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DECOMPOSITION OF PLANE CONVEX SETS,
PART II :

SETS ASSOCIATED WITH A WIDTH FUNCTION

RUTH SILVERMAN

This paper treats several classes K of plane convex bodies
such that the sum of any two members of the class is again
a member of the class. In each case K is a class of bodies
associated with a certain width function. An explicit charac-
terization is provided for the corresponding subclass I(K)
consisting of all indecomposable members of K.

This result was proved by the author [4]
The results and methods of that paper are used to characterize

I{K) when K consists of all plane convex bodies of constant width,
also when K consists of all plane convex bodies whose associated
width functions are a multiple of a given width function, known as
bodies of constant relative width. It is supposed without further
mention that all members of K have piecewise continuously second
differentiable support functions.

The class K of all plane convex bodies has the property that the
sum of any two members of the class is again a member of the class.
The indecomposable subclass I{K) is the class of all triangles and
line segments.

The reader is referred to [4] for the definitions used in this
paper, which are not repeated, for the sake of brevity. For clarity
it is, however, pointed out that as in [4], a body is a compact set.

This paper shows that, relative to the class K of all plane convex
bodies of constant width, the if-indecomposable bodies are those whose
boundaries are composed solely of circular arcs and have a corner
point opposite every arc, or equivalently, are composed solely of cir-
cular arcs with radius equal to the width of the body. A more
general problem is also considered; what are the if-indecomposable
members of the family K of sets with width function a multiple of
a given continuously second differentiable width function? The K-
indecomposable members of K are these bodies which have a corner
point in every direction, that is, at least one of the two support
lines in every direction goes through a corner point.

Let K be a convex body; by the width of K in the direction θ,
denoted w(θ), we mean the distance between the two parallel support-
ing lines of K in the direction perpendicular to θ.

Let w be a positive function, and K{w) be the associated family
of sets whose width functions are a multiple of w. The machinery
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we will set up requires that the sets to be decomposed, or proved
indecomposable, have the origin in their interior.

The following remark is elementary but useful. Its proof is left
to the reader.

LEMMA 1. Let w be a positive function, and define the family of
sets K(w) as above. A set B in K(w) is K-decomposable if and only
if it has a K-decomposable translate whose interior contains the origin.

Let w(θ) be a width function with continuous second derivative,
and K{w) the associated family of sets whose width functions are a
multiple of w(θ). We will determine the ϋΓ-indecomposable members
of K(w).

LEMMA 2. An admissible pair {φu φ2) is the restriction of the
support function of a set with width function w(θ), if

Φi(—t) + Ψ*(t) = i/l + f w(arc cot t) ,

for all real t.

Proof. Let K be a convex body in R2, whose interior contains
the origin, with width function w{θ). Then

Ψ2(t) = max (tx + y) ,
(x,y)eK

and
φx(t) = max (tx - y) ,

(x,y)eK

SO

= max {—tx — y) — — min (tx + y) .
(x,y)eK (x,y)eK

Clearly the extrema of (tx + y) will occur on the boundary of K.
For a specified value of t, the extrema will occur when (dyjdx) = — ί,
or where the one sided derivatives have the property

dx I- V dx /+

When we require that (dy/dx) = — t, we are actually looking for
support lines for K in the direction θ such that cot 0 = — (dy/dx) = ί.
There exist exactly two points on K with support lines in this direc-
tion. Let us denote by P2 = (x2j y2) the one minimizing (tx + y), and
by Pι = (#!, j/i) the one maximizing (to + 2/). Then

φ2(t) — Xjt + y19 Ψι(—t) — —x2t — y2,

where
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t = COt θ, COt φ = fr~" ^

and

v («! - £2)
2 + (yx - y2f cos {θ - φ) .

Substituting all the above, adding, and simplifying,

Φiit) + <Pi(-t) = ^(arccotQ l/ΓTT 2 .

On the other hand, if {φl9 φ2) is an admissible pair satisfying

<P*(t) + ?> 1(-ί) = h(t)

for all real ί, let K be a set containing the origin in its interior,
whose support function corresponds to {φly φ2).

For a fixed direction θ, suppose P1 = (a?!, ̂ /x) and P2 = (x2, y2) are
the points where the parallel support lines in direction perpendicular
to θ intersect K. Then

w{θ) - V{xx - x2f + (y, - y2)
2 cos (ί - φ), where cot φ = Xz ~ Xl .

y2 - Vι

But Px and P2 are extrema for (ίa? + y) on the set K, when £ = cot θ;
suppose the maximum occurs at Pι and the minimum at P2. Then
φ2(t) = xj + y19 and φγ{—t) = —x2t — y2. Then

h(cotθ = ) w® .
|sin6>|

Therefore,
w{θ) = λ(cot β) -1 sin ^ I

LEMMA 3. An admissible pair {φl9 φ2) satisfying <Pι{—t) + φ2(t) =
h(t) = l/l + t2 i(;(arc cot ί), for all real t, where w(θ) has continuous
second derivative, can be nontrivially decomposed into the sum of two
admissible pairs {σu σ2), {ψly ψ2}, satisfying σ^—t) + σ2(t) = 1/2 h(t),
ψi( — t) + fait) — 1/2 h(t), if there is an interval I — (α, b] on the real
line such that neither φ2(t) nor ψγ{—t) is linear on J, or on any
proper subinterval of I.

Proof. Defining σ{(t) = l/2[^(ί) + y,(ί)], and ψt(t) =
], as in Theorem 2, [4], we must have y^—i) + yz{t) = 0 for all

real t.

Let h(t) = τ/1 + f w(arc cot t). Then

h'UA — w(arccotί) + ^"(arccotί)
h w (ΓTrr

where w"(arc cot ί) denotes
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dθ2

w and w" are both defined on [0, π] and continuous, so are
bounded on [0, π\. Therefore, h"(t) is bounded by some number M,
for all real t. Note that h"{t) is also continuous.

Let Ut) = φ[(-t)9 f2{t) = φ'2{t), and let Pι(t) = ψ['{-t): p2(t) = φ['(t).
Consider a closed subinterval It = [al9 6J of 7 on which Pi is con-
tinuous for i = 1, 2. Let Γ< = {α e 7X | p<(ί) = 0}. T4 is compact for
i = 1, 2, and 7̂  =£ 7j as 9>4 is not linear on I19 If 7χ = 2\ U Γa, the con-
nectedness of 7i implies that TίΓ\T2Φ0. But this is impossible, since
vSfi) + Pzit) = h"(t) Φ 0. Therefore there exists a point ί0 e 7i such
that ^(ίo) ^ 0 for i = 1, 2. Let p(ί) = m i n ^ ^ p ^ ) . Then p(to)>O,
and by piecewise continuity of pi9 there is an interval 72 such that
t0 e I2 c 7 and te I2=> p(t) > 0. Therefore, #> = minί=1,2 j>< > 0 almost

p(t)dt is a strictly increasing function of
a

x, on 72. As in the theorem cited above, select xl9 •• ,a?4 so that
/0 assumes four different positive values, and define y[(x) from /0(a;)
rather than <p[(x)9 as in that theorem. Letting y2(—t) = — #J(t), we
then define {OΊ, σ2) and {T/r̂  α 2̂}. It is clear that fo(t) ^/<(t), ΐ = 1, 2,
and

for t <tf, so 2/ certainly satisfies the necessary conditions for admis-
sibility. Thus, the nontrivial decomposition has been accomplished.

LEMMA 4. // an admissible pair {φlf φ2] satisfying φx{—t) + φ2(t)
= M*)» / o r α ^ r e α ^ *> wΛβre Ẑ (ί) = l / l + ta ^(arccot ί) , and w(θ) has
continuous second derivative is decomposable, there is an interval on
which both Ψι(—t) and φ2(t) are nonlinear.

Proof. If yS) is a function such that σ^t) = φS) + yt(t) and
^(t) = <p.(t) — y{(t) are convex and satisfy

σ*(t) + σ.i-t) - h(t) ,

and

then yx{t) + y2(—t) = 0. This implies that, if on an interval 7, say
9>i(t) is linear, then for every x, x' e I with x' > x,

- y[(χ) I ̂  ?>;(«') - φ[(χ) = 0 ,
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and also \y\,{—x') — yί(—x) \ = 0. Therefore, y[ is constant on I, and
y'2 is constant on —/. Suppose on every interval φ^—t) or φ2(t) is
linear. Then y\ is constant on every interval, and continuous on the
line, so it is identically a constant. Therefore, σ^t) and ψ (̂ί) differ
from a multiple of φt(t) at most by a linear function, and are therefore
translates of multiples of 9><(έ). Therefore, {φl9 φ2) is indecomposable.

The following theorem is therefore immediate.

THEOREM 1. An admissible pair {φl9 φ2} satisfying φ1{—t) +
φ2(t) = h{t), for all real t, where h(t) = l/ l + t2 w(arccot £), w(θ)
having continuous second derivative, is indecomposable if and only if
there is a family {Ia} of disjoint intervals, such that \Ja Ia = R1 and on
every Ia exactly one of φί(t)9 φ2(—t) is linear.

We can now characterize the indecomposable sets with a given
width function.

THEOREM 2. Let K{w) be the family of plane convex bodies with
width function a multiple of w{θ), where w(θ) has a continuous second
derivative. The K-indecomposable members of K are those sets with
the property that at least one of the support lines of the set in every
direction goes through a corner point.

Proof. Let Z be a body with width function w(θ), and with
corresponding supporting admissible pair {φl9 φ2}. Let y = f(x) be
the function satisfied by the boundary of I" in a neighborhood of a
corner point (xQ, y0) of K. Then the one-sided tangents, or extreme
rays of the bundle of support lines, will have slopes fL(xQ),fί(x0).
The support function <pt(t) = max(Xty)eK[xt + y] is linear on [tl912] if
and only if for every t e [tl9t2] there is a point (xQ, yQ) such that
fL(x0) + t ^ 0 ^/lOo) + ί, or fL(x0) = t29 and fi(x0) = - £ • The value
of the function φ2{t) on [tl9 t2] is then φ2(t) = xQt + y0. The function
9>i(ί) = max{ί>»)6jί [xt — y] is, correspondingly, linear on a line segment
ft, t2] when there is a point (α?0, y0) e i ί such that /I(a?0) = ίx, /+(α?0) = t2.
Therefore by Theorem 1, K is ίΓ-indecomposable if and only if at least
one of the two support lines in every direction goes through a corner
point.

Of special interest is the case where w{θ) is independent of the
direction, i.e., K(w) is the family of bodies of constant width.

Applying the results of the preceding discussion we note that
the admissible pair {φl9 φ2} of support functions corresponding to a
body of constant width r with origin in its interior satisfies φ^—t) +
φ2(t) = rVl + t\ for all real t.
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Applying the results of Theorem 1 a body of constant width is
ϋΓ-indecomposable if and only if at least one of the two support lines
in every direction goes through a corner point.

We note that if K, a body of constant width r, has a corner
point Q, where the bundle of supporting lines occupies an angle equal

to π — 0, then opposite Q is an arc ppr with the property that every

point on pp' is at distance r from Q, i.e., pp' is a circular arc of
radius r and angle θ. Therefore, the boundary of K is entirely com-
posed of circular arcs of radius equal to the width.

THEOREM 3. Let K be the family of bodies of constant width.
The K-indecomposable sets are precisely those whose boundary is en-
tirely composed of circular arcs whose radius is equal to the width.

Since a plane convex body of constant width r, whose boundary
is composed entirely of arcs of radius r, must have a corner point
opposite every arc, this result is immediate.

The author wishes to express her appreciation to her thesis
advisor, V. Klee, to M. Kallay, and to others too numerous to mention,
for their helpful suggestions and criticisms.
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