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POSITIVE-DEFINITE DISTRIBUTIONS AND
INTERTWINING OPERATORS

ROE GOODMAN

An example is given of a positive-definite measure μ on
the group SL(2, R) which is extremal in the cone of positive-
definite measures, but the corresponding unitary representation
Lμ is reducible. By considering positive-definite distributions
this anomaly disappears, and for an arbitrary Lie group G
and positive-definite distribution μ on G a, bijection is estab-
lished between positive-definite distributions on G bounded by
μ and positive-definite intertwining operators for the repre-
sentation Lμ. As an application, cyclic vectors for Lμ are
obtained by a simple explicit construction.

Introduction* The use of positive-definiteness as a tool in abstract
harmonic analysis has a long history, the most striking early instance
being the Gelfand-Raikov proof via positive-definite functions of the
completeness of the set of irreducible unitary representations of a
locally compact group [5]. More recently, it was observed by R. J.
Blattner [1] that the systematic use of positive-definite measures gives
very simple proofs of the basic properties of induced representations,
and the cone of positive-definite measures on a group was subsequently
studied by Effros and Hahn [4].

The purpose of this paper is two-fold. First, we give an example
to show that positive-definite measures do not suffice for the study
of intertwining operators and irreducibility of induced representations,
despite the claim to the contrary in [4]. Specifically, we exhibit a
positive-definite measure μ on G — SL(2,1?) such that μ lies on an
extremal ray in the cone of positive-definite measures on G, but the
associated unitary representation Lμ is reducible, contradicting Lemma
4.16 of [4].

Our second aim is to show that when G is any Lie group, then
the correspondence between intertwining operators and positive func-
tionals on G asserted by Effros and Hahn does hold, provided one deals
throughout with positive-definite distributions instead of just measures.
The essential point is the validity of the Schwartz Kernel Theorem
for the space C?(G), together with a result of Bruhat [3] about
distributions on G x G , invariant under the diagonal action of G.
Using this correspondence, we obtain cyclic vectors for representations
defined by positive-definite distributions, using a modification of the
construction in [7] (The proof of cyclicity given in [7] is invalid,
since it assumes the existence of a measure on G corresponding to
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an arbitrary intertwining operator. Cf. [6] for a proof of cyclicity
using von Neumann algebra techniques.)

1* Notation and statement of theorems* Let G be a Lie group,
and denote by 3f(G) the space C~(G) with the usual inductive limit
topology [10]. Fix a left Haar measure dx on G; then d(xy) = ΔG(y)dx,
where ΔG is the modular function for G. If φe£&(G), define φ*(x) =
Φ(x"ι)ΔG(x)"1. Denote by Sf\G) the space of Schwartz distributions
on G. A distribution a is positive-definite if a(φ**φ) ^ 0 for all φ e £^(G),
where convolution is defined as usual by

(ψ*Φ)(x) = \ ψ(y)Φ(y~1x)dy .

If a and β are distributions, say that a < β if β — a is positive-definite.
Given a positive-definite distribution μ, one obtains a unitary

representation Lμ of G by a standard construction: Let Lyφ(x) =
Φ{y~ιx) be the left action of G on &(G). Then (Lyφ)**(Lyψ) — 0**ψ,
so the semi-definite inner product μ(φ**ψ) is invariant under left
translations. Define Iμ = {̂  e ^ ( G ) : μ(φ**Φ) = 0}. The quotient space
i^i = £&(G)/Ia is then a pre-Hilbert space with inner product (ψ, φ)μ =
μ{Φ**ψ)> where 5̂ —> ί? is the natural mapping of £gr(G) onto &rμm Let
^g^ be the completion of Sfμ. The operators Ly pass to the quotient
to give a strongly continuous unitary representation i/->LJ of G on

Suppose now that a e &'{G) satisfies 0 < a < μ. Then /α Ξ2 Iμ,
and there exists a unique self-adjoint operator A on έ%fμ such that

(1.1)

The operator A obviously satisfies

(1.2) 0 S A ^ J

(1.3)

since the Hermitian form a(φ**φ) is nonnegative, bounded by (φ, φ)μ =
\\Φ\\2

μ, and invariant under left translations by G. It was asserted
(without proof) by Effros and Hahn in [4, §4] that when μ is a measure,
then every operator A satisfying (1.2) and (1.3) is given by formula
(1.1), where a is a positive-definite measure. Unfortunately, this is
false in general, as shown by the following example:

THEOREM 1. There is a positive-definite measure μ on the group
G = SL(2, R) such that:

(i) The only measures a satisfying 0 < a < μ are the measures
cμ,c 6 [0,1].
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(ii) The representation Lμ of G defined by μ is reducible.

If we allow positive-definite distributions in formula (1.1), however,
then we obtain all intertwining operators, as follows:

THEOREM 2. Let G be a Lie group, and let μ be a positive-
definite distribution on G. Suppose A is an operator on £%?μ satis-
fying (1.2) and (1.3). Then there exists a unique positive-definite
distribution a on G such that (1.1) holds. Furthermore, the local order
of a can be bounded in terms of the local order of μ and the dimen-
sion of G.

REMARKS 1. Theorems 1 and 2 show that the cone of positive-
definite measures on SL(2, R) is not a face of the cone of positive-definite
distributions.

2. For a study of unbounded intertwining operators, cf. [9].

3. In case μ is a positive-definite measure, then the distribution
a in Theorem 2 has finite global order at most 2(dim G + 1).

A sequence {φn} c &(G) will be called a d-sequence if φn(x) ^ 0,

\ φn(x)dx — 1, and Supp (φn) —• {1} as n —> oo. Any S-sequence is an
JG

approximate identity under convolution, of course.

COROLLARY. Let {φn} be a delta sequence, and set wn — Φt*Φn

Then the vector ξ — ΣXniΰn will be a cyclic vector for the representation
Lμ, provided Xn > 0 and Xn > 0 sufficiently fast as n—+ °°.

2. Proof of Theorem 1. Let G = SL(2, R) in this section. We

distinguish two closed subgroups of G: the subgroup B consisting of

all matrices b = (Q _X ), with s, t real, s Φ 0, and the subgroup V

consisting of all matrices v = ( -i J, x real. One has B Π V = {1},

while V B consists of all unimodular matricesί^ d)3 1 1 0*1 ^ a ^ α ^ 0
The map v, b —> v b is a diffeomorphism from V x B to the open subset
V B of G. Let dv and db be left Haar measures on V and B, respec-
tively, and let ΔB be the modular function of B. Left Haar measure
dx on G is then given by the formula

(2.1) ( f(x)dx = [ [ f{vb)ΔB{b~ι)dbdv = [ [ f(bv)dbdv
JG JVJB JBJV
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[2, Chap. VII, §3, Proposition 6]
Suppose that p is a unitary character of B. Then p(b)db is a

positive-definite measure on B, and the measure μ on G defined by

f f(x)dμ(x) = f f(b)AB{bY^p{b)db

is positive-definite [1] As in §1, we denote by Lμ the corresponding
representation of G on 3(?μ. The representation Lμ is equivalent to
the "principal series" representation of G induced from the one-dimen-
sional representation p of B. Using the integration formula (2.1), we
can identify the representation space £ίfμ with L%(V, dv). (This gives
the so-called "non-compact picture" for the principal series [8].) Indeed,
if φ,ψe &(G), then an easy calculation using (2.1) shows that

(Φ,

where

s(φ)(v) = f φ{vb)AB{b)-^p{b)db .

The restriction of Lμ to the subgroup V becomes simply the left
regular representation of V in this picture.

LEMMA 1. Let A be a bounded operator on L2(V) which commutes
with left translations by V, and suppose that there exists a Radon
measure a on G such that

(2.2) (Aε(φ), ε(ψ))L2iv) = a{f**φ)

for all φ,ψ£ 3f{G). Then there is a Radon measure v on V such that
Af - f*v, for fe^r(V).

Proof. Since A is translation invariant, it is enough to establish
an estimate

(2.3) | ( A / ) ( l ) | ^ C π | | / | U ,

for all f e^(V) supported on an arbitrary compact set Ka V ( | |/ |U
denoting the sup norm). Let Sίf°°(y) be the space of C°° vectors for
the left regular representation of V. By Sobolev's lemma, ^f^iV) c
C°°(V), and A leaves the space ^°°(V) invariant. Hence, As(φ) is a
C°° function for every φe£&(G).

If / e &r(y) and g e &r(B), write / (x) g for the function f(v)g(b).
Via the map v,b-+vb we may consider / (g) g as an element of 2$(G).

Then ε(f (x) g) = Xgf, where \ = ί g{b)ΔB{b)~ιl2p{b)db. In particular,
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if {/J and {gn} are δ-sequence in 3?{y) and Sf(B) respectively, then
Xg% —* 1 as n —> oo and /w (g) gn is a δ-sequence on G (by the integration
formula (2.1)). Hence, we deduce from (2.2) that

Aε(φ)(l) = a{φ)

for all φ e &(G). Fix g e &r(B) such that Xg = 1. Then for any / e
we have / = ε(/® #), and hence

(2.4)

Since α is a Radon measure, the right side of (2.4) satisfies (2.3),
which proves the lemma. (In fact, v is the measure /—»a(f (x) g).)

Completion of proof of Theorem 1. Now take for p the character
p(b) = sgn (s), when 6 = I Q _Λ. Then it is known [8] that the
induced representation Lμ in this case splits into two parts, and when
Sίfμ is realized as L2(V), then any nontrivial intertwining operator is
a scalar multiple of the classical Hubert transform

Af(x) = Km— f(x - y)y~1dy .
δ-+0 7Γ J l » | > 3

We identify V with /2 via the map x~+( ΛΛ

The Hubert transform does not satisfy estimate (2.3). For example,
if

=2 k log k

where φe£^(R) is fixed with φ(x) — 1 for \x\ ^ 1, then Supp (/n) S
Supp(^) and s u p J | / J U < oo [ll, p. 182].
On the other hand,

Af%(0) = £cu(k logk)~ι + 0(1)

as n —> co, where

1 f1

cλ = — \ χ~ι sin (kx)dx .

7Γ J-i

Since cΛ —>1 as k—>oo9 and since Σ(k\ogk)~ι — + oo, it follows that

supn |A/Λ(0)| = - .

3. Proof of Theorem 2 and Corollary. Let G be an arbitrary
Lie group (assumed countable at infinity), and let μ be a given positive-
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definite distribution on G. If we set H ^ = μ(Φ**Φ)112, then Φ->\\Φ\\μ

is a continuous seminorm on £^(G). Suppose now that A is a bounded
operator on the representation space <%%. We may associate with A
a bilinear form BA on £&(G) by the formula

(3.1) BA(ψ, Φ) = (Aφ, Jψ)μ .

Here φ—*φ is the canonical map from <&(G) into £ίfμ as in §1, and
Jφ = φ (complex conjugate). By the Schwarz inequality and the
boundedness of A we see that

(3.2) \BA(ψ,φ)\^\\A\\\\φ\\μ\\Jψ\\μ.

Clearly, ψ —"WJψWμ is also a continuous seminorm on £&{G). Although
HJΊHI I need not be bounded in terms of \\ψ\\μ9 nevertheless, the local
order of this seminorm is the same as the local order of || ||^. (If
Kd G is a compact set and p is a continuous seminorm on £&(&),
we say that p has order ^ r on K if there is a finite set of differential
operators {D3) on G each of order ^ r, such that p(φ) ^ max,- WDrfW^
for all φ with Supp (φ) £ K.)

The main analytic fact we need is the following version of the
"kernel theorem" for continuous bilinear forms:

LEMMA 2. Suppose B is a bilinear form on £&(G), and pl9 p2 are
continuous seminorms on j3f(G) such that

(3.3) \B(φ9ψ)\^p1(φ)p2(Ψ) ^

Then there is a distribution T on G x G such that

B(φ, ψ) = T(φ (X) ψ) .

Furthermore, if Kλ and K2 are compact subsets of G, and if p5 has
order S τs on Kό(j — 1, 2), then T has order ^ n + r2 + 2(dim G + 1)
on any compact set i l fc Interior (Kλ x K2).

Proof. Since multiplication by a C°° function is an operator of
order zero, we may use a partition of unity and local coordinates to
reduce the problem to a local one in Rd, d — dim G, such that Kό —
{\x\ ^2}QRd a n d M = {(x,y); \x\ ^ 1, \y\ ^ 1} £ R d x R d .

Let φ0 e &(Rd) satisfy φ0 = 1 on {| x \ ̂  1} and Supp (φ0) £ i^ . Set
en(x) = ^o(^)6ί%:c> where neNd and w α? = ^ ^ + ••• + %#<*. Then if
D is a differential operator of order r, one has HZteJU g C(l + \n\)r.
Hence, the a priori estimate (3.3) implies that for some constant C > 0,

(3.4) IB(e» en) \<C(l+\m|Γ(1 + | n I P

for all m,ne Nd.
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Suppose now that / is a C°° function on Rd x Rd with Supp (/) £
M. Then the Fourier series of / can be written as

) = Σm,n/(m, n)em{x)en{y) ,

where {f(m, n)} are the Fourier coefficients of / . Define

(3.5)

The series (3.5) is absolutely convergent, and by (3.4) we have the
estimate

(3.6) I T(f) I £ C, sup {\f(m, n) | (1 + | m \)^d+1(l + | n \y*+d+1] ,

where Ci = CΣmtn (1 + | wD^-^l + \n\yd~ι < oo. Since the right side
of (3.6) is a seminorm of order r1 + r2 + 2d + 2 on M, this proves
the lemma.

Completion of proof of Theorem 2. Suppose now that the operator
A in formula (3.1) commutes with the representation Lμ. Then the
distribution Ton G x G such that BA{φ,ψ) = T(φ®ψ), which was
constructed in Lemma 2, satisfies for all zeG,

(3.7) T(δzf) = T(f) , / G ^r(G x (?) ,

where δj(x, y) = /(z"^, z"1?/).
The structure of distributions satisfying (3.7) was determined by

Bruhat [3, Prop. 3.3]. Let t denote the distribution on G determined
by left Haar measure, and let Φ: G x G —> G x G be the map Φ(x, y) =
(a?, αjy). Then (3.7) forces Γ to have the form

T(f) = {c®a){foφ) ,

where a is a distribution on G. Symbolically,

In particular, if φ9 ψe&(G), then

(Aφ, f)μ - T(Jψ (x) ̂ )

= \γHx)Φ(xy)dxda(y)

Hence, α serves to represent the intertwining operator A, and is
obviously positive-definite if A ^ 0. Since Φ is a diffeomorphism, the
order of ί ® α on a compact set Ma G x G is the same as the order
of T on φ-^ikί). By Lemma 2 and inequality (3.2), the local order
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of t (x) a (and, hence, the local order of a) can, therefore, be bounded
in terms of the local order of μ and the dimension of G, as claimed.

Proof of Corollary. Using Theorem 2, we are able to rehabilitate
the attempted proof of cyclicity in [7]. Given a <5-sequence {ψn} on
G, let K c G be a compact set such that K = K~ι and Supp (ψn) £ i ί
for all n. Since \\ψ\\μ is a continuous seminorm on £2?(G), there are
right-invariant differential operators Dl9 , Dr on G such that

i

for all ψ supported on the set Kz.
Now set wn = ψ**ψn, and let {λj be any sequence such that

Xn > 0 and

(3.9) Σ λ*» ΉI&X I! Djψn \\lo <C °°
n j

The series f = Σ λΛίδΛ then converges absolutely in ^g^ (since H^H^ ^

H^nll?')- Let ^V be the G-cyclic subspace generated by ζ, and let A

be the projection onto ΛrL. Since Af — 0, we have ^Xn(Awny φ)μ —

0 for all φe&(G). But φ*ψ — Lμ(φ)ψ, where Lμ(f) = \f(x)Lμ(x)dx

is the integrated form of the representation. Since A commutes with

Lμ, this gives (Awn, φ)μ — (Aψni ψn*φ)μ. Thus taking φ = ψk and
letting k —+ co, we see that

(3.10) lim (Awn, ψk)μ = (Afn, ψn)μ

(note that φ—>φ is continuous from &(G) to <^fμ). Furthermore, by
the Schwartz inequality, the boundedness of A, and the calculation
just made, we have the estimate

I (Awn, f k ) μ

(Here we have used estimate (3.8), the right-in variance of Dj} and
the inequality | | / * # | U ^ ll/llcoll^lU,.) Thus we may apply the domi-
nated convergence theorem to conclude from (3.9) and (3.10) that
Σ K(Aψn, f n ) μ = 0. But λΛ > 0 and A ^ 0, so in fact (Aψn, f n ) μ =
0 for all n. (So far we have simply followed the line of proof of
[7], replacing uniform convergence of the series Σ K^^ by the stronger
condition (3.9), in return for allowing μ which are distributions rather
than measures.) Finally let a be the positive-definite distribution on
G representing A, which exists by Theorem 2. Then (x(ψ**ψn) — 0 f° r

all n. By the Schwarz inequality, this implies that a(φ*ψn) = 0 for
all φe^(G) and all n. Letting n—* 00, we conclude that a = 0.
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