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ON STRONGLY NONLINEAR ELLIPTIC
VARIATIONAL INEQUALITIES

Bui AN TON

The existence of bounded solutions of nonlinear elliptic
variational inequalities is shown. The nonlinear second order
elliptic operator involved has at most an exponential growth in
u and a polynomial growth in Du. The regularity of the
solutions is studied.

Let K be a closed convex subset of a reflexive Banach space V
and let A be a pseudo-monotone coercive operator from V into F*
Then for any / in F* it is known that there exists u in K such that:

{Au — f, v — u) > 0 for all v in K.

The existence of solutions of nonlinear elliptic variational inequal-
ities has been shown by Brezis [1], Browder [4], Lions-Stampacchia
[10] and others. The regularity of the solutions when A is a linear
second order elliptic operator written in divergence form has been
studied by Brezis [2], Lewy-Stampacchia [8], Lions [9] and an abstract
regularity result has been obtained by Brezis-Stampacchia [3] when
A is nonlinear.

It is the purpose of this paper to show the existence of bounded
solutions of nonlinear variational inequalities when A is a pseudo-
monotone coercive operator defined on V Π L°°(G) and mapping V Π L°°(G)
into F*. V is a given closed subspace of TFl2)(G) with Wi*p(G)czVc:
W1>P(G). The nonlinear elliptic operator A may have an exponential
growth in u and a polynomial growth in Du. Abstract existence
theorems are proved in §2. The applications and the regularity of
the solutions are studied in §3. The notations and the basic assum-
ptions are given in §1.

1* Let G be a bounded open subset of Rn with a smooth boundary
dG. Set: Dd = d/dxd, j = 1, , n and

WU9(G) = {u: u in LP(G), Dάu in LP(G), j = 1, . , n} .

WUp{G) is a real reflexive separable Banach space with the norm:

n yip

Wi>p(G) is the completion of C?(G), the family of all infinitely differen-
t i a t e functions with compact support in G, in the || ||1>p norm.
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280 BUI AN TON

Let V be a closed linear subspace of Wι'p{G) with Wi p(G)<zVc:
Whp and let H = L\G). The pairing between V and its dual F* is
denoted by ( , •)•

Let W be a closed linear subspace of W'^iG) with PFo1>p+*(G) c
WaWι'p+n{G). The Sobolev imbedding theorem gives WaC(c\G).
The pairing between W and ΫF* is denoted by ((•, •))• Throughout
the paper we shall assume:

(a) WdV.
(b) If u is in W then \u\s~2u is also in W for all s with 2 <

s < oo. The assumption is verified if F = TF0

1?)(G), TΓ = ^ ' ^ " ( G ) and
if v = fl^G) with T7 = T71 ̂ +%(G).

C°'a(G), 0 < α: < 1, is the family of all functions u which are
Holder-continuous with exponent a on any compact subset of G.

Set:

F = F n £~(G) .

In this paper nonlinear operators A(u, v) mapping FxV into F*
satisfying the following assumption are considered.

Assumption (I): (i) A(u, v) maps bounded sets of F x F w
bounded sets of F*.

(ii) If un-~*u weakly in V, un—+u in the weak*-topology of L°°(G)
and lim sup (A(wΛ, wΛ), u w — u) < 0

lim inf (A(un, un), un - v) > (A(^, u), u - v)

for all v in V.

The pseudo-monotone operators from F into F* satisfy all the
conditions of Assumption (I).

Let A(u, v) be the operator defined by:

(A(u, v), w) = Σ ( (1 + Φ)
i=i JG

% is in JP, v, w in F, c(α?) and δ(a?) are two nonnegative bounded func-
tions on G.A(u9 v) is the prototype of operators considered in this
paper. It is not difficult to check that A(u, v) satisfies all the condi-
tions of Assumption (I).

In the proof of the existence theorems we need the following
auxiliary nonlinear monotone operator:

A2v = - Σ DjdDjV^-Wjv) + v .
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2* In this section the existence of bounded solutions of nonlinear
elliptic variational inequalities is shown.

The following theorem gives a generalization of a result of Browder
[4], Hartman-Stampacchia [6] and others when V is a closed linear
subspace of Wι>p{G).

THEOREM 1. Let A(u, v) be a nonlinear operator mapping F x
V into F* and satisfying Assumption (I). Let K be a closed convex
subset of V with 0 e K and let β be the penalty operator associated
with K. Suppose that:

( i ) {A{u, u),u) ^ c\\u\\v for all u in F.
(ii) (A(u, u), \u\8~2u) > c| | tt | |I. ( σ ) for all u in W and all s with

2 < s < oo. The positive constant c is independent of s.
(iii) (β(u), I u \a~2u) > 0 for all uinW and all s, 2 < s < oo. Then

for any f in L°°(G) there exists u in F Π K such that:

(A(u9 u) — / , v — u) > 0 for all v in K.

THEOREM 2. Let A(u, w) be as in Theorem 1 and let K be a
closed convex subset of both V and W with 0 e K. Let β be the penalty
operator associated with K considered as a subset of W. Suppose all
the hypotheses of Theorem 1 are satisfied with (iii) replaced by:

((β(u),u))/\\u\\w > + oo a s | |^ | |T F > + oo .

Then for any f in L°°(G) there exists u in F Π K such that:

{A{u, u) — f,v — u) > 0 for all v in K.

For a smaller class of nonlinear operators A(u, v) we have the
following theorem which extends a result of Dubinskii [5].

THEOREM 3. Let A(u, v) be a nonlinear operator mapping bounded
sets of L°°(G) x V into bounded sets of V*. Suppose that:

( i ) (A(u, v) — A(u, w), v — w > 0 for all u in L°°(G) and all v, w
in V.

(ii) For fixed u in L°°(G), A(u, •) is continuous from the strong
topology of V to the weak topology of F*.

(iii) For fixed v in V, if un-+u a e on G and un-+u in the
weak*-topology of L°°(G) then: A(un, v) —> A{u, v) in F*.

(iv) (A(\u\*~2u, u),u) > C| |M| |? for all u in W and all s with 1 <
s < oo.

(v) (A(\u\s~2u, u), \u\r-2u) > c\\u\\r

L

+rs

+?-2iG) for all u in W with
1 < s < oo and 2 < r < oo. The constant c is independent of r.

Then for any f in L™{G) there exists u in L°°(G) with \u\tt~2u in
V such that:
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a is any number with 1 < a < oo.

Proof of Theorem 1. (1) Let 0 < η < ε < 1 and let j^(u, v) be
the nonlinear operator:

j^(u, v) = Ύ]A2v + A(u, u) + ε~ιβ{u) .

j*f(u, v) maps bounded sets of W x W into bounded sets of TF*
and is coercive. Being the sum of a monotone operator and a pseudo-
monotone operator, sf is a pseudo-monotone operator from W into
W*. It follows from the theory of coercive pseudo-monotone operators
that there exists uεη in W, solution of the equation:

It is clear that:

C is a constant independent of both ε and η.
Since uεV is in W, \uεV\

8~2uεV lies also in W for all s with 2 < s <
Thus:

εη, \uεV\
s-2uεη)) + (A(^e,, wβ7), \uεη\

s~2uεη)

+ e~ι(β(utη), 1 ^ 1 - ^ . , ) = (/, \uεη\
s-2uεη) .

An elementary computation gives:

((A2uεη, \uεV\
s-*uεV)) > 0 .

From the hypotheses of the theorem, we get:

\\uεV\\Ls{G)<C\\f\\L~{G).

Since uεη is in W hence in L°°(G) we may let s —* + °o.
So:

II^IU^) <C\\f\\L~(G).

C is a constant independent of both ε and η.
(2) From the weak compactness of the unit ball in a reflexive

Banach space we obtain by taking subsequences if necessary: uεη —• uε

weakly in V, uε7]-+uε in the weak*-topology of L°°(G),7}llP+nuεV-+0
weakly in W, A(uεV, uεη) —> gε weakly in F * and β{uεV) -* hε weakly in

as 3
So:

\uε\\v + ||ttβ|L~(G> < C .
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Moreover:

gε + ε-% = f .

We show that gε = A(uε, uε) and hε — β(uβ).
We have:

lim sup (A(ueη, uεη) + e^β{usη), uεV) < (gε + e~%, ue) .

On the other hand:

(A(u8V, uεv), uεV - uε) = (A(uεV, uεV) + e-'βiuv), uεV - uε)

- erι{β(v,eη) - β{nε), uεV - uε) - ε~ι{β(uε), uεη - uε) .

Taking into account the monotonicity of the penalty operator, we get:

(A(uεV, ueη), uεη - O < (A(uεη, uεη) + e - 1 ^ ^ ) , uεV - uε)

- ε~\β(ue), uεη - uε) .

Thus:

lim sup (A(ueV9 uεV), uεη — uε) < 0 .

Assumption (I) gives:

A(u£ί uε) = g& .

It is now easy to show that hε = β(uε)<.
( 3 ) Again from the weak compactness of the unit ball in a

reflexive Banach space we get by taking subsequences if necessary:
uε—+u weakly in V, uε —>u in the weak*-topology of L°°{G) and A(ue,
uε) —• g weakly in 7 * as ε~> 0.

Since:

A(uε, nε) + ε - 1 / ^ ) = /

it is clear that

β(uΛ) > 0 in F* as ε • 0 .

The penalty operator β is a monotone hemi-continuous operator
from V into V*. A standard argument gives:

β{u) = 0 i.e., ueK.

We have:

(A(ue, u8), ue-u) = (f- s~^(u£), uε - u)

= (/, uε- u) - e~ι{β(u?) - /SO), uε - u) .

Thus:
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(A(us, ut), u ε - u) ^ ( / , u ε - u) .

Hence:

lim sup (A(uε, ue), uε — u) <: 0 .
ε-»0

Assumption (I) gives:

A(w, w) = #

and

lim inf (A(uε, uε), uε — v) > (-A(w, %), w — v) .
£-»0

Let t> e K and we have:

(A(uε, uε) - / , i; - O = - ε-^/S^e), t; - ^e)

= S""1^^) - βM, V -Uε) .

So:

(A(wβ, uε) — f, v — O > 0 for all v in i f .

Let ε —* 0 and we obtain:

(A(u, u) - / , v - u) ^ 0 for all v in 12".

The theorem is proved.

Proof of Theorem 2. The proof is similar to that of Theorem 1,
we shall not reproduce it.

Proof of Theorem 3. (1) Let 0 < ε < 1 and consider the nonlinear
operator j^(u9 v) defined by:

j^f(u, v) = εA2v + A{\u\a'~2u, v)

u and v are in W and I/a + \ja! — 1.
Szf is coercive and maps bounded sets of W x W into bounded

sets of W*. Being the sum of a monotone operator and a pseudo-
monotone operator, sf is pseudo-monotone Therefore, there exists
ve in ΫF, solution of the equation:

εA2vε + A(\v.\"'-2vt, vε) = / .

It is easy to show that:

e||v.||δr+ + | | v . | | F < C .

C is a constant independent of ε.



ON STRONGLY NONLINEAR ELLIPTIC VARIATIONAL INEQUALITIES 285

Since vε is in W, \vε\
s~2vε lies in W for all s with 2 < s < °o#

Thus:

e((A2v£y \vε\Γ2vε)) + (A(\v.\*'-*vn vε), \v£\*~2v£) = (/, \vε\
s~%) .

An elementary computation shows that the first term of the left
hand side of the above equation is positive. It follows from the
hypotheses of the theorem that:

Since vε is in W we may let s—> + <*>. Hence:

IKIU-cs) < M

M is independent of ε.
( 2 ) The weak compactness of the unit ball in a reflexive Banach

space gives by taking subsequences if necessary: vε~+v weakly in
F, vε-+v in the weak*-topology of L°°(G), ε1/p+nvε —>0 weakly in W,
\/ve\"'~2'vβ—>h weakly in La(G) and

A( I vε \
tt'~~2vε, vε) > g weakly in F * as ε > 0 .

Since the injection mapping of V into H is compact, the Lebesgue
convergence theorem yields:

vε > v in LS(G) for any s with 1 < s < ^=> .

Thus:

Iv t\
a r~2vε > Iv\af~2v a.e. on G and h = \vf~2v .

We have:

limsup {A{\vε\
a'~2vε, vβ), vε) < (g, v) .

So:

lim sup {A{\vε\
a'~2vε, φ), vε - φ) < (gr, v - 9?)

for all φ in F .

It follows from the hypotheses of the theorem that:

(g - A(\v\a'-2v, φ), v - φ) > 0 for all φ in F .

Hence:

Set:
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Then:

u e L~{G) and v = \u\a~2u e V .

Moreover:

A(u, \u\a~2u) = / .

The theorem is proved.

3. We shall now give some applications of the theorems proved
in the previous section and study the regularity of the solutions.
First consider the case when the constraint is in G.

THEOREM 4. Let V = WQ

ι'p(G), K={u:u in LP(G), u^O a.e. on G}
and let A(u, v) = — ΣJ=IDJAJ(X9 u, Dv).

Suppose that:
( i ) For each j , A3 (x, u, Dv) is continuous with respect to x, u, Dv.
(ii) \Aj(x,u,Dv)\ < C{1 + exp ( N ) + IDvl^expQul)}.
(iii) Σ?=i (Mx, u, Dv) - A, (x, u, Dw)){Dάv - Dάw) > 0.
(iv) Σ?=i Aj(x9 u, Du)DjU > c Σ?=i IDju\*.

Then for any f in L°°(G) there exists u in K Γl V Π L°°(G) such that:

(A(u, u) — / , v — u) > 0 for all v in V f] K .

Moreover:

A(u, u) e L~(G) .

Proof. (1) K is a closed convex subset of V and OeiL Let
β(v) — — \v~\p~~2v~ where v~ = 0 if v(x) > 0 and V — — v(x) otherwise.
It is easy to check that β verifies the hypothesis of Theorem 1. Let
0 < 7] < 1 and consider the operator:

Ax{u, v) = A(u, v) + ΎJU .

A1(uf v) and rjA2v + Ax{u, v) satisfy all the hypotheses of Theorem 1.
Therefore, from Theorem 1, we get:

r]A2u,η + ASuίη, uεη) + ε""1/?^) = / • 0 < 9 < s < 1 .

Moreover, from the proof of Theorem 1 we have:

V\\U£ηW
n + \\utη\\v + Ύ)\\utη\\L-m < C .

C is a constant independent of both ε and η.
Since uεη is in W and hence in C(cl G) we get:

ess sup I utη I = 0 .
dG



ON STRONGLY NONLINEAR ELLIPTIC VARIATIONAL INEQUALITIES 287

It follows from Theorem 7.1 of [7], p. 287 that \\uεV\\L°°(G) is majorized
by \\uεη\\v, C> the L°°(G)-norm of / .

Hence:

C is again a constant independent of both ε and η.
( 2 ) We have:

y((A2uεV, -

<

s is any number with 2 < s < oo.
It is not difficult to see that the first two expressions of the left

hand side of the above inequality are nonnegative.
Hence:

Since uϊηeL~(G), we may let s—> + °o and get:

ε-1ll^il2^)<C.

C is independent of both ε and η.

( 3 ) Let Ύ]~->0 and the proof of Theorem 1 gives:

A(uε, u£) + ε^β(uε) = f .

Moreover:

l|tt,||L~(β) + \\uε\\v + e- ι||wrll£=U < C.

uε is the weak limit in V of ^e^ as η —»• 0.
Let ε—*0 then again the proof of Theorem 1 gives:

ι, u) — / , v — u) > 0 for all v in K V.

Since ε~ιβ{uε)~+g in the weak*-topology of L°°{G), we have:

A(^, u) = f — g *

The theorem is proved.

With some further hypotheses on A, f we have a regularity result.

THEOREM 5. Let V, K be as in Theorem 4 and let

A(u9 v) = — Σ DjAjix, u, Dv) .

Suppose that:
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( i ) Aj(x, u, Dv) is continuously differentiable with respect to x,
u and Dv.

(ii) (1 + |Zto|)( |A y(&,tt, Du)\ + \dAs/du\ + \Aίk(x, u, Du)\) +
dA5jdxk\ + e x p ( N ) + I D ^ I ^ e x p {\u\)).

Ajk(x, u, Du) = dAj(x, u, Du)/δ(Dku) . j , k = 1, , n .

(iii) Σ i , ^ i Ay4(aj, u, Dv)DjvDkv > c Σ ? = 1 (1 + IA^I3""2) I Dsv |2.
T/̂ ,β?̂  /or α^?/ / in L°°(G), there exists u in K f] V f] L°°(G) such

that:

(A(u, u) — / , v — u) > 0 for all v in K V.

Moreover:

w e σ «{G) n c 1 ^ ^ ' ) n TF2^'(G) .

0 < a, 7 < 1 cmώ G' is any subset of G with cl Gf c G.

Proof. With the above hypotheses on Ajy A (u, v) is a semi-
monotone operator and satisfies all the hypotheses of Theorem 4,
Therefore, there exists u in K f]V f] L°°(G) such that:

(A(u, u) — / , v — w) > 0 for all v in F .

Moreover:

A(u, u)=f-gε L~(G) .

From the theory of second order elliptic equations, we get:

u e C°'a{G) .

E.g. cf. [7] Theorem 1.1, p. 251.
It has been shown by Dubinskii [5] that the solution of A(u, u) =

/ — g is in W2 P'(G) and moreover:

Σ { (1 + I gnιάu\)*-2\DjDku\2dx < oo .
3.k = l JG'

The above relation together with the Holder-continuity of u gives:

ί I grad^ \p+2dx < oo .
JG'

G' is any subset of G with cl G' c G.
It follows from [7] that ess sup^, | grad u \ < co and therefore

Theorem 6.2 of [7], p. 282 gives:

ι'λ(Gr) n W2>2(G') .
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The theorem is proved.
If the principal part of A is linear, stronger results could be obtained.

PROPOSITION 1. Let V and K be as in Theorem 4 with p = 2.
Let:

A(u, v) = - Σ Dό{a5k{x)Dkv) + u exp (w) .

Suppose that:
( i ) α i fc e C2 (cl G)

(ϋ) Σi,*=i a^DjvDjtV > c Σ;=i I ^ Γ

Then for any f in L°°(G) there exists u in Kf]V Π W2'8(G) such that:

(A(u9 u) — /, v — u) > 0 for all v in K V

s is any number with 1 < s < °o#

Proof. We may write

A(u, v) = Jzfv + u exp (u) .

A(u, v) satisfies all the hypotheses of Theorem 4. Thus there exists
u in L°°(G) ΓiKΓiΎ such that:

(A(u9 u) - /, v - u) > 0 for all v in K V.

Moreover:

J Λ + % exp (u) = ̂ f e I

So:

= g — u exp (u) 6

It follows from the theory of linear elliptic operators that ue
W2'*(G) for any s with 1 < s < <*>.

THEOREM 6. Let V = W}'P(G), K = {u:u in V, | grad u | < 1 a.e.
on G) and let A(u, v) be as in Theorem 4 Then for any f in L°°(G)
and for any λ > 0, there exists u in K Π L°°(G) such that:

(A(u, u) + λ% — /, v — u) > 0 for all v in K .

Proof. K is a closed convex subset of both V and W with 0 e K.
Let

= - Σ J M ( l -
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β maps bounded sets of W = WitP+n(G) into bounded sets of W* and
is a monotone hemi-continuous operator. Cf. Lions [9].
Moreover:

((β(v), v)) > \\v\\&* - fe + c2 IMir-2) .

It is not difficult to check that β satisfies all the hypotheses of
Theorem 2. Thus the result follows from Theorem 2

Along the lines of Theorem 2, we may consider the case when

K = {u:u in Wi p(G), u ^ 0 a.e. on G, | grad%| < 1 a.e. on G} .

It suffices to apply Theorem 2 with

β(v) = _ |tr|*~V- - Σ A {(1 - I grad ^l"—1)-^*;}

We shall now consider the case when constraint imposed on the
solution is at the boundary of G.

THEOREM 7. Let V = TΓlp(G), W = W lp+ί l(G), i = { t t : i t m 7 , » >
0 a.e. on dG} and let A(u, v) be as in Theorem 5. Then for any λ > 0
and for any f in L°°(G) there exists u e C°'a(G) Π C^μ{Gr) Π K such that:

(A(u, u) — / , v — u) > 0 for all v in K .

Gf is any subset of G with cl G' c G and 0 < a, μ < 1.

Proof. (1) Let /3 be the penalty operator defined by:

(β(v), φ) = - I ^""^ da? , ^ in F

β satisfies all the hypotheses of Theorem 1. Cf. Lions [9]. Let
0 < ε < 1, then from Theorem 1 we have:

A{uε, uε) + Xuε = / on G, duε/dyA = — S^UT on dG .

Moreover, from the proof of Theorem 1 we get:

\\u.\\v + \\ug\\L-{β) < C.

C is a constant independent of ε.
(2) Let ε->0 then:

(A(u, u) + λw - / , v - u) > 0 for all i? e K .

Moreover:

A(M, ^) + Xu = f on G .
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u is the weak limit in V of us as ε —> 0.

Thus:

A(u, u) = f — XueL°°(G)

Hence:

ueC°'a(G) .

A standard argument of the theory of elliptic operators gives:

Σ ( (1 + I gradu\p-2)\DjDku\2dx < oo .

G' is any subset of G with cl G' c G.
The Holder-continuity of u together with the above relation implies
that:

\ I graάu\p+2dx < c>o .
:G'

Thus:

ueCι'»{G") where cl G" c G' c c l Gr c G .

The theorem is proved.
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