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DOMAINS OF NEGATIVITY AND APPLICATION TO
GENERALIZED CONVEXITY ON A REAL

TOPOLOGICAL VECTOR SPACE

JACQUES A. FERLAND

The purpose of this paper is to derive conditions for the
existence of domains of negativity, and then to determine
maximal domains of convexity, quasi-convexity, and pseudo-
convexity for a quadratic function defined on a real topological
vector space.

I* Introduction* Martos, in [14] and [15], and Cottle and the
author, in [3], [4], [6], and [7], study quasi-convex and pseudo-convex
quadratic functions defined on En, the ^-dimensional Euclidean space.
Furthermore, in [6] and [7], the author uses the concept of domains
of negativity that was introduced, mutatis mutandis, by Koecher in
[11], The purpose of this paper is to derive conditions for the existence
of domains of negativity, and then to generalize the results found
in [6].

In §2, we briefly review definitions needed in the rest of this
paper. We also state relations between the classes of convex, quasi-
convex, and pseudo-convex quadratic functions on a convex set. Con-
ditions for the existence of domains of negativity and properties of
these are given in §3. In §4, convex quadratic functions are studied.
Then, domains of quasi-convexity and pseudo-convexity for quadratic
forms are specified in §5, and, in §6, we extend this analysis to
quadratic functions.

Note. Another approach to this theory have been used by Siegfried
Schaible in "Quasi-convex Optimization in General Real Linear Spaces",
Zeitschrift fur Operations Research, 1972.

2* DEFINITIONS. Let E1 denote the field of real numbers with
the natural topology and let X be a vector space over E\ We assume
that X admits a norm, i.e., there exists a mapping x-+\x\ from X
into E\ — {ae Eι\a > 0} with the following properties:

( i ) I x I = 0 if and only if x = 0,
(ii) |λa?| = |λ| \x\ for all XeE1 and all xeX,
(iii) Ix + y| < |x | + \y\ for all x and y in X.

A topology on X is determined by this norm, and X, so endowed, is
called a topological vector space over E\

Let X and Y be two real vector spaces. The mapping A: X—>Y
is a linear transformation if and only if for all vectors x and y in
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X and for all real numbers a and β

A(ax + βy) = aA(x) + βA(y).

If Y = E\ then A is said to be a linear form from X into I?1.
The mapping L: X x X—•> i?1 is a bilinear form on X if and only if
(i) L(#, #) — !/(#, a?) for all x and 7/ in X,
(ii) L(xf y) is linear and continuous in y for each fixed x.

With each bilinear form L is associated a unique quadratic form Q: X—•I?1

defined by

Q(x) = L(x, x) for all xeX.

A quadratic function on a real vector space X is a mapping R:
X-+E1 defined by

R(x) = l/2Q(x) + P(x) for all x e X,

where Q is a quadratic form and P is a linear form, both defined on X.
The radical of a bilinear form L is the set

X(L) - {£GX|LO, y) = 0 for all » 6 l } .

L is nondegenerate on X if X(L) = 0. Otherwise, L is degenerate.
If Xx and X2 are subsets of X, then the complement of X2 relative

to XL is the set

Also, the sum of Xx αnώ X2 is the set

= u + vfueXl9 and veX2}

If E1 and £72 are subspaces of X, then X = E1 φ Ĵ z, the ώirecί
of £Ί and E2, if and only if for each xeX there exists a unique pair
ueEι and v e 2£2 such that a? = u + v.

In [11], Koecher introduces the notion of domains of positivity in
a real topological vector space, and mutatis mutandis, we define a
domain of negativity in X determined by L as a subset F of X having
the following properties:

( i ) Y is open and nonempty,
(ii) L(x, y) < 0 for all x and yeY,
(iii) for all x& Y there exits a vector y e Ϋ\X{L) such that

L(x, y) > 0. (Note that Ϋ is the closure of Y.)
A subset S of X is said to be convex if and only if for all x, y

in S and for all θ e [0,1]

x{θ) = (I- θ)x + θyeS.
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Furthermore, S is solid if and only if it has a nonempty interior, S°.

The quadratic function R(x) = l/2Q(x) + P(x) is convex on a convex
set S in X if and only if for all x and y in S and for all 0 e [0,1],

(1) Λ((l - 0)α? + θy) < (1 - 0)jβ(α?) + &β(y) .

The quadratic function jβ(ίc) — l/2Q(α;) + P(x) is quasi-convex on
a set 5 in X if and only if for all x and y in S

( 2) 12(2/) < R(x) implies L(x, 2/ - x) + P(# - a;) < 0

The quadratic function R(x) = l/2Q(x) + P(x) is pseudo-convex on
a set S in X if and only if for all x and y in 5

(3) L(x, y - x) + P(y - x) > 0 implies Bfo)

Observe that if we take P(#) = 0 for all xeX, then (1), (2), and
(3) are the conditions for the quadratic form Q to convex, quasi-convex,
and pseudo-convex, respectively.

If S is a convex set, then denote by C(S), QC(S), and PC(S) the
classes of all quadratic functions 12 that are convex on S, quasi-convex
on Sf and pseudo-convex on S, respectively.

Notice that Mangasarian's results in Chapters 6 and 9 of [13] hold
for a quadratic function 12(α?) = l/2Q(x) + P(x) defined on an arbitrary
real topological vector space if we replace the expression (\/R(x),y~-
x) by L(x, y — x) + P(y — x). (Recall that in En the gradient of 12
evaluated at x, \/R{x), is the column vector of the partial derivatives
of 12 at x.) Thus, from [13, Theorem 9.1.4], we have this equivalent
definition: a quadratic function R(x) is quasi-convex on a convex set
S in X if and only if for all x,yeS and for all θ e [0,1]

(4) 12((1 - θ)x + θy) < Max {R(x), R(y)} .

Furthermore the results in [13], [Chapters 6 and 9] imply that if S is
a convex set in X, then

(5) C(S) c PC(S) c QC(S) .

In [3], Cottle and the author have shown the following.

(6) PROPOSITION. If the real valued function h is quasi-convex
on a nonempty convex set S in En and continuous on S, then h is
quasi-convex on S, the closure of S.

Since this result holds for a quadratic function 12 defined on an arbi-
trary real topological vector space, if S is convex, then

(7) QC(S)(ZQC(S).



70 JACQUES A. FERLAND

It follows from (5) and (7) that for a convex set S c l

(8) C(S) c PC(S) c QC(S) c QC(S) .

Observe the similarity with Ponstein's results for X — En. See [16].

3* Domains of negativity• In this section we give necessary and
sufficient conditions for a bilinear form to determine a pair of domains
of negativity in a real topological vector space. The importance of
domains of negativity in the study of quasi-convexity and pseudo-
convexity will become apparent in §§5 and 6.

First we introduce the following notation. For each xeX we
denote by E(x) the subspace generated by x, i.e.,

E{x) = {zeX\z = ax,aeE1} .

Given a certain bilinear form L and an arbitrary subspace E of X,
we denote

EL = {z eX\L(x, z) = 0 for all x e E} .

Referring to [10, p. 6], the following is true.

( 9 ) P R O P O S I T I O N . If xeX and Q(x) Φ 0, then X = E(x) 0 EL(x).

Relative to a bilinear form L, we say that a nonzero vector z e
X i s

positive-valued if and only if Q(z) > 0 ,

negative-valued if and only if Q(z) < 0 ,

zero-valued if and only if Q(x) = 0 .

Suppose that L is a nondegenerate bilinear form, i.e., X(L) = 0.
Furthermore, suppose there exists a vector xe X. such that Q(x) = — 1
and EL(x) is an inner product space where L(u, v) is the inner product,
i.e.,

L(u, v) = L(v, u) for all u, v e EL(x)

Q(u) > 0 for all u e EL(x)

Q(μ) — 0 implies u = 0.

For details see Schaefer [17, p. 44] or Greub [9, p. 160]. From (9),

X - E(x) 0 EL(x) .

Using the same type of argument as in [9, p. 268], the following

can be shown.
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(10) PROPOSITION. If z is a negative-valued vector or if z is a
nonzero but zero-valued vector, then L(x, z) Φ 0.

Define the sets

Y+ = {ze X\ Q(z) < 0 and L(x, z)< 0} ,

Γ- = {zeX\Q(z) < 0 and L(x, z) > 0} ,

Notice that Y+ and Γ~ are nonempty since x e Y+ and — a? e Y~. It
is easy to verify that

Ϋ+ = {zeX\Q(z) < 0 and L(x9 z) < 0} U {0}

Ϋ- = {zeX|Q(z) < 0 and L(x, z) > 0} U (0) ,

and that Y+ U {0}, Γ" U {0}, Ϋ+, and Γ" are solid convex cones.
Furthermore, a modified version of arguments [6, (3.22) and (3.32)]
shows that Y+ and Y" are domains of negativity.

The definitions of Y+ and Y~ and (10) imply the following result.

(11) THEOREM. Given the pair of domains of negativity Y+ and
Y~~ in X determined by L, then

(a) 2 G Γ = Γ + u Γ i f and only if Q(z) < 0,

(b) zeX°= (Ϋ+\Y+) UJΫ~\Y~) ^ <™d onlV if Q(«) = °>
(c) z e X+ = X\(Y+ U Γ-) if and only if Q(z) > 0.

Since Y+ and Y~ are maximal ([11, p. 5]), then it follows from
(11) that the pair Y+ and Y~ in X determined by L is unique.

In summary, if the vector x e X is such that Q(x) = — 1 and EL(x)
is an inner product space, then there exists a pair of domains of nega-
tivity in X determined by L. This sufficient condition can be ex-
pressed into another form. To see this, we need the following result.

(12) PROPOSITION. If there exists a vector xeX such that Q(x) = — 1
and EL(x) is an inner product space, then for all z e X such that Q(z) <
0 the subspace EL(z) is an inner product space.

Proof. For contradiction, suppose that Q(z) < 0 for some z eX
and EL(z) is not an inner product space. Hence, there exists a nonzero
vector y e EL(z) such that Q(y) ^ 0. On the other hand, by definition
of x there exists a pair Y+ and Y" of domains of negativity in X
determined by L.

Suppose ze Y+. If Q(y) < 0, then via (11), either the pair y and
z belongs to Y+ or the pair — y and z belongs to Y+. Since L(y, z) =
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L(— y, z) — 0, in either case we have a contradiction to the definition
of domains of negativity.

If Q(y) = o, then, via (11), either y e Ϋ+\Y+ or -ye Ϋ+\Y+. Since
y Φ 0, either the pair z and y or the pair z and — y contradicts the
property that if u e Y+ and v e Ϋ+\X(L), then L(u, v) < 0 ([11, Theorem
1 a.]). The proof is complete.

Relying on (12), if the set {xeX\Q(x) < 0} is nonempty and for
each x in this set the subspace EL{x) is an inner product space, then
there exists a pair of domains of negativity. Other trivial sufficient
conditions for the existence of such a pair are Q(x) < 0 and EL(x) empty
(i.e., dim X = 1). Now we turn to the necessity of these conditions.

(13) THEOREM. If there exists a pair Y+ and Y~ of domains of
negativity in X determined by L, then the set {x e X\ Q(x) < 0} is
nonempty and for all x e X such that Q(x) < 0 the subspace EL{x) is
an inner product space or is empty.

Proof. Since Y+ is nonempty, it follows that {x e X \ Q(x) < 0}
is nonempty. The second condition is shown by a similar argument
as in (12), and this completes the proof.

We are left with the problem of studying conditions for the
existence of domains of negativity when the bilinear form L is degen-
erate in X, i.e., when X(L) Φ 0. Referring to Schaefer [17, p. 20], the
vector space X can always be expressed as

X=(X/X(L))®X(L)

where X/X(L) is called the quotient space of X over X(L). It is well-
known that the bilinear form L is nondegenerate on X/X(L).

If there exists a pair Yi and Y£ of domains of negativity in
X/X(L) determined by L, then denote

Y+ - Yi 0 X(L)

r-= Y-L@X{L).

First, since Yi and Yi are nonempty and open, so are Y+ and Y~.
The other conditions for Y+ and Y~ to be domains of negativity in
X follow from the fact that if x,yeX, then

x = u + t, ueX/X(L) and teX(L) ,

y = v + z, ve X/X(L) and z e X(L) ,

and

L(x9 y) = L(u, v) + L(t, z) — L(u, v) .
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Hence a pair Y+ and Y~ of domains of negativity in X determined
by L exists if and only if such a pair exists when L is restricted to
X/X(L).

4* Domains of convexity for a quadratic function* In this
section, we want to determine the convex sets in X over which a
quadratic function is convex. In [2], Cottle has studied this problem
for quadratic functions defined on En, and, as we shall see, these
results hold on an arbitrary real topological vector space.

Using definition (1), this result follows immediately.

(14) PROPOSITION. The quadratic function R is convex on a convex
set S in X if and only if the quadratic form Q is convex on S.

The same kind of argument, as when the quadratic form is defined
on En, can be used to show the following result.

(15) PROPOSITION. The quadratic form Q is convex on a convex
set S in X if and only if for all x and y in S

Q(x-y)>0.

Notice this generalization of Cottle's result [2, (2)].
Recall that a set K in X is said to be a linear manifold if it is

of the form

K= E+ x

where xeX and E is a vector subspace of X. ([1]).
With each convex set $ in X is associated a carrying plane K(S)

defined as the linear manifold of least dimension which contains S.
The same argument as in [2] shows the following property.

(16) PROPOSITION. If the quadratic form Q is convex on a convex
set S in X, then Q is convex on K(S).

It follows that if the quadratic form Q is convex on a solid convex
set S in X, then Q is convex on X.

5* Domains of quasi' convexity and pseudo-convexity for quad-
ratic forms* The results found in Chapter 3 of [6] hold even for
quadratic forms defined on a real topological vector space. Since only
slight modifications of these arguments are needed for the generali-
zation, we will restrict ourselves to the statements of the results.
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Suppose that Y is a domain of negativity in X determined by L.

(17) THEOREM. The quadratic form Q is quasi-convex on Ϋ and
pseudo-convex on Ϋ\X(L).

(18) THEOREM. If the quadratic form Q is quasi-convex, but not
convex, on a solid convex set S, then there exists a unique pair of
domains of negativity, Y+ and Y~, in X determined by L, and Sd
Ϋ+ or Sa Ϋ~.

(19) THEOREM. If the quadratic form Q is pseudo-convex, but not
convex, on a solid convex set S, then there exists a unique pair of
domains of negativity, Y+ and Y~, in X determined by L, and Sa
Ϋ+\X(L) or SczΫ-\X(L).

Therefore, if Y+ and Y~ is a pair of domains of negativity in X
determined by L, then Ϋ+ and Ϋ~ are maximal domains of quasi-
convexity, and Ϋ+\X(L) and Ϋ~\X(L) are maximal domains of pseudo-
convexity for a quadratic form Q.

6* Domains of quasi-convexity and pseudo-convexity for quad-
ratic functions*

We wish to extend the analysis of Section 5 to quadratic functions.
With each quadratic function R(x) — l/2Q(x) + P(x), associate the

set

M = {aeX\L(a, x) + P(x) = 0 for all xeX} .

A direct generalization of results in Chapter 4 of [6] gives this
sufficient condition.

(20) THEOREM. // YaX is a domain of negativity determined by
L and M is nonempty, then the quadratic function R{x) is quasi-convex
on Ϋ + M and pseudo-convex on Ϋ\X(L) + M.

Before we proceed to determine necessary conditions for the
quasi-convexity of a quadratic function on a solid convex set, we have
to specify under what conditions the set M is nonempty.

It is obvious that the real topological vector space X, can be
expressed as

where E+, E~~ and E° are subspaces of X such that
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Q(x) > 0 for all xeE+\0 ,

Q(x) < 0 for all x e E~\0 .

Q(x) = 0 for all xeE° ,

This decomposition may not be unique, but for the rest of this section
we make the following assumption:

(21) There exists at least one decomposition

X = E+ 0 E- 0 E°

where E+ and Έ~~ are complete (i.e., each Cauchy sequence in E+ or
E~ is convergent).
Under this assumption the following is true:

(22) PROPOSITION. If R{x) = l/2Q(x) + P(x)9 then either the set
M~ {ae X\L(a, x) + P(x) = 0 for all xeX} is nonempty or there
exists a vector te X such that P(t) Φ 0 and L(x, t) — 0 for all xe X.

Proof. First we show that both conditions cannot hold simul-
taneously. Indeed, suppose there is an αeikf; i.e., L(a9 x) +P(x) =
0 for all xeX. On the other hand, if t is such that L(x, t) = 0 for
all xe X and P(t) Φ 0, then x = a gives a contradiction.

Next, suppose that if L{x, t) = 0 for all xe X, then P(£) = 0. Hence
X = £?+ 0 JS- 0 £7° implies that for all ί c e l

L(α, α?) + P(α ) = {L{a\ x+) + P(x+)) + (L(a~, x~) + P(a?-))

where α+, x+e E+ and a~~,x~e E~. Relying on [17, p. 44] it follows
that there exist at least one α+ e E+ and one α~ e ί7~ such that for
all x+ 6 E+

L(a+, x+) + P(x+) = 0

and for all x~ e E~~

L(ar, x~) + P(x") = 0 .

This shows that If is nonempty and the proof is complete.

Notice this proposition generalizes to an arbitrary real topological
vector space X, satisfying assumption (21), a well-known result proved
in Gale's book [8, Theorem 2.5] for the case X = E*.

This proposition and similar arguments as in [6, (4.4), (4.13), and
(4.15)] are combined to show these results.

(23) THEOREM. // the quadratic function R(x) = l/2Q(x) + P(x)
is quasi-convex, but not convex, on a solid convex set S, then

( i ) M is not empty,
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(ii) there exists a unique pair of domains of negativity, Y+ and
Y~, in X determined by L,

(Hi) SczΫ+ + M or S c ? " + M.

(24) THEOREM, If the quadratic function R(x) = l/2Q(x) + P(χ)
is pseudo-convex, but not convex, on a solid convex set S in X, then

( i ) M is not empty,
(ii) there exists a unique pair of domains of negativity, Y+ and

Y~~, in X determined by L,
(iii) Scz (Ϋ+\X(L) + M) or Sa (Ϋ~\X(L) + M).

Therefore, if M is nonempty and Y+ and Y~ are a pair of domains
of negativity in X determined by L, then Ϋ+ + M and Ϋ~ + M are
maximal domains of quasi-convexity, and Ϋ+\X(L) + M and Ϋ— X(L) +
M are maximal domains of pseudo-convexity for a quadratic function R.
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