Wjk meets only
finitely many F< and the proof is complete.

REMARK. It is possible to show as in [7, p. 221] that each coun-
table basic cover has a star-finite countable basic refinement.
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3* Covering dimension for zero-set spaces* The order of a basic
cover is the largest integer n for which there exist n + 1 members
of the cover with nonempty intersection.

DEFINITION. Let X be a zero-set space. The dimension of X,
denoted by dim X, is the least cardinal m such that every finite basic
cover of X has a finite basic refinement of order at most m.

If (X, ^) is a topological space, then the family %* of zero-sets of
X form a zero-set structure on X. The definition of dimension for a
topological space (X, J7~) as given in [9, p. 243] is the above definition
for the case of the zero-set space (X, %?).

The subspace theorem for zero-sets of a zero-set space is an easy
consequence of the definition. If X is a zero-set space with dim X ^ n,
and if A is a zero-set of X, then dim A ^ n.

We remark that if {Z7J is a basic cover and {V,} is a countable
basic refinement of order ^ n, then there exists a basic cover {W{}
of order <̂  n such that Wi c J74 for each i. In fact we only have to
set Wi = Uί^i lViCϋi , F, <Z 17* for fc < i}. Some of the W* may
possibly be empty.

The following lemma is proved using an argument due to deVries
and given in Nagata [13, p, 22].

LEMMA 6. Let {Ui\ieN} be a countable basic cover of a zero-set
space X, and let {Zj\jeN} be a countable locally finite cover of X
consisting of zero-sets Zό such that dim Zs ^ n for each j and such
that each Zj meets at most finitely many Ui Then there exists a basic
cover {Vi \ i e N] of order rg n such that Fj c Ui for each i e N.

Proof. We construct by induction a sequence of basic covers
{Uj,i I i G N) such that UQίi = Ut and Uj}i c Uk}i for j > fc, and such that
each point of Zj is contained in at most n + 1 members of {U3 ti \ i e N}.
Suppose that {Ukfi\ίeN} has been constructed. To get {Uk+lti \ i e N)
we restrict {Z7fcfί|ieiV} to Zk+1 and choose a basic refinement {Wkti\ie
N} of it of order ^ n such that Wkfi c Ukti for each ί. If we put
Uk+Ui — (Ukίi\Zk+1) U Wk,if the induction step is completed.

Let Vi = Π {Ukti\keN}. To see that Vt is a cozero-set, we let
{As} be a countable basic cover such that each As meets at most
finitely many Zk. Since Uk+Ui was obtained from Ukfi by removing part
of Zk+19 it follows that for some integer K we have UkΛ Π A8 — Uκ>i Π As

for all k > K. Since Vi is a countable union of sets of the form
Uκ,i Π A8, it is a cozero-set. Finally it is clear that each point of X is
contained in at most n + 1 of the F*.

LEMMA 7. Lei {FJ 6e α countable basic cover of a zero-set space
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X. There exists a basic cover {Wk} and zero-sets Zk such that Wkcz
Zk c Vk for each k.

Proof. The sets Wk and Zk may be found inductively as in [9,
p. 243].

For normal topological spaces, Dowker [5] has shown that one
may use locally finite covers instead of finite covers in the definition
of dimension. For zero-set spaces one may use countable basic covers
instead of finite basic covers as shown in the next result.

THEOREM 8. Let Xbea zero-set space. Then dim X^ n if and only
if every countable basic cover of X has a countable basic refinement of
order fg n.

Proof. The sufficiency of the condition follows from the remarks
preceding Lemma 6.

Suppose now that dim X <J n. In view of Theorem 5, it is sufficient
to prove the result for locally finite covers. Let {J7J be a countable
locally finite basic cover of X and let {Ak} be a countable basic cover
of X such that each Ak meets at most finitely many Ut. Let {Vk} be
a locally finite basic cover of X such that Vk c Ak for each k. Choose
zero-sets Zk as in Lemma 7. Since {Vk} is locally finite, so is {Zk}
and since Zka Ak, each Zk meets at most finitely many J7< We have
dim Zk ^ n for each k. An application of Lemma 6 now yields a basic
refinement of {Z7J of order fg n. This completes the proof.

Further characterizations of dimension in terms of mappings and
separation of zero-sets may be obtained for zero-set spaces. These
results, and their proofs, are similar to the results in topological spaces
as in [12] and [8].

4* The sum, subspace, and product theorems*

THEOREM 9. (The sum theorem.) Let X be a zero-set space and
let X = \JT=i Z{ where each Z{ is a zero-set. If dim Z{ ^ n for each
i, then dim X ^ n.

Proof. This result may be proved as in Hemmingsen [12, Theorem
4.2]. For the case when the family {Z^ is locally finite, the result
is immediate from Lemma 6. It is only the latter case which is needed
in the proof of the subspace theorem.

THEOREM 10. (The subspace theorem.) If X is a zero-set space
and A is a subspace of X, then dim A ^ dim X.
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Proof. We have already observed that the result holds when A
is a zero-set of X.

Suppose next that A is a cozero-set of X. Choose a zero-set
function / such that 0 £ f ^ 1 and A = {x \ f(x) > 0}. Let Z{ = {x | l/(i +
1) ^ f(χ) rg 1/i}, (i = 1, 2, •), and let Ut = {x\ f(x) > 1/ϊ}. Then
is a basic cover of A and each Z7< meets finitely many Z«. Thus
is a locally finite collection in A. Also A = (JΓ=i ̂ * and since dim ̂  ^
w for each i, we have dim A ^ n by Theorem 9.

Finally we consider an arbitrary subspace A of X. Let {U{} be
a finite basic cover of A. We can write Ui = ViΠA for cozero-sets
Fi of X. The cozero-set F = Z7; F; has dimension ^ n (by the pre-
ceding paragraph) and so the basic cover {FJ of F has a basic refine-
ment {W3) (in F) of order ^ w. The trace of {W3) on A is then a
basic refinement of {ίJJ of order ^ w. Thus dim A ^ π and the proof
is complete.

If X is a zero-set space, we may show, as in [1], that dimX =
d{S{X)). Moreover, if S*(X) denotes the bounded functions in S(X),
the same argument may be used to show that dim X = d(S*(X)).

Theorem 1 now follows from Theorem 10. If J7~ is a topology
on X, we let %* denote the family of zero-sets in X of elements of
C(X). If A is a zero-set subspace of (X, 5Γ), then dim A <̂  dimX.
Hence d(S(A)) ̂  d(S(X)). The result follows if we observe that CZ(A) =
S(A) and C(X) - S(X).

The product of zero-set spaces is discussed in [10, p. 152]. The
product theorem for zero-set spaces will be derived from the subspace
theorem and the product theorem for compact topological spaces.

Let X be a zero-set space for which S(X) separates the points of
X. Gordon [10] has shown that such a space has a compactification
βX with the property that S*(X) is isomorphic to S(βX). Moreover,
if βX is given the weak topology induced by S(βX), then C(βX), the
ring of continuous functions on βX for this topology, coincides with
S(βX). Thus d{C{βX)) = d(S(βX)) and it follows that the dimension
of βX is the same whether considered as a zero-set space or as a
topological space.

THEOREM 11. If X is a zero-set space, then dim X = dim βX.

Proof. Since S* (X) and S(βX) are isomorphic, dim X = n <=>
d(S*(X)) = n~> d(S(βX)) = n^άimβX= n.

THEOREM 12. (The product theorem.) If X and Y are zero-set
spaces, then
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dim ( 1 x 7 ) ^ dim X + dim Y.

Proof. Suppose first that S(X) and S(Y) separate the points of
X and Y respectively. Since X xYa βXxβY, the subspace theorem
yields dim ( 1 x 7 ) ^ dim (βX x βY). By the product theorem for
compact topological spaces [12], we have dim (βX x βY) ^ dim βX +
dim β Y. Since dim X = dim βX and dim Y = dim β Y, it follows that
dim ( 1 x 7 ) ^ dim X + dim Y.

Now suppose that X and Y are arbitrary zero-set spaces. We
may define, as in the construction on p. 41 of [9], zero-set spaces Xf

and Y' such that S(X) is isomorphic to S(Xf) and S(Y) is isomorphic
to S(Y), and S(X') and S(Y') separate the points of X' and Y' respec-
tively. It is clear from the construction that S(X x Y) is isomorphic
to S{X' x Y'). It follows that dim (XxY) = dim (X x Y') The
result follows on applying the first part of the theorem to X' and Y'
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