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WEAKLY ALMOST PERIODIC HOMEOMORPHISMS
OF THE TWO SPHERE

W. K. MASON

A self-homeomorphism / of the 2-sphere S2 is weakly
almost periodic (w.a.p.) if the collection of orbit closures
forms a continuous decomposition of S2. It is shown that if
/ is orientation-preserving, w.a.p. and nonperiodic, then /
has exactly two fixed points, and every nondegenerate orbit
closure is an homology 1-sphere. There is an example with
an orbit closure which is an homology 1-sphere but not
a real 1-sphere. If / is orientation-reversing, w.a.p. and has
a fixed point, then / is shown to be periodic. The orbit
structure of orientation-reversing, w.a.p., nonperiodic homeo-
morphisms on S2 is studied.

1* Introduction* Let / be a periodic mapping of the 2-sphere
S2 to itself. Kerekjartό [8] and Eilenberg [3] showed that / is
topologically equivalent either to the identity (every point fixed), to
a rotation (two fixed points), a reflection (a simple closed curve of
fixed points), or to a rotation followed by a reflection (no fixed points).
If / satisfies the weaker condition of being almost periodic (equivalent
to having equicontinuous iterates), then the fixed point set of / again
is either empty or an i-sphere, 0 ^ i ^ 2, [9]. (For related results on
almost periodic mappings of subsets of S2, see Hemmingsen [7].)

In the present paper we study the weakly almost periodic
homeomorphisms on S2, (the collection of orbit closures forms a con-
tinuous decomposition of S2), and show that the set of fixed points
is still either empty or an ΐ-sphere, 0 ^ i ^ 2, (Theorem 3 and Corol-
lary 5). Some other results are: if / : S2 —»S2 is weakly almost
periodic (w.a.p.), orientation-reversing, and has a fixed point, then /
is periodic (Theorem 4); if / : S2—* S2 is w.a.p., orientation-preserving,
and not periodic, then every nondegenerate orbit closure is an
homology 1-sphere (Theorem 5).

A homeomorphism of S2 to itself which is w.a.p. but not almost
periodic is given in [12, Example 1]. This example is not almost
periodic since it has an orbit closure which is not locally connected,
(see [7, Section 5]). The collection of orbit closures, however, is easily
seen to be continuous.

Our main theorems are given in §§ 6 and 7. Section 3 gives a
summary of results in the theory of prime ends which we need.
Section 4 discusses the fixed point theory used in §§5, 6, and 7.
(Those familiar with prime ends and local fixed point index may skip
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§§ 3 and 4.) Many of our techniques are based on those of Cartwright
and Little wood in [2].

2. Definitions and notation. If / : X —>X is a homeomorphism
and xe X, then the orbit closure of x is the closure of the set of
iterates {fn(x)}> n = 0, ± 1 , ±2, • •-, (/° = Id).

The original definition of weakly almost periodic was given by
Gottschalk in [5]. For compact spaces the original definition is equiva-
lent to requiring that the orbit closures form a continuous decom-
position [5, Theorem 5]. The equivalent definition which we shall
use in our proofs is: / : S2—>S2 is weakly almost periodic if (a) the
collection of orbit closures is a decomposition of S2, (if two orbit
closures meet, they are equal), and (b) for any closed set B, the
union of all orbit closures which intersect B is a closed set, [6,
Theorem 4. 24, p. 34].

A point x e X is a nonwandering point if for every neighborhood
U of x, there is a nonzero integer n such that fn( U) Π U Φ φ. If
x is not a nonwandering point it is a wandering point. It is easily
seen that if /: S2 —> S2 is w.a.p. then every point is a nonwandering
point.

A domain is a connected open set. If A is a set C\(A) and Bd(yl)
denote the closure and boundary, respectively, of A. If U is a domain
of S2 and x is a point in a component R of S2 — Cl(U), then Bd(iϋ)
is the cmjter boundary of U with respect to x.

An homology 1-sphere K in S2 is a continuum (closed, connected
set) such that S2 — K has exactly two components.

An open triod is a set homeomorphic to the set of all points
(x, y) in the plane such that either — 1 < x < 1 and y = 0, or x = 0
and 0 ^ 2/ < 1. The points ( -1 , 0), (1, 0), (0, 1) are called the feet
of the triod.

If U is a domain then a crosscut of C7 is an open arc in U whose
closure is an arc which intersects Bd(?7) in two points. An endcut
of U is a half-open arc in U whose closure is an arc which intersects
Bd(C/) in one point.

3. Prime ends. In this section we state the results and defini-
tions concerning prime ends which we shall use in §§5 and 6. The
material in the present section is taken from [2], [11], and [15].

Let U be a simply-connected domain in S2 with a nondegenerate
boundary. A C-transformation of U onto the open unit disk D is a
homeomorphism T: U—+D such that the image of any crosscut in
U is a crosscut in D, and the endpoints of such images of crosscuts
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of U are dense in the boundary of D. The conformal mapping of U
onto D given by the Riemann mapping theorem shows that C-trans-
formations always exist. However, C-transformations may be con-
structed by topological methods, without using conformal mapping
theory, [15, Appendix 2].

Given a homeomorphism / of the closure of U onto itself, and a
C-transformation T of U onto D, we have that TfT~ι: D-+D is a
C-transformation which may be extended to a homeomorphism of the
closed unit disk onto itself, [15, (4.10) on page 6, and (A1.7) on page
27].

A collection of crosscuts Ql9 Q2f ••• of the simply connected do-
main U is a chain if (a) the arcs Cl(Q^f C1(Q2), ••• are pairwise
disjoint, (b) Qn separates Qn^ from Qw+1 in U, (c) there is a point on
Bd( U) whose greatest distance from Qn approaches 0 as n —> oo.
Corresponding to each Qn there is a domain Gn of U — Qn containing
Qn+1. Note that G1 z> G2 => .

If {Qi}, {Ri} are chains of crosscuts, and {GJ, {H{} are their
respective corresponding domains, then {QJ, {JBJ are equivalent chains
if for every n there is an m such that Hm c Gn and GmaHn.
Equivalent chains are said to define the same prime end. Thus, a
prime end of U is an equivalence class of chains of U.

If Qu Q2, is a chain of crosscuts in U, then their images
T(Qj)9 T(Q2), ••• under the C-transformation T: U-+D is a chain in
D, [15, Appendix 2]. If {Q{} and {iϋj are equivalent chains in [7,
then {T(Qi)}, and {T(Ri)} are equivalent chains in D, and in fact
converge to the same point on the boundary of D, ({Qi} and {i?J may
not converge to the same point on Bd(i7)). Thus, T sets up a 1 — 1
correspondence between prime ends of U and points of the unit circle
[11, p. 621].

If / : C1(Z7) —•Cl(CT) is a homeomorphism and E is a prime end
of U9 then E is fixed by / if for some chain {Q{} defining E, we
have that {QJ and {f(Qi)} are equivalent chains. This definition is
easily seen to be independent of which defining chain is used. If
T: U—>D is a C-transformation, h: Cl(D) —> C1(D) is the extension
of Γ/Γ""1, and e is the point on B d φ ) corresponding to the fixed
prime end E, then h(e) — e. Conversely, every fixed point of h on
Bd(jD) corresponds to a fixed prime end of / .

If E is a prime end of U, {Qi} is a defining chain for E, and p
is the point on Bd(?7) to which the crosscuts {QJ converge, then p
is a principal point of E. (We remark that there exists a U with
a prime end ϋ7 such that every point of Bd(ί7) is a principal point
of E, [13].)

If A is an endcut in U with an endpoint seBd(ϊ7), then there
is a chain {QJ defining a prime end i? such that s is a principal
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point of E and each crosscut Qi separates the endpoint of A in U
from some (open) subarc of A having s as an endpoint. E is the
prime end determined by A. If T: U-+D is a C-transformation,
and e is the point on Bdφ) corresponding to E, then T(A) is an
endcut in D having e as an endpoint, [15, page 5]

4* Lefschetz number and local fixed point index* In this
section we state the results concerning fixed points which we shall
use in §§ 5, 6, and 7.

If X is a compact polyhedron and / : X —> X is a map (continuous
function), then there is a certain rational number !/(/), called the
Lefschetz number of /, associated with / and X, [14, p. 195], We
shall use the following two facts about L(f).

Fact 1. If X is a two cell, then L(f) = 1.
Fact 2. If X is a 2-sphere and / is an orientation-preserving

homeomorphism, then L(f) = 2.
For proofs of Facts 1 and 2, see [14, p. 196].
If e is the category of compact polyhedra and maps, let A(e)

denote the set of pairs (/, U), where / : X—>X is a map in e and
U is an open subset of X such that / has no fixed points on the
boundary of U. Then there is a function i, the local fixed point
index, from A(e) into the rationale which satisfies the following
axioms:

Al. If (/, Z7), (g, U) belong to A(e), and / = g on the closure
of U, then i(f, U) - i(g, U).

A2. If ft is a homotopy such that (ft, U) e A(e) for each t,
OSt^l, then i(/0, U) = i(flf U).

A3. If (/, U) 6 A(e) and U contains mutually disjoint open sets
Vj9 j — 1, , k, such that / has no fixed points on U — Ui=i V3 9

then

In particular, if / has no fixed points on U, i(/, IT) = 0.

A4. If / : X-> X belongs to e, then i(/, X) = L(f).

A5. If the maps / : X-+ Y, g: Y->X belong to e, and

(gf,U)eA(e),
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then i{gf,U) = i{fg,g-\U)).
For further discussion of the local fixed point index see [4] or [1].

REMARK. If D is the open unit disk, and h is a map of the
closure of D to itself with no fixed points on Bd(D), then i(h, D) = 1.
For, by Fact 1 and Axiom A4, 1 = L(h) = i(h, Cl(D)). Then, by
Axiom A3, i(h, Clφ)) = i(h, D).

5* Preliminary lemmas* Our first lemma is based on Lemma
11 of [2].

LEMMA 1. Suppose f: S2 —* S2 is a homeomorphism, U is a
simply connected domain with nondegenerate boundary, f(U) = U,
and every point of U is a nonwandering point. Suppose also that
E is a prime end of U which is fixed by f. Then every principal
point of E is a fixed point of f.

Proof. Let Ql9 Q2, be a chain of crosscuts defining E which
converge to the principal point p of E.

Case 1. f(Qi) Π Q* = Φ for some i. Let V be the component of
U — Qi containing Qi+l9 Qi+2, •••. E is fixed by /, so {ζ>y} and {f(Qs)}
are equivalent chains, hence f(V)f) V Φ φ. But then f(V) either
contains or is contained in V. Assume f(V)a V. Let W be the
nonempty open set F-C1(/(F)) . Then fn(W) Π W=Φ if n Φ 0.
Thus no point of W is a nonwandering point. This contradiction
shows that Case 1 cannot occur.

Case 2. f(Qi)f\Qiφφ for all ί, i = 1, 2, •••. For each i,
select a point x{ e Qi such that f(xt) e Q{. The crosscuts Ql9 Q2,
converge to the principal point p, hence {#J —•p, hence {/(»*)}—*/(?>)•
But f(Xi) e Q^ hence {/(#;)} —• p. Hence /(ί)) = p and the proof of
Lemma 1 is complete.

LEMMA 2. Suppose f: S2 —* S2 is a homeomorphism, M is an
invariant continuum in S2 which contains no fixed point of /, and
every point of S2 is a nonwandering point. Then i(f, U) = 1 for
every component U of S2 — M which is invariant under f. (See § 4
for discussion of the fixed point index i(f, U).)

Proof. Let U be a component of S2 - M such that f(ϋ) = U.
M is connected, hence U is simply connected. Also, Bd(Z7) is non-
degenerate, since M contains no fixed point of /. Let T be a C-
transformation of U onto the open unit disk D. Extend TfT~ι to a
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homeomorphism h of Cl(D) onto itself. Since Bά(U) contains no fixed
point of /, we see by Lemma 1 that U has no fixed prime ends.
Hence h has no fixed points on Bd(D). Hence i(h, D) — 1 by the
Remark, § 4.

We would like to conclude from Axiom A5 of § 4 that i(f, U) = 1.
However, D and U are not compact polyhedra. We overcome this
difficulty as follows: let X be an open 2-cell which contains the fixed
points of / in U and whose closure is contained in U. Let Y be a
closed 2-cell in U containing C1(X) U f(Cl(X)). Let rx: C1(Z>) — Γ(F),
and r2: S2 —> Y be retractions. Since T(X) contains all fixed points
of h, we have:

1 = i(h9 D) = i(h9 T(X)) by Axiom A3

^, T{X)) by Al

rt, X) by A5

= i(f, X) by Al

= i(f, U) by A3 .

The proof of Lemma 2 is complete.

6. Fixed point sets of weakly almost periodic homeomor-
phisms on S2*

THEOREM 3. Suppose f: S2-+S2 is a w.a.p. orientation-preserv-
ing homeomorphism. Then either f is the identity or f has exactly
two fixed points.

Proof. Let Fix(/) denote the set of fixed points of / . Assume
Fix(/) Φ Sz. Since / is orientation-preserving it is easily seen that
/ leaves every component of S2 — Fix(/) invariant, and so we may
select an arc A in one of these components such that f(A) f) A Φ φ.
Denote by M the union of all orbit closures which meet A. M is
closed, since / is w.a.p.; M contains no fixed point of / ; and M is
connected since M is the union of the connected set

ill Γ(A)

and limit points of this set.

Since M and Fix(/) are disjoint closed sets, we see that Fix(/)
is contained in a finite number Ul9 •••, U8 of components of S2 — M.
By Axioms A3, A4, and Fact 2 of § 4, we have

2)=r-±i(f, Us).
1
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But by Lemma 2, i(f, Uj) = 1, 1 ^ j ^ s. Hence s = 2.
It remains to show that Fix(/) Π Uj9 j = 1, 2, is a single point.
Let U be the component of U, - Fix(f) with B d ^ ) cBd(?7).

Since Bd(?71) and Fix(/) are disjoint closed sets, we see that Bd(i7) —
Bd(ίTi) is a closed nonempty subset of Fix(/)

Case 1. Bd([/) — Bd(C/Ί) has more than one component. Then
by [16, Corollary 3.11, p. 109], there is a simple closed curve J in U
which separates Bd(U) — BdiUJ. Let B be an arc with one endpoint
on Bd(t/Ί), the other on J, and contained in U except for one end-
point. Then Bd(C/Ί) U JΌ B is connected, and

/(BdίK) U J U £)Π(Bd(t/;) U J U B) Φ φ .

Thus if we denote by N the union of all orbit closures which inter-
sect Bd( £7Ί) U J U -B, we see that N is an invariant continuum which
contains no fixed point of / (this follows similarly to the case of M
above). Let Vl9 ,Vt be the (finite) number of components of
S2 - N such that Fix(/) [\V5Φφ and V3 c Ul9 1 ^ j ^ £. By Lemma
2, ί(/, Fy) = 1, 1 ^ i ^ ί. By Axiom A3,

But J separates two points of Fix(/) Π U19 hence t > 1. This
contradiction shows that Case 1 cannot occur.

Case 2. Bd(?7) — Bd(CT ) is connected. The proof will be com-
plete if we show that Bd(Z7) — Bd(ϋi) is a single point. We assume
that Bd(?7) — Bd(C/i) is a nondegenerate continuum and derive a
contradiction.

Assuming Bd(Z7) — Bd(CTΊ) is a nondegenerate continuum we
establish

Claim 1. There is a simply connected invariant domain Cv con-
taining two endcuts A and B such that the endpoint of B on Bd(Cv)
is not a fixed point of /, and the endpoint of A on Bά(Cv) is a fixed
point of / which is not a limit point of Bά(Cv) — Fix(/).

Let Q be a crosscut in U both of whose endpoints lie on

Bd{U) -Bd(Ud

Let V be the component of U — Q whose boundary does not intersect
[15, (5.3), p. 6]. V is a component of

S2 - ((Bά(Ud - Bd(tO) U Q) .
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Let p be a point of Bd(F) — C1(Q). Note that p is a fixed point of

/.
Denote by L the union of all orbit closures which intersect

C1(Q). L is a continuum, p is not a limit point of L so there is a
connected neighborhood 0 of p which misses L. Let A be an endcut
of V which is contained in 0. Let Cυ be the component of

S2 - ((Bd(t7) - Bd(ϋi)) U L)

which contains the endcut A. The endpoint of A in Bd(Cυ) has a
neighborhood 0 which misses L, hence 0 ΓΊ Bd(Cv) c Fix(/).

Let -B' be an endcut of V with one endpoint b in Cv and the
other in the crosscut Q. Then the component of B' D Cv containing
b is the required endcut B.

Cυ is simply connected because (Bά(U) — Bd(C/Ί))Ul/ is connected,
(see [15, (5.3), p. 6] and [10, Theorem 74, p. 217]).

Cυ is invariant because (a) (Bd(Z7)) — BάiUJ) U L is invariant, (b)
Bd(Cv) contains a continuum of fixed points off, and (c) / is orientation-
preserving, (for further details see proof of Claim 2 below). The
proof of Claim 1 is complete.

Claim 2. The prime end E of Cυ determined by the endcut A
is a fixed prime end of /.

Let Su S2, ••• be a chain of crosscuts converging to the endpoint
δ of A and defining the prime end E. Since s is not a limit point
of Bd(Cv) — Fix(jf), we may assume that the endpoints of Si are fixed
points of / for every i, ί — 1, 2, * . We also may assume that
every crosscut St intersects A. From the crosscut Si and the endcut
A we may construct an open triod T{ (see § 2 for definition) whose
feet are fixed points of /. Since / is orientation-preserving, we see
easily that f(T{) Π Γ, Φ φ. (Hence f(Cv) Π Cv Φ φ, and since
(Bd(?7) - Bd(ϋ )) U L is invariant, we have f(Cv) = Cv.)

Since /(Γ*) Π T* Φ Φ for i = 1, 2, , we see that {SJ and {/(S4)}
are equivalent chains, hence E is a fixed prime end of /. The proof
of Claim 2 is complete.

Let T be a C-transformation of Cv onto the open unit disk D.
Extend the homeomorphism TfT~u. D-+D to a homeomorphism h
of the closed unit disk onto itself, h is orientation-preserving, since
/ is.

By Claim 2, there is a fixed prime end of Cv; hence h has a fixed
point on Bd(D). But then, since h is orientation-preserving, every
point of Bd(D) is either a fixed point of h or converges to a fixed
point under positive iterates of h [2, Lemma 14].

Consider the endcut B of Claim 1. The endpoint of B on Bά(Cυ)



WEAKLY ALMOST PERIODIC HOMEOMORPHISMS OF THE TWO SPHERE 193

is not fixed by /, but this endpoint is a principal point of the
prime end F determined by B. Hence, by Lemma 1, F is not a
fixed prime end. Hence, if e is the endpoint of T(B) on Bd(D), e is
not a fixed point of h. But then, there is a fixed point m of h
on Bd(D) such that {few(e)}~=0 —> m. If M is the prime end of Cv cor-
responding to the point m, then by Lemma 1, every principal point
of M is a fixed point of /.

Let Xl9 X2, be a chain of crosscuts of Cv defining the prime
end M. We claim that for large i, T{X3) intersects the orbit under
h of T(B). To see this we proceed as follows. Let δ be the end-
point of B in Cυ. Then the orbit closure of b is contained in Cv;
therefore, the orbit closure of T(b) under h is contained in D. In
particular, m is not a limit point of the orbit of T(b). Hence, for
large j , the closure of the crosscut T{X3) separates m and the orbit
of T(b) in C1(D). But the other endpoint e of T(B) converges to m
under positive iterates of h, so for large j , there is a positive integer
n such that hn(C\(T(B))) intersects both components of

Clφ) - CliTiXj)) .

Hence hn(T(B)) intersects T(X3), and our claim is established.
Hence, for large j , X3 intersects the orbit under / of Cl(JB).
But the chain Xl9 X2, of crosscuts converges to a principal

point q of the prime end M. But then q is a fixed point of / which
is a limit point of the orbit of C1(JB). Therefore, the union of all
orbit closures which intersect Cl(i?) is not a closed set. This con-
tradicts the fact that / is w.a.p.

This final contradiction establishes that Bd(Z7) — Bd(Z7i) is a
single point. Similarly, Fix(/) Π U2 is a single point, and so / has
exactly two fixed points. The proof of Theorem 3 is complete.

THEOREM 4. Suppose f: S2 —* S2 is a w.a.p. orientation-reversing
homeomorphism. Then either f has no fixed points, or f is periodic
with period 2.

Proof. Suppose / has a fixed point.

Claim, f has more than two fixed points.
Suppose the claim is not true. Let A be an arc intersecting no

fixed point, such that A Π f(A) Φ φ. Denote by M the union of all
orbit closures which intersect A. M is an invariant continuum con-
taining no fixed points of /. Let U be a component of S2 — M con-
taining a fixed point of /. Then f(U)= U and U is simply connected
with a nondegenerate boundary. Let T be a C-transformation of U
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onto the open unit disk D. Extend TfT~~ι to a homeomorphism h
of the closed unit disk onto itself, h is orientation-reversing, since
/ is. But then h must have two fixed points on Bd(D), [16, Theorem
7.3, p. 264]. These fixed points correspond to fixed prime ends of U<
By Lemma 1, the principal points of these prime ends are fixed points
of /. This contradicts the assumption that M contains no fixed
points of /. The proof of our claim is complete.

But now consider the homeomorphism f2: S2 —> S2. f2 is orienta-
tion-preserving, w.a.p. [6, Theorem 4.24, p. 34 and Theorem 2.33, p. 17],
and by our claim, has more than two fixed points. Hence, by
Theorem 3, f2 — Id* The proof of Theorem 4 is complete.

COROLLARY 5. Suppose f: S2 —> S2 is a w. a. p. orientation-
reversing homeomorphism. Then the set of fixed points of f is either
empty or is a simple closed curve.

Proof. Follows from Theorem 4 and [3].

7* Orbit closures of weakly almost periodic horαeomorphisins
on S2.

THEOREM 6. Suppose f: S2 —> S2 is a w.a.p. orientation-preserv-
ing homeomorphism which is not periodic. Then every nondegenerate
orbit closure is a 1-dimensional homology 1-sphere.

Proof, f Φ Id so by Theorem 3, / has exactly two fixed points.
Let K be a nondegenerate orbit closure. We show that K separates
the fixed points of /. Suppose not. Then there is a simple closed
curve J which separates K and the fixed points of /, (connect the
fixed points by an arc missing K, then "enlarge" the arc slightly to
obtain a disk whose boundary is J). We must have f(J) Γ\Jφφ,
since otherwise every point of / would be a wandering point. Denote
by M the union of all orbit closures which intersect J. Then M is
an invariant continuum which separates K and the fixed points of /.
Let U be a component of S2 — M which intersects K. Since every
point of U is a nonwτandering point, there is an integer n such that
fn{U) Π TJφ φ. Since M is invariant, fn(U) = U.

fn is a w.a.p. orientation-preserving homeomorphism [6, p. 34 and
p. 17]. / is not periodic, hence fn Φ Id, hence by Theorem 3, fn

has exactly two fixed points. These fixed points are the original
fixed points of /, and so the domain U contains no fixed points of fn.
But by Lemma 2, i(fn, U) = 1. This contradiction shows that the
orbit closure K must separate the fixed points of /.
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We now show that K is connected. Let V be a component of
S2 — K containing a fixed point of / . Let B be the outer boundary
of V with respect to the fixed point of / not in V, (see § 2 for de-
finitions). B is connected, [10, Theorem 25, p. 176]. And V and the
fixed points of / are invariant, hence B is invariant. But K is a
minimal invariant set, and Ba K, hence B — K.

K is one dimensional, since outer boundaries contain no interior
points.

Finally, S2 — K has exactly two components. For, if there were
more than two components, then some component U would contain
no fixed point of / , and we would arrive at the same contradiction
as in proving that K separates the fixed points of / .

Thus K is a 1-dimensional homology 1-sphere and the proof of
Theorem 6 is complete.

REMARK. [12, Example 1] is an example of a w.a.p. orientation-
preserving homeomorphism with an orbit closure which is an homo-
logy 1-sphere but not a real 1-sphere.

THEOREM 7. Suppose f: S2-+S2 is a w.a.p. orientation-revers-
ing homeomorphism which is not periodic. Then, with two exceptions,
every orbit closure is the union of two disjoint homology 1-spheres.
The exceptions are (a) a period 2 orbit, and (b) one orbit closure
which is an homology 1-sphere (the uaxis of reflection").

Proof, f2 is a w.a.p., orientation-preserving, nonperiodic homeo-
morphism. Hence, by Theorems 3 and 6, f2 has two fixed points,
and every nondegenerate orbit closure is an homology 1-sphere. The
orbit closure under / of a point x is the union of the orbit closure
of x under f2 and the orbit closure of f(x) under f2. Thus, the two
fixed points of f2 correspond to a period 2 orbit under / , and every
other orbit closure under / is the union of two homology 1-spheres
which are either disjoint or equal. Let H denote the collection of
orbit closures under / which are homology 1-spheres. We show that
H has exactly one element.

Let G be the decomposition space whose points are orbit closures
under f2. Let w: S2 ~~>G be the natural decomposition map [16,
p. 125]. If K is any nondegenerate orbit closure under f2, then
w(K) is a cut point of G, since K separates S2, w is an open map,
[16, p. 130], and orbit closures are connected. Hence G has exactly
two noncut points, (the fixed points of f2), hence G is an arc, [16,
p. 54]. Define a map g: G-+G by g{w{K)) = w{f{K)) for all orbit
closures K of f2. It is easily seen that g is a nontrivial period 2
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map of the arc G onto itself. Fixed points of G correspond to ele-
ments of the set H defined above. But g has exactly one fixed point
[16, p. 264]. The proof of Theorem 7 is complete.
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