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ORDERS IN SIMPLE ARTINIAN RINGS ARE
STRONGLY EQUIVALENT TO MATRIX RINGS

JULIUS ZELMANOWITZ

The result indicated by the title will be proved. More
specifically stated: when R is a left order in a simple artinian
ring Q, there exist matrix units {e^ } for Q and an element
reD, where D is the intersection of the centralizer of {e^ }
with R, such that rRr Q £ Dev a n d Σ rDev = R T h e

Faith-Utumi theorem is an immediate consequence of this
relationship. Furthermore, if R is either a maximal order,
or is subdirectly irreducible, or is hereditary, then there is
a left order C in the centralizer of {ê } which inherits the
corresponding property of R and such that R is equivalent
to the matrix ring ^ Cβij.

Introduction* A subring R of a simple artinian ring Q is a left
order in Q if every element of Q is of the form r~ιs for some r, se R.
An order in Q is a right and left order. Two left orders R and Rr

in Q are equivalent if there exist units p, q, p', qf of Q with pRq £ .β'
and p'jβ'g' £ i?; one then writes R ~ R'. A maximal left order in ζ>
is a left order in Q which is maximal in its equivalence class. It is
assumed throughout that all left orders are inside a fixed simple
artinian ring Q, and also that rings do not contain identity elements
unless specifically indicated.

In the classical situation, by which is meant the theory of maxi-
mal orders over a Dedekind domain [2], all the maximal orders are
equivalent. This remains true in the more general situation of
Dedekind orders [9], and there exists in each equivalence class a
matrix ring over a (not necessarily commutative) integral domain.

The first main result of this paper in § 2 shows that given a (left)
order R in Q there exist matrix units {eiά} for Q with centralizer Δ
and an element r e D — Δ n R with rRr £ X Deίh r X, Dei5 £ R, and
Σ Deiάr £ R; as expected, D is a (left) order in Δ. Thus, in particu-
lar, R contains the matrix order Σ rDeijf giving the conclusion of
the Faith-Utumi theorem [4]; and R~^Deu [H]> with a somewhat
stronger condition actually satisfied. The additional information en-
ables one to consider the important special cases when R is a maxi-
mal, or a subdirectly irreducible, or a left hereditary left order. In
each of these cases, a maximal left order C £ Δ is chosen with the
same property as R and with r X Ceiόr Q R and rRr £ Σ Cei3 . These
are treated in § 3-§ 5, where partial results are also obtained for
simple orders. The method of proof involves only the machinery of
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linear algebra over Ore domains.

1* Preliminaries• The reader is assumed to be familiar with
Goldie's characterization of (left) orders in simple artinian rings [5],
with the definition and use of Morita contexts in this setting (cf. [1],
[10]), and all attendant concepts (uniform module, essential submodule,
and so on).

Throughout, R will denote a fixed {left) order in a simple artinian
ring Q, M will be a fixed uniform left ideal of R, N = ΈLomR(M, R),
E = EndRM; and, except where specifically indicated otherwise, atten-
tion will be directed to the standard Morita context (i?, M, N, E) with
bimodule maps (,): M®EN-+ R and [, ]: N(g)RM—* E defined via
(m, n) — (m)n, m'[n, m] = (m', n)m for all m,mreM, ne N (homo-
morphisms being written opposite scalars). Observe that (,) and [, ]
are nonsingular in all four variables. The well-known results pre-
sented in this section are of fundamental importance in the sequel.

LEMMA 1.1. E — End^M is a (left) order in the division ring
EndQQM.

Proof. QM is a minimal left ideal of Q and is the ϋJ-injective
hull of M. Hence one may regard E — End^Af as a subring of the
division ring Δ — Endρζ?M. Given φeΔ, set Mo = Mφ~ι Π M. Then
0 Φ [N, MQ<p] = [N, M0]<p QEφf]E, and it follows that E is a left
order in Δ.

Next suppose that R is also a right order in Q. Then one may
regard [N, Mo] as a right ideal of End̂ ikfo (by restricting the action
of N to Λf0). Moreover, End̂ Λfo is a right order in Δ because
Moφ[N, Mo] S (M, N)M0 g Mo. Since [N, Mo] is also a left ideal of E,
it follows that E is a right order in Δ.

LEMMA 1.2. (Dual Basis Lemma) There exist elements

t

ml9 m2* mt e M, nlf n2, "', nt e N, 0 Φ a e E, r = Σ 0̂ ;> w<) e R

satisfying:
( i ) nl9n2, ,ntisa maximal linearly independent subset of

EN;
(ii) [ni9 mά\ = 8{ja for i and j (where δ4 i is the Kronecker delta);
(iii) r is a regular element of R (i.e., r is a unit in Q);
(iv) n{r = cm* and rm^ = m{a for each i.

Proof. N = Hom^(M, R) can be regarded as an essential i£-sub-
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module of N — Hom^ (QM, Q), and the latter is a finite dimensional
vector space over Δ — Endρ QM. Thus N is the i?-injective hull of
N9 and EN is finite dimensional and torsion-free. This being the
situation, proofs of the lemma may be found in [1] and [10], except
for the last assertion that rrrii = m^ for each i. To see this, it
suffices to show that [nd, rm^\ — [nd, m^ for each j; and this is
evident since [njf rm{ — m^ — a[njy m^ — [njy m^a = δiά(a2 — a2) = 0.

2 Main results. The notation in this section continues that
of § 1, and the notation now introduced will be followed consistently.
All sums will be taken over the integers from 1 to t.

Observe that

i9 n3) = Σ ^ {mk[nki mj , nd) = (m^α, n3) .

Similarly, (miU^r = (mi9 an3), so that

(1) r(miy n3) — (miy n3)τ for all 1 ̂  i, j ^ t

Thus defining

(2) e4i = r-^mi, n3) = (m«, w^r"1 ,

it is easy to check that {ei5\ 1 ̂  ΐ, j < t) is a set of matrix units for
Q. Set

J = {g G Q: geίy = ei3q for all 1 ̂  i, j ^ ί} ,

and let D = J n -B.
Clearly then J is a division ring and Q = Σ»,i ^ e ϋ = Λ

Let Λo = {Σ*.i(w46<i,%):&<ye^}, A = { Σ ί ( w Λ ^ ) : & e £ 7 } . Both
i?0 and Do are subrings of R. They are related as follows.

LEMMA 2.1. Z?o S D and RQ = Σ i . i A ^

Proof. Let Σ* ( m A ^*) € Do, δ e J?. Then for any choice of fc
and λ,

Σ (miδ, woe** = Σ (^δ, %)(mfc, 7 Λ̂)r-
1 = (wfc&, αti^r"1 = (mfcδ, nh)

and similarly, e ^ Σ ; (w<&> ̂ *) = ( m Λ ^*) Hence Do £ D.
Now given Σ*.i imihj, %) 6 -Bo> δ^ e E; for each 1 ̂  i, j ^ ί, set

Tit = Έk (mkbijf nk) e Do. Then

^i)^" 1 = (m^i,-, ano)r~ι = (mi

Thus i?o - Σ*,y Ae*i.

THEOREM 2.2. Let R be a {left) order in Q. Then
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( i ) reD, Σ*,i rDei3- S -R, and Σ*,; Dei3r S # .
(ii) rifr S i?0 S Σ*,; Dei3.
(iii) R~ Ro~ Σa.i Dei3.
(iv) Z)o αwώ D are equivalent {left) orders in A.

Proof. That r e D is obvious from the definition of r and (2).

e<i = Σί,i e<jrjD = Σ<,i (m;> Wy)D S #, and similarly Y^^De^r s JR.

Σ ( f , *) Σ (&i, %) = Σ

- Σ Aβ*y S Σ ^ e < y .

(iii) is a consequence of (i) and (ii). Thus in particular, Ro = Σί,y D0ei3-
and Σi.j -Dβίi a r e a l s o (left) orders in Q. This implies that Do and D
must be (left) orders in A. It remains to prove that D and A are
equivalent. While this follows from (iii), it is useful to observe that
in fact

(3) rDr S A .

To see this it suffices to verify that

(4) [ n i d , TΠJ] = δijlnjd, m j f o r a n y l ^ ί 9 j < Z t a n d d e D .

Now, r'^mJ^cZ, ms], n3)r~ι — eude5ά — deuej5 — 0 when i Φ j. Hence
(wiilnid, my], n3) = 0, and so α[%{tf, m^ Jα = [^, m{][ {̂eZ9 my][%, my] = 0,
which establishes that \n{d, m0] = 0 when i Φ j. Similarly,

[n,d, mj), %) = «„(&„ - e^de^ = 0 ,

from which it follows as above that [n^, m{] — [̂ d̂, mj = 0.

COROLLARY 2.3. (Faith-Utumi [4]) Gί'ye^ α (Ze/t) order R in a
simple artinian ring Q there exist matrix units {eiό} for Q, and a
{left) order C in the centralizer of {ei3) such that C^R and Σ;,y Cei3 S R

Proof. C — rD is a right ideal of D, and hence C is a (left)
order in A.

3. Maximal orders. The results of the previous section facili-
tate a rapid treatment of maximal orders.

THEOREM 3.1. If R is a maximal (left) order in Q, then there
exists a maximal {left) order C in A such that rRr £ Σ;,i Cei3 and

Proof. Of course 1 e R, since R is a maximal left order in Q.
Let C be any left order in A containing D and equivalent to D.
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Then without loss of generality, it may be assumed that there exists
d,d'eD with dCd' £ D. Consider R = R + JSr(Σ*,i Ceid)rR; Rr is
a left order in Q because R £ R' and rRr £ Σ>,; D^ y £ Σ w C ^
Also Rr is equivalent to i? because

rdrRfrdf £ rd Σ*,/ Cei3d' £ r Σ*,/ ̂  £ #

By the maximality of iϋ it must be the case that R = iϋ\ In par-
ticular r(Σί,i Ce^Jr = Σ*,; r θ e < y £ R. Thus rCr ^ R f) Δ = D.

Hence given an arbitrary left order C in Δ with -D £ C and
D ~ C, it is always the case that rCr £ Zλ This enables one to
apply Zorn's Lemma to choose a maximal such C. The rest of the
theorem is clear.

REMARK. It would be of interest to learn whether necessarily
C = D in the above theorem; especially in the case where M is a
basic left ideal. The answer is not known to the author at this time.

4* Simple orders* The obvious question for simple orders with
1 is whether they are equivalent to matrix rings over simple Ore
domains. The analogous question for Morita-equivalence is not as yet
settled (see [3]). Unfortunately, even in the present simplified setting
one encounters the same difficulties as arise for the Morita-equivalence
problem. Recall that a ring is subdirectly irreducible if it has a
unique nonzero minimal ideal. As usual the notation follows that of
prior sections.

THEOREM 4.1. If R is a subdirectly irreducible (left) order in
Q, then there exists a subdirectly irreducible (left) order C in Δ such
that Σ ,i rCretj £ R and rRr £ Σ*,i Ce{j. Moreover, if R is maximal
in Q, C can be chosen maximal in Δ.

Proof* When R is a maximal (left) order, choose C containing
D as in Theorem 3.1; otherwise, take C = D. It remains only to
verify that C is subdirectly irreducible. For this, let I be the unique
minimal ideal of R, and let A be any nonzero ideal ofS= Σ*,i Cei3 .
Then RrArR is a nonzero ideal of R, and so / £ RrArR. Hence
rlr £ (rRr)A(rRr) £ SAS £ A. Since A was arbitrary, rlr Φ 0 is
contained in the intersection of the ideals of S. Such ideals are of
the form Σ<,i B^a f° r B a n ideal of C; and from this it is immediate
that C has a minimal ideal.

COROLLARY 4.2. If R is a simple (left) order with 1, then there
exists a subdirectly irreducible maximal (left) order C in Δ such that

j £ R and rRr £ Σ*,y Ceid.
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LEMMA 4.3. r~ιD0 is a ring isomorphic to E under the homomor-
phism defined via b —>r"1 Σ* (mfi, nύ f°r be E.

Proof. The verification is entirely routine once it is proved that
the map is multiplicative; and for this it suffices to demonstrate that
for any b, ce E,

( 5) Σ ( m A n^r"1 Σ (mjc, %) = Σ (mibc, n%) .
i j iΣ

i

To see this, choose bl9 ct e E with 0 Φ bxab = cλa
2 (this is possible be-

cause E is a left Ore domain), and then multiply the difference of
both sides of the equation in (5) by the invertible element Σ& (mΦι, nk)
to obtain zero.

THEOREM 4.4. Suppose that R is a simple {left) order with 1,
and that R has a protective uniform left ideal. Then r~ιD^ is a
simple (left) order with 1 in J and R ~ Σ«,i v^DΦu

Proof. Choose BM to be protective. Then by [6; Lemma 4], RM
is finitely generated, and hence is an iϋ-progenerator. It follows that
E is simple, and then by the preceding lemma r"1!^ is simple. Now
Do £ V^DOJ

 a n d A is a (left) order by Theorem 2.2. Hence the same
is true for r " 1 ^ Finally, rΣi, J ^"1Aβ<j = Σ«,i Aβ*j = -Bo £ -β and

REMARK. In the situation of the preceding corollary, it has been
seen that r~ιDQ is Morita-equivalent to R. Therefore, any categorical
property of R will be inherited by r^D^

5. Dedekind prime rings • A maximal (left) hereditary (left)
noetherian (left) order R in Q is called a (left) Dedekind prime ring.
All orders in this section are assumed to contain the identity element.

THEOREM 5.1. If R is a left hereditary (left) order in Q, then
r~ιDQ is a (left) hereditary (left) order in A, and R ~ Σ*,i ̂ ~ιD^ij

Proof. Since a (left) hereditary left order is left noetherian by
[8; Theorem 3.11], E — End îkf is the endomorphism ring of a finitely
generated projective module over a (left) hereditary ring. By [9;
Lemma 4.4], E is (left) hereditary, and then Lemma 4.3 ensures that
this is true for r"γΌύ.

COROLLARY 5.2. Suppose that R is a (left) Dedekind prime ring.
Then r^Do is a (left) Dedekind prime domain, and R ~ Σ«,i T^D^e^.
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Proof. It remains only to observe that E = End^ M is a maximal
(left) order in A. This can be found in [7; Lemma 1.7].
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