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COMMON FIXED POINTS OF TWO MAPPINGS

CHI SONG WONG

Let S, T be functions on a nonempty complete metric
space (X, d). The main result of this paper is the following.
S or T has a fixed point if there exist decreasing functions
<xu <*2» OLZ9 a49 a5 of (0, oo) into [0, 1) such that (a) 2<«i <*• < 1>
(b) aι=a2 or as=a4, (c) lim^o («i+«2)<l and limί

and (d) for any distinct x9 y in X,

d(S(x)9 T{y)) ̂  a,d(x9 S(x)) + a2d(y9 T(y)) + azd(x, T(y))

+ a4d(y, S(x)) + a5d(&, y),

where <Z; = «i (cί(α5,2/)). A number of related results are ob-
tained.

1* Introduction* Let (X, d) be a nonempty complete metric
space and let S, T be mappings of X into itself which are not neces-
sarily continuous nor commuting. Suppose that there are nonnegative
real numbers al9 α2, α3, α4, α5 such that

( a ) aL + α2 + α3 + α4 + α5 < 1 ,

(b) αx = a2 or α3 = α4 ,

and for any x, y in X,

(c) d(S(x), T(y)) £ M(α?, S(x)) + α2d(2/, Γ(i/)) + a>d(x, T(y))

S(α)) + aδd(x, y)

It is proved in this paper that each of S9 T has a unique fixed point
and these two fixed points coincide. Among others, a generalization
is obtained by replacing al9 α2, α3, α4, α5 with nonnegative real-valued
functions on (0, oo). This result generalizes the Banach contraction
mapping theorem and some results of G. Hardy and T. Rogers [5],
R. Kannan [7], E. Rakotch [8], S. Reich [9], P. Srivastava, and
V. K. Gupta [10] It also gives a different proof for these special
cases. Note that even if X = [0,1] and if T19 T2 are commuting
continuous functions of X into itself, Tu T2 need not have a common
fixed point [1], [2], and [6].

2* Basic results*

THEOREM 1. Let S, T be mappings of a complete metric space
(X9 d) into itself. Suppose that there exist nonnegative real numbers
al9 a2y α3, α4, α5 which satisfy (a), (b), and (c). Then each of S9 T
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has a unique fixed point and these two fixed points coincide.

Proof. Let x0 e X. Define

*&2n + l ~ &\%2n)i %2n + 2 ~ •*• \^2n + l) 9 % = U, 1 , ώ,

From (c),

xu x2) = d(S(x0), T(xJ)

<^ (a1 + aδ)d(x0, xγ) + a2d(xly x2) + a3d(x0, x2)

^ (αx + a5)d(x0, xλ) + a2d(xl9 x2) + as(d(xQ, xλ) + d(xλ, x2)) .

So

d(xl9 x2) ^ a' + α 3 + α 5 d(x0, x,) .
1 — a2 — α3

Similarly,

(2)

Let

_ a, + a3 + α5 _ _
/ — — > o —X Ct2 (Xg X (ΛI-^ Cθ£

R e p e a t i n g t h e a b o v e a r g u m e n t , w e o b t a i n , for e a c h n — 0, 1, 2, •••,

( 3 ) d(x2n+1, x 2 n + 2 ) ^ rd(x2n+1, x 2 n ) ,

( 4 ) d f e + 3 , ff2Λ+2) ^ sd(a; 2 n + 2 , x2 M + 1) .

B y (3), (4), a n d i n d u c t i o n , w e h a v e , f o r e a c h n = 0, 1, 2, •••,

( 5 ) d ( a w , ^2W+2) ^ r ( r s ) w ( ί ( ^ 0 , ^ ) ,

( 6 ) d(x2n+2, x 2 n + s ) ^ (rs)n+1d(x0, x,) .

Since rs < 1 and

Σ d(xn, xn+1) ^ (1 + r) Σ («)»d(a?0, αj ,

{xn} is Cauchy. By completeness of (X, d), {xn} converges to some
point x in X. We shall now prove that x is a fixed point of S and
Γ Let n be given. Then

d(x, S(x)) ^ d(a?, α;2%+2) + d(S(x), x2n+2)

= d(x, x2n+2) + d(S(x), T(x2n+1)) .

By (c),
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d(S(x), T(α?2n+i)) ^ <hd(x, S(x)) + a2d(x2n+1, α;2w+2) + azd(x, x2n+2)

+ a4d(x2n+1, S(α?)) + αβd(α?, a?2n+1) .

Combining (7) and (8) and letting n tend to infinity, we obtain

d(x, S(x)) ^ (αx + a4)d(x, S(x)) .

Since ĉ  + α4 < 1, S(#) = x. Similarly T(x) = x. Let y be a fixed
point of T. Then from d(x9y) = d(S(x), T{y)) and (c), we obtain

d(a?, /̂) <; (α3 + α4 + aδ)d(x, y) .

Since α3 + α4 + α5 < 1, d(x, y) = 0. So T has a unique fixed point.
Similarly, S has a unque fixed point.

When α3 = α4 = α5 = 0, S = T and Γ is continuous (or even
#—>ώ(α;, T(x)) is lower semicontinuous) on X, Theorem 1 can be ob-
tained by an earlier result of the author [11, Theorem 1]

From the proof of Theorem 1, we know that S, T still have a
common fixed point if conditions (a), (b) are replaced by the following
conditions:

( 9 ) (aL + a3 + aδ)(a2 + α4 + α5) < (1 - a2 - α3)(l - a, - α4) ,

(10) a, + α4 < 1 .

If in addition,

(11) α3 + α4 + α5 < 1 ,

then the common fixed point of S, T is the unique fixed point of S
(and T). Note that conditions (a) and (b) imply (9), but (a) alone
does not. Indeed, for any al9 a2, aδ in [0, °o) with ax Φ a2 and
a^ + a2 + aδ < 1, we can always find α3, α4 in [0, <*>) such that (a)
holds but (9) does not. This can be seen by considering the affine
function / :

f(x, y) = (1 - α2 - x)(l - a, - y) - (a, + x + αβ)(α2 + y + a5)

defined on the compact convex set

K = {(x, y) e [0,1] x [0,1]: a, + a2 + x + y + α6 ^ 1}

/ takes its minimum value at one of the extreme points of K.
With some computation, we conclude that

min f(K) = — I ax — a2 \ (1 — at — a2 — α5) .

Since a, + α2 + aδ> 1, min f(K) < 0 if and only if αx Φ a2. Thus if
di Φ α2, then by continuity of /, there exists a point (α3, α4) in
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v)eK: a, + a2 + x + y + aδ = 1}

such that /(α3, α4) < 0.

COROLLARY 1. R. Kannan [7, Theorem 1]. Let S be a mapping
of a complete metric space (X9 d) into itself. Suppose that there
exists a number r in [0,1/2) such that

d(S(x), S(y)) ̂  r(d(x + S(x)) + d(y,

for all x, y in X. Then S has a unique fixed point.

COROLLARY 2. P Srivastava and V. K. Gupta [10, Theorem 1].
Let Sf T be mappings of a complete metric space (X9 d) into itself.
Suppose that there exists nonnegative real numbers a19 a2 such that

(a) a, + a2 < 1

and

(b) d(S(x)9 T{y)) ̂  aid(x, S(x)) + a2d(y9 T{y))

for all x, y in X.

Then S, T have a unique common fixed point.

Srivastava and Gupta stated the above result in a more general
form with S, T replaced by Sp, Tg for some positive integers p9 q.
Since the unique fixed point of Sp (similarly Tq) is the unique fixed
point of S, this result is equivalent to Corollary 2.

For Corollaries 1 and 2, we have the following related result.

PROPOSITION. Let S9 T be self-maps of a nonempty complete
metric space (X, d). Suppose that there exist nonnegative real
numbers a19 a2 such that a1 + a2 < 1 and

( *) d(S(x), T(y)) ^ a,d{x9 S{x)) + a2d(y9 T(y)) , x9yeX.

Then either (*) is true when all of its S are replaced by T or (*) is
true when all of its T are replaced by S.

The following example proves that our result is actually more
general than that of Srivastava and Gupta.

EXAMPLE. Let X = {1, 2, 3}. Let d be the metric for X deter-
mined by

i , 8) = i-."
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Let S, T be the function on X such that

S(l) = S(2) = 5(3) = 1;

Γ(l) = Γ(3) = 1 , Γ(2) = 3 .

Let ax = 0, α2 = 0, α3 = 0, α4 = 5/7, α5 = 0. Then the conditions of
Theorem 1 are satisfied. However, no nonnegative real numbers
aίy α2, α3, αδ can be chosen such that α1 + α2 + α8 + α B < l and for
%,yeX,

d(S(x), T(y)) ̂  M(α, S(x)) + a2d(y, T(y)) + a,d(x, T(y)) + aδd(x, y) .

For if there exist such a19 a2, α3, α5, then

d(S(3), Γ(2)) ̂  ^ ( 3 , S(3)) + α2d(2, Γ(2)) + α3d(3, Γ(2)) + α6d(3, 2) .

So

5 <* 5 θ ! , 4α 2 , 4α δ ^ 5 ( , • χ 5

— ̂  ^ + ~γ + ~γ ^ — (at + a2 + aδ) < — ,
a contradiction.

COROLLARY 3. G. Hardy and T. Rogers [5, Theorem 1]. Let S be
a mapping of a nonempty complete metric space (X, d) into itself.
Suppose that there exist nonnegative real numbers a19 <z2, α3, α4, α5

such that

(a) ax + α2 + α3 + α4 + aδ < 1

(b) ώ(S(aj), S(»)) ^ α ^ ^ , S(α) + α^(y, S(y)) + azd(x, S(y))

+ ad{y,S{x)) + abd(x,y)

for all x9 y in X.

TΆen S Λαs α unique fixed point.

Note that in the above case, we may without loss of generality
assume that a1 = α2, α3 = α4 (replace α1? α2, α3, α4, αβ respectively by

5

if necessary). So the above result follows from Theorem 1. The
above example shows that there is no such symmetry (αx = α2, α3 = a4)
for the general case. Indeed, we cannot even assume α3 = α4. For
if α3 = α4, then for the above example, we have
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- | = d(S(S), T(3)) ^ A α, + i- α2 + α4 + y α5 .

5 4 1 1 4

5 5
< -=- («i + α2 + α3 + α4 + α5) < — ,

a contradiction.

2* Extensions and some ralated results* The following result
generalizes Theorem 1. Its proof is different from the one we gave
for Theorem 1.

THEOREM 2. Let S, T be functions on a nonempty complete
metric space (X, d). Suppose that there exist decreasing functions
a19 a2, a3, ai9 aδ of (0, ©o) into [0,1) such that

(a) ΣU«*< 1;
(b) ax = a2 or a3 = a,;
( c ) lim ί i 0(α2 + α3) < 1 and l i m ^ o ^ + a4) < 1;
( d ) for any distinct x, y in X,

d(S(x), T{y)) ^ aid(x, S(x)) + a2d(y, T(y)) + a3d(x, T{y))

+ a±d{y, S(x)) + abd{x, y) ,

where α̂  = a.i{d(x, y)).
Then at least one of S, T has a fixed point. If both S and T

have fixed points, then each of S, T has a unique fixed point and
these two fixed points coincide.

Proof. Let xQ e X. Define for each n — 0,1, 2, ,

aWi = S(x2n) , x2n+2 = T(x2n+1) , bn = d(xn, xn+1) .

We may assume that bn > 0 for each n, for otherwise some xn is a
fixed point of S or T. Let

(*) + Qf(t) + or(t) f ^ o
1 - <x2{t) -

β ( ί ) = flr(

Then r, s are decreasing. From (a) and (c), the limits

r0 = lim r(t) , sQ = lim

are nonnegative real numbers. Let
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f{t) = T(t)s(t) , t > 0 .

Then / is decreasing and f(t) < 1 for each t > 0. As in the proof
of Theorem 1, we have for each n — 0,1, 2, ,

(12) b2n+1 ^ τ{b2n)b2n ,

(13) b2n+2 ^ s(b2n+ί)b2n+1 .

Let w be given. Then

(14) b2n+s ^ r(b2n+2)s(b2n+1)b2n+1 ,

(15) δ 2 % + 2 ^ s(b2n+ι)r(b2n)b2n .

Since r, s are decreasing,

(16) 62w+3 ^ /(min {62%+2, 62n+1})&2%+1 ,

(17) b2n+2 ^ /(min {62%+ι, &2w})62w .

Since f(t) < 1 for each t > 0, {&2n+i}> {62J are decreasing sequences.
So {&2%+i}, {&2W} converge respectively to some points cί9 c2. We shall
prove that cx = 0, e2 — 0. From (12) and (13),

cx ^ r 0 c 2 , c2 ^ So^i .

So either both c19 c2 are zero or both cl9 c2 are not zero. Suppose to
the contrary that ct Φ 0, c2 Φ 0. Then from (16) and (17),

(18) bn+2 ^ /(min {ct, c2})bn , w = 0,1, 2, - .

By induction,

(19) b2n £ (/(min fe, c2}))nb0 n = 0,1, 2, . . . .

So c2 = 0, a contradiction. Therefore, cx ~ c2 = 0. This proves that
{&J converges to 0.

Now we shall prove that {xn} is Cauchy. Suppose not. Then
there exist ε€(0, oo) and sequences {p(n)}, {q(n)} such that for each

(20) p(n) > q(n) > n ,

(21) d(xp(n),xqίn)) ^ ε ,

and (by the well-ordering principle),

(22) dί&po-i, »ff( )) < e .

Let n ^ 0 be given, cΛ = d(αjp(Λ), a?ff(»,). Then
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(23) S - C "
^ d(xP{n), Xp(n)-ι) + d{xp{n)_u xq{n)) < δP(»)-i + e .

From ^ — c^ — 0, we conclude that {cn} converges to ε from the right
Let

11 = {n: p(n), q(n) are odd} ,

12 = {n: p(n) is odd, q(n) is even} .

J3 = {tt: p(^) is even, q(n) is odd} ,

J4 = {%: p(w), q(n) are even} .

Then at least one of I19 /2, /3, /4 is infinite. Suppose first that Ix is
infinite. Let

dn = dί^n,^, aw) , w = 0,1, 2,

Since {cn} converges to ε and {bn} converges to 0, we conclude from
(22) that {dn} converges to ε from the left. Thus

Jx = {nel,: xp{n)^ Φ xg{n)}

is infinite. Let neJu un = d(xp{n)^uxq{n)+1). Then

From (d),

d(S(xp(n)~i)> T(xqin))) ^

+ aA{dn)cn + aδ(dn)dn .

From (24) and (25),

cw ^ αxίdjδptn,-! + ^(djδ^n) + a,(dn)un + a4(dn)cn

+ a,(dn)dn + bq[n) .

Without loss of generality, we may assume that each a{ is continuous
from the left, for we can replace the α/s by

ft(ί) - lim atiis) , t > 0 , i = 1, 2, 3, 4, 5

and conditions (a), (b), (c), and (d) still hold. Thus

lim a,(d J - α«(6) , i = 1, 2, 3, 4, 5 .

So from (26),

ε £ (αs(ε) + α4(e) + α,(e))β < ε ,



COMMON FIXED POINTS OF TWO MAPPINGS 307

a contradiction. Now suppose that I2 is infinite. By a similar argu-

ment, J2 — {n e I2: Xp(n)-ι Φ aw>-i} is infinite. Let n e J2,

Vn = d(Xp{n)_l9 Xq{n)-l) , Wn = d(Xp(n), Xq(n)-l)

Then

(27) Cn

^ <Xι(Vn)Kn)-ι + oc2{vn)bq{n)^ + az(vn)dn + α4(vH)w. + # δ ( ^ K

Since {vn} converges to s (not necessarily from the left or right), we
obtain the same contradiction from (27). The other two cases are
similar to the above two except the roles of S, T interchange. Hence
{xn} is Cauchy. By completeness, {xn} converges to a point x in X.
Since bn > 0 for each -n, J = {n: x Φ x2n+1} or K — {n: x Φ x2n} is
infinite. Suppose that K is infinite. Let neK,

ln = d(x, x2n) , hn = d(a?, »2n+1) .

Then

^ d ( α , x 2 n + 1 )

= K + ΛίSfeJ, iχ»))
^ K + atfJhn + a2(ljd(x, T{x)) + az{ln)d{x2n, T{x))

hu + aδ(ln)ln

jbut + a2(ln)d(x, T{x)) + az(h)[h + d(x, T

So

d(x T(x)) < 1 + a<(ln) h +
d{X> T{X)) ^ 1 - a2{ln) - α 3 ( ϋ ^ + 1 - 0,(1.) - α t f j

( 2 8 ) +

F r o m (a) a n d (c), t h e sequences

( (

1 - a2(ln) - 0,(1.) ? 1 - α2(L) - α3(ϊ.) ' 1 - o,(I.) - 0,(1,,)

are bounded. So from (28), T(x) = x. Similarly, S(x) = x if J is
infinite. Hence S or T has a fixed point.

The following result follows easily from Theorem 2.

T H E O R E M 3. With the conditions of Theorem 2, if further,

d(S(x), T(x)) ̂  a [d(x, S(x)) + d(x, T(x))] , xeX
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for some «e[0,1), then each of S, T has a unique fixed point and
these two fixed points coincide.

We remark that the conditions of Theorem 1 imply the conditions
of Theorem 3. Also, G Hardy and T. Rogers [5, Theorem 2] gave
a different proof for the case S = T. Their proof cannot be modified
for the general case To see that the conclusion of Theorem 2 is
best possible, we note that if X — {0,1} with the usual distance and
if S, T are two distinct functions of X onto X, then S, T satisfy
the conditions of Theorem 2 (and Theorem 3 with a = 1), but one
has two fixed points and the other has none.

THEOREM 4. Let (X, d) be a nonempty compact metric space.
Let S, T be functions of X into itself. Suppose that S or T is
continuous. Suppose further that there exist nonnegative real-valued
decreasing functions aly a2, as, ai9 aδ on (0, oo) such that

(a) a, + a2 + a3 + a, + aδ ^ 1,
(b) aγ = a2 and az = a4,
( c ) for any distinct x, y in X,

d(S(x)9 T(y)) < arfix, S(x)) + a2d(y, T(y)) + asd(x, T{y)) +

a*d(y, S(x)) + abd{x, y) ,

where a{ = a{{d{x, y)).

Then S or T has a fixed point. If both S and T have fixed points,
then each of S and T has a unique fixed point and these two fixed
points coincide.

Proof. By symmetry, we may assume that S is continuous.
Let / be the function on X such that

f(x) = d(x, S(x)) , x e X.

Then / is continuous (we merely need the fact that / is lower semi-
continuous) on X. So / takes its minimum value at some xQ in X.
We claim that x0 is a fixed point of S or S(x0) is a fixed point of T.
Suppose not. Let

a?! = S(xQ) , x2 = T(xλ) , xz = S(x2) ,

60 = d(x0, xd, ί>! = d(x2, x3), b2 = d(x2f x8) .

Then &o > 0, bx > 0. From (c), we can prove that

(29) (1 - a2(b0)

Let
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p(t) = 1- a2(t) - oί,{t) , q(t) = a,{t) + α,(t) + aδ(t) , t > 0 .

From (a) and (b), p(bQ) > 0. So

(SO, * < * * * .

Similarly,

(oX) 02 \ 0ι ,

Ufa)

where

From (30) and (31),

It suffices to prove that (v(b1)q(b0)/u(b1)p(b0)) < 1, for then, b2 < δo> a
contradiction to the minimality of 60. Let 6 = min {60, 6i}. Then

vφMh) - Φdpφo) ^ v(b)q(b) - u(b)p(b) < 0

if at = α2 and α3 = α4. So S or T has a fixed point. Now suppose
that x is a fixed point of S and y is a fixed point of T. Then
# = 7/, otherwise, from (c),

d(x, y) = d(S(α?), Γ(i/)) < d(a?, y) ,

a contradiction.

The following result is stated without proof.

THEOREM 5. Let (X,d) be complete metric space. Let {Sn}, {Tn}
be sequence of functions of X into X which converge pointwise to
S, T respectively. Suppose that the pairs (Sn, Tn) satisfy the con-
ditions of Theorem 3 with the same au a2, cxs, a^ <xδ. Then S, T have a
unique common fixed point x and x is the limit of the sequence {xn}
of the fixed points xn of Sn.

THEOREM 6. Let (X, d) be a nonempty compact metric space.
Let {Sn}, {Tn} be sequences of functions of X into itself which converge
pointwise to the functions S, T on X respectively. Suppose that for
each n, there exist decreasing functions a*9 a2, at, αj, αf of (0, oo)
into [0, oo) such that
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(a) aΐ + at + at + a\ + α? ^ 1,
(b) at — at and at — aΐ,
(c) for any distinct x, y in X,

d(Sn(x), TM) < atd{x, Sn(x)) + <$d(y, Tn{y)) + aϊd(x, Tn{y))

+ a:d(y, Sn(x)) + a?d(x, y) ,

where

a? = a7(d(x, y)) .

Then S or T has a fixed point. Indeed, every cluster point of a
sequence {xn} of fixed points xn of Sn or Tn is a fixed point of S or
T.

Proof. By Theorem 4, for each n, either Sn or Tn has a fixed
point. By symmetry, we may assume that Sn has a fixed point for
infinitely many of n's. So there is a subsequence {Sn{k)} of {Sn} such
that each Sn{k) has a fixed point, say xk. By compactness, we may
(by taking a subsequence) assume that {xk} converges to some x in
X. We shall prove that a? is a fixed point of S or T. If xk Φ X for
only finitely many of k's, then

S(x) = \imSnik)(x)

= lim Sn(k)(xk)
k-*oo

= lim xk

k->oo

— X .

So we may assume that xk Φ x for infinitely many of k's. By taking
a subsequence, we may assume that xk Φ x for each k. Let k ^ 1
and bk = d{x, xk). Then

d(xf T(x)) ^ d(x, xk) + d(xh, TMk)(x)) + d(TMk)(x), T(x))
{ } = d{xf xk) + d(Sn{k)(xk), Tn{k)(x)) + d(TMk)(x), T{x)) .

From (c),

d(Sn{k)(xk), Tn{k)(x)) < a*(bk)d(x, Tn{k)(x)) + ak

3(bk)d(xk, Tn{k){x))
( } +

Combining (33) and (34) and letting k tend to the infinity, we have

d(x, T(x)) ^ lim sup {a\{bk) + ak

3(bk))d(x, T(x))
(35) k—

^ lim sup lim (al(t) + ak(t))d(x, T(x)) .

From (b), ak

2(t) + a%(t) ̂  1/2 for each t > 0, k = 1, 2, . So
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(36) lim sup lim (α*(ί) + αf (ί)) ^ -i-.
λ -oo ί 10 2

From (35) and (36), we conclude that T(x) = a?.
From the proof, we know that the same conclusion holds if in

Theorem 6, we replace (b) by the following weaker conditions:

al — eel or al = at,

and

lim sup lim {a\{t) + ak

z(t)) < 1 ,
fc-oo t i 0

lim sup lim (αΓ(ί) + α?(*)) < 1 .
fc-»oo < I 0

We note that, unlike Theorem 5, S, T in Theorem 6 need not
satisfy the condition required for the pairs (Sn, Tn).

THEOREM 7. Let (X, d) be a nonempty compact metric space.
Let {Sn} be a sequence of functions of X into itself which converges
pointwise to some function S on X. Suppose that for each n, there
exist decreasing functions α?, α?, α?, αj, al of (0, ©o) into [0, c>o)
such that

(a) < + al + α? + α? + α? ^ 1,
(b) for any distinct x, y in X,

d(Sn(x), SM) < M(*, Sn(x)) + a4(y, Sn(v)) + a3d(x, SΛ(y))

+ a4d(y, Sn(x)) + aδd(x, y) ,

where

a* = ai(d(x, y)) .

Then S has a fixed point. Indeed, every cluster point of the sequence
of fixed points of Sn is a fixed point of S.

The above result follows from Theorem 6 by averaging two ap-
plications of condition (b).

We shall now give a simple example to show that the conclusion
of Theorem 7 is best possible. Let X be a star-shaped [4] compact
subset of a normed linear space B. Then there exists a point z in
X such that for any y in X, the line segment

{tz + (l-t)y: te[O,l]}

is contained in X. For each n, let

Sn(χ) = λz + (l - ±λ x , xeX.
n \ n'
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Then {Sn} is a sequence of mappings of X into X which satisfy the
conditions of Theorem 7. {Sn} converges pointwise to the identity-
function S on X. Every point of X is a fixed point of S. So unlike
Theorem 5, it is too much to ask that S in Theorem 7 has a unique
fixed point.
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