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SEPARATIVE RELATIONS FOR MEASURES

A. P. MORSE AND D. C. P F A F F

When dealing with CaratModory (outer) measures, a natural
problem arises: how does one determine a nontrivial, interest-
ing family of measurable sets? In particular cases of a metric
or topological nature, it has been customary to assume that
the measure is additive on sets which are a bit more than
merely disjoint. The general approach of this paper, purely
set-theoretical in nature, emphasizes a relation R which ''sepa-
rates" sets, and describes certain sets, constructed with the aid
of R, which turn out to be measurable whenever the measure
is additive on sets which are separatively related.

We present several applications, some of which have appeared in
the literature and others which have not, to indicate the scope of
our methods.

In §2 we assemble some definitions, notations, and elementary
measure-theoretic results. In § 3 we define separative relations, describe
certain families of sets associated with them, and proceed to prove
measurability of the sets in these families, assuming that a measure
is additive on sets which are separatively related. §4 is devoted to
applications.

The authors express their thanks to the referee for several sugges-
tions which have simplified and shortened this paper considerably.

2» Preliminary definitions, notations, and theorems*

DEFINITIONS 2.1.

1. A co B = {x: xeA and xί B)

2. σF = \JfeF f = {%' xef for some feF}
3. sb A = {x: xczA}
4. sp A = {x: XZD A}

DEFINITIONS 2.2.

1. dmn / = {x: (x, y) e f for some y)
2. dmn' / = {x: x e dmn / and | f(x) | < oo}
3. rim f — σ dmn /
4. rng / = {y: (χ9 y) e f for some x)

DEFINITION 2.3.

ω is the set of nonnegative integers.
We shall assume that the integer 0 and the empty set are the

same. Moreover, we assume that for each neω, n — {keω: k < n).
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D E F I N I T I O N S 2.4.

1. φ measures S^ if and only if φ is such a function t h a t dmn φ =
sb S^ 0 ^ φ(A) whenever A c ^ and

Ψ{A) £ Σ <P{β)
βe A'

whenever F is a countable family for which

2. Msr 6^ — {φ: ψ measures
3. A is ^-measurable if and only if Aedmn<p and for all Te

φ(T) = φ(T n A) + φ(T co A) .

4. mbl φ — {A: A is 9-measurable}
5. set ψT is the function ψ on d m n φ such t h a t , for each A e

6. sms <p = {ψ: ψ — set φT for some T G dmn' φ)
The following Theorems 2.5 and 2.6 are fairly well-known and

rather easy to prove.

THEOREMS 2.5.

1. If φ e Msr ^
2. If φe Msr S^

eac
3.

h ψ

If

e sms φ.
φ e Msr ^ ,

then sms 9 c
ίfeeπ A e mbl <

K^) - Ψ(A) -

φ{<9* Π A) = 9

Msr ^ .
p i/ αwd

D ( ^ ' n A

only

A)

if

= 0, ί/^β7^

/or eαc/& A.
Our proof of Theorem 2.6.4 has been considerably simplified by

suggestions made by M. Sion and L. B. Davis.

THEOREMS 2.6.

1. J/ fGMsr S^,BdS^Knc:B for each neω, and

limψ{BcyD KΛ) = 0 ,

then

\imψ(Knf) T) = ψ(Bf] T)
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for each
2. If f eMsr ^ ΰ c ^ , l im^ψ{S^ co Kn) = 0,

for each neω, then

ψ{B)

3. If ψ e Msr ^ iΓ is an increasing sequence of subsets of S^,
ψ(Soo \JneωKn) = 0, and

then

lim ψ(S oo Kn) = 0 .

4. If ψ £ Msr <5̂ , A is an increasing sequence of subsets of
and ψ (An) + a/r(A%+2 co AΛ + 1) ^ ^(^4%+2) / o r each neω, then

Proof. By induction on iV we find that if Neω, then

Letting N tend to infinity completes the proof.
The following alternate annular ring principle is a variant of a

theorem given by A. P. Morse in his 1958-1959 lectures on Real
Variable at the University of California.

THEOREM 2.7. If ψe Msr £f9 A is an increasing sequence of
subsets of y , C U U* e ω An - S>" c &> ψ(S^ co £f') = 0, and ψ{An) +
ψ(An+2co An+1) ^ α^(Au+2) αnώ ψ(An) + τ̂ (C) ̂  ^ ( ^ ) for each neω, then

f{C) + f{^ co C) ^

Proof. Since the conclusion is obvious if ψ{&*) = °°, we hence-
forth assume ψ(S^) < oo. Now we let

Kn — CU An for each neω ,

and complete the proof in Step IV below.

Step I. l i m ^ ψ(B co An) = 0.
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Proof. Since we are assuming ψ(S^) < <*>, Theorem 2.6.4 assures
us that Σneωψ(An+1 co An) < oo, and thus by Theorem 2.6.3 we have

lim f{B co An) = 0 .
n—»oo

Step II. l i m ^ ψ (^ co i Q = 0.

Proof. Using Theorem 2.5.3 and the obvious fact that ΰ o o C =
f co C, we see that, for each neω,

Kn) = ψ(^ co (C U 4,))

co C) co A J

co C) co An

C) co An)

^ ψ(B co AΛ) .

Hence, by Step I, l i m ^ f(S* oo Kn) = 0.

Step III. For each neω,

ψ(κn n C) +

Proof. If %60J, then

Γ n c) + 1 ( ^ co c) = ψ((c u Λn) n C) + ^((c u An)
- ψ(C) + t(^» co C)

^ f (C) +

Step IV. ^(C) 4- ψ{S^ co C) ̂

Proof. Use Step II, Step III, and Theorem 2.6.2.

3* Separative relations* We now describe the objects of main
interest in this paper.

DEFINITIONS 3.1.

1. preseparative = {R: R is a relation, rim R = σ rng R, R Φ 0,
and whenever

(A, B) e R, (C, £) 6 R, A' c A, B' c £ ,

it follows that

{A U C, B) e R and (A', Br) e R).
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2. separative = {Represeparative: whenever (A, B) e R, there
exists Af e sp A such that

(A',B)eR and {A, a oo A!) e R

for each a e dmn R).
3. Separative = {Re preseparative: whenever (A, B) e R and ae

dmn R, there exists Af e sp A such that

(af)A',anB)eR and (A, a co A') e R) .

4. shut R = {C: there exists a countable family G such that

σrngR = CU σG and (#, C) e R

for each g e G}.
5. Shut i? = {C: for every a e dmn jβ, there exists a countable

family G such that

a = (a f] C) \J σG and (gr, a n C) e J?

for each # e G}.

DEFINITIONS 3.2.

1. adt iϋ = {φ e Msr σ rng R:φ(A\J B) = φ{A) + φ{B) whenever
{A, B) e B).

2. AdtR= {<^GadtjB:for every Tedmn'φ, there exists such a
countable family G of elements of dmnJK that φ(T co σG) = 0}.

3. Sepad iϋ = {φ e adt R: for every Γedmn'φ, there exists an
increasing sequence K of elements of dmn R n Shut J? such that

oDU β«^) = 0}.

Theorems 3.3, 3.4, and 3.5 below are easily verified.

THEOREMS 3.3.

1. separative c Separative c preseparative.
2. If Re Separative and rim i? e dmn iϋ, £/£βw JK e separative.

THEOREMS 3.4.

1. If Re preseparative, then shut R c Shut R.
2. If Re preseparative and rim R e dmn R, then shut R = Shut R.
3. If Re preseparative, then 0 e Shut R and rim R e Shut R.

THEOREMS 3.5.

1. Sepad R c Adt R c adt R.
2. If Re preseparative and rim R e dmn R, then adt R = Adt R =

Sepad #.
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T H E O R E M S 3.6.

1. If Re preseparatίve, φe adt R and ψ e smsφ, then ψ eadt R.

Proof. Let ψ = set ψT. Using 3.1.1, we see that if (A, B) e R,
then (T Π A, T Π B) e R, and hence

φ((τ n A) u (T n #)) = ?>(r n A) + ?>(r n £ ) .

Thus ψ(A UB) = ψ(A) + ψ(B).
2. If Re preseparatίve, φe A d t i2, α^d ψ e sms <p, ί/^e^ ψ e A d t

Proof. Clearly ψ e adt JS, so suppose ψ = set φS, T e dmn' ̂ , and
φ(S) < co. There is such a countable family G of elements of dmn R
that 9>(S co σG) = 0. Hence 9> (S n (Γ co αG)) = 0, which implies that
oHTco σG) = 0.

3. If Represeparative, φeSepadiϋ, α̂ rf fesmsφ, then ψe
Sepad JR.

The proof of 3.6.3 is similar to that of 3.6.2.

THEOREM 3.7. If Re separative and {An, C) e R for each neω,
then there exists an increasing sequence Ar such that, for every neω,

{A'n, A'n+2 cό A; + 1 ) G R, (A'n, C) e R, and An<zA'n.

Proof. Repeatedly use Definition 3.1.2 to determine inductively
such a sequence A! that for each aedmnR and neω we have

Ao c AS, (Λί, C) e R, (Ao, ac^A^eR,

A n + ι U 4 i c 4 i + 1 , (A:+1, C ) e Λ ,

and

(An+1 U A;, α: co A'n+1) e 12 .

Clearly A^ e dmn J? for each neω. Hence, using Definitions 3.1.1 and
3.1.2 we see that for each neω,

The remaining conclusions are obvious.
Our next theorem is a direct generalization of a well-known

theorem of Caratheodory [2].

THEOREM 3.8. If R e separative, Ceshut R, and φeadtR, then
C e mbl φ.

Proof. Let &> = rim R and f e sms φ. Use Definition 3.1.4 to
find such a sequence A that, for each neω,
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(An, QeR and U 4 u C = y .
ne ω

Now use Theorem 3.7 to determine such a sequence A' that, for each
neω,

A , C A ; C A ; + 1 , (A'TO, C)ei2,

and

(A;, A'n+2 co A; + 1 ) G i? .

From the above, and the fact that ψ e adt R, we see the following:
(1) A' is an increasing sequence of subsets of £f.
(2) cuUej ^y.
(3) f(yco(CuU^Al)) = 0.
(4) f (A'n+2) ^ ψ(A'n U (A;+2 co A;+1)) = ψ(A'n) + t ( ^ + 2 co A'n+d for

each %eα).
(5) ψ(S^) ^ ψ(A; U C) = f(Al) + ψ(C), for each ίieα),

Referring to Theorem 2.7, we infer

ψ(C) + ψ ( ^ co C) ^ α/r(^) .

The reverse inequality is obvious. Hence, since ψ is an arbitrary-
member of smsφ, we see from Theorem 2.5.2 that Cembl^.

We pave the way towards our next major measurability theorem
by proving two preliminary theorems and stating a result of Trevor
J. McMinn [4]

THEOREM 3.9. If Re Separative, C e Shut R,ae dmn R, φ e adt iϋ,
ψ = set φa, and S? — rim R, then

Ψ(C) + ψ(S^ co C) ^ ψ(SS) .

Proof. Use Definition 3.1.5 to find such a sequence A that, for
every neω, (An, a n C) e R, and a = (α n C) U U»β«-4« Now use
Definition 3.1.3 to determine inductively such a sequence A' that for
each ίieft),

-AS 3 Ao, (α: n Aό, α n C) e Λ, (Ao, a co AJ) e S ,

A'w+1 D ( α n A'J U A W + 1 , (α n AUi, α n C) e Λ,

and

((α n Aΰ U A%+1, a co A;+1) e Λ .

For each n e ω, let Kn — a n A^. We now divide the remainder
of the proof into six steps, the first of which is obvious.

Step I. For each neω, Kna Kn+ί.
Step II. f (<9* co ((a n C) U U . 6 ω ίΓJ) - 0.
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Proof. Since A'n z> An for each n e ω, it follows that

{a n C) u u A ; => (α n C) u u An = α ,

and hence CUUne«4ίDα:. Therefore,

t ( ^ co ((α n C) u u iQ)
neω

= f («co ((a n C) u u (a n A;)))
w e ω

= ψ(α co (α n (C U U Ay))
•jie ω

= f (α co (C U U / ' ))

= 0 .

Step III. For each neω,

f(Kn) + f(Kn+z CO Kn+1)

Proof. If neω, then

= ψ(α n A'%) + ψ((a Π A'n+2) co (α n A;+I))

= # (α n A;) + ψ{{a n A; + 2 ) n ( ( ^ co «) u

= v (« n Ay + ψ ((α n A; + 2 ) CO A'n+1)

n Ay u «α n A;+ 2) «> A: + I ) )

. u (κn+* co A;+ 1))

Step IV. For each » e ω , ψ(KJ + ψ{a Π C) ̂

Proof. If %6<t), then

f (Kn) + ψ-(α nC) = f (α n Ay + f (α n C)

= f ((a n Ay u (α n C))

Step V. ψ {a n θ + ψ(S^ co (« n C)) ̂

Proof. Use Theorem 2.7, and Steps I, II, III, and IV.

Step VI. ψ(C) +

Proo/.
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ψ(C) -l

= ψ(a(Ί

- ΊJΓ

C)

C)
C)

+ '
+ '
+.

' c o Q

>C)
f{{^ oo a)

> (αi

THEOREM 3.10. // R e Separative, CeShut R, αedmn i
adt R, and ψ = set φa, then C e mbl ψ.

Proof. Suppose S? = rim iϋ, ^ G sms ψ9 and θ = sctψT. Then
9̂ = set 9>(Γ ΓΊ α). But since Γ n α c α , Γ f l ^ e dmn JS. Thus by the
preceding theorem we have

Θ{C) + θ{Sf co C) ̂

The reverse inequality is obvious, so by Theorem 2.5.2 we have Ce

THEOREM 3.11. (McMinn). Suppose <£>eMsr S^, and for every
T for which φ(T) < oo there exists a sequence k such that

and
kn c kn+1cz y , A e mbl set φkn, and kn G mbl set φkn+1 for each neω.

Then A e mbl φ.

THEOREM 3.12. If R e Separative, Ce Shut R, and <peSepadiϋ,
then C e mbl φ.

Proof. Let S? — rim R. Clearly ψ e Msr £f. Suppose ψ e sms φ
and ψ = sct<pT with φ{T) < oo. Then by Definition 3.2.3 there is an
increasing sequence K of members of dmn R Π Shut R such that

Hence, by Theorem 3.10 we have, for each neω,

C G mbl set φKn and Kn G mbl set φKn+1 .

Theorem 3.11 now assures us that Ce mbl φ.
With the help of Theorem 3.3.1, we see that Theorems 3.13 and

3.14 below follow from Theorems 3.9 and 3.10, respectively. Although
they are not of intrinsic interest, they are useful in establishing our
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last measurability result.

THEOREM 3.13. If Re separative, φ e adt R, T e dmn R,ψ- set φTf

Sf = rim R, and CeShut R, then ψ(C) +

THEOREM 3.14. If R e separative, φ e adt R, T e dmn R,ψ = set φT>
and C e Shut R, then C e mbl ψ.

THEOREM 3.15. If Re separative, φ e Adt R, and Ce Shut R, then
C e mbl φ.

Proof. Let £f — rim R and ψ e sms φ. Since Theorem 3.6.2
assures us that ψeAάtR, and since ψ(S^) < °°, we may select a
sequence D of elements of άvcmR such that ψ(&? co \JneωDn) = 0.
Using Theorem 3.7, find a sequence Df such that, for each neω,

Φ ; , o) e R, (2>;, D ; + 2 CO Z>;+1) e Λ ,

and

Noting that, for each neω,

2) ^ Ψ(D: U

we conclude from Theorem 2.6.4 that

Hence we infer from Theorem 2.6.3 that

o D'n) = 0 .

The (3.14) fact that Cembl setφZ^ for each neω, together with
Theorem 2.6.2, now yields

ψ(C) + φi&r co C)

Reference to Theorem 2.5.2 completes the proof.

REMARK 3.16. In general, we cannot show that if Shut R c mbl φ,
then φ e adt R. This seems to be due partly to the fact that we did
not require in the definition of a separative relation R that (A, B) e
R implies A Π B — 0. If we do add this condition, we can arrive at
the above result, as the next theorem shows.
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THEOREM 3.17. If R e separative, S? = rim R, φ e Msr £>*, Shut R c
mbl φ, and A Π B = 0 whenever (A, B) e JB, ί/̂ %

9> e adt J? .

Proof. Suppose (A, B) e R. Proceeding as in the first sentence
of the proof of Theorem 3.7 with A% — A for each neω, we determine
inductively such a sequence A' that, for every a e dmn R and every
neω, we have

(A'n, α co A'n+1) G Λ, (Ai, S) e Λ, and A c A l c A'n+1 .

Let C = \JneωA'n and C = Sf oo C. We complete the proof in three
steps, the first of which is evident.

Step I. A c y c o C a n d B c C .
Step II. C e Shut R.

Proof. Let T e dmn R, and for each n e ω let Gn = A'n Π T. Clearly

T = (Tf)C){J \Jneco Gn. Moreover, since

neω implies A'n+1 c C ,

we have

neω implies C c y co A'n+ι

and hence

ίieα) implies Γ n C c T c o Ai+i .

Therefore, since (Ai, Γ co Ai+1) 6 i2, we have

(G», Tf]C)eR .
The desired conclusion is now at hand.

Step III. φ e adt R.

Proof. From Step I, Step II, and the assumed measurability of
members of Shut R, we deduce that

φ(A U B) - φ((A ΌB)nC) + φ((A U B) co C) - 9>(A) + ?>(S) .

Reference to Definition 3.2.1 completes the proof.

4* Applications. In this section we examine some specific
separative relations and obtain measurability theorems in metric and
topological settings.

We begin by showing that the classical Caratheodory theorem
on measurability of closed sets in a metric space follows from our
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general results. Following this, we prove a theorem, first published
by T. J McMinn in [4], but known earlier to A P. Morse, which
states that additivity of a measure on bounded sets of positive distance
apart in a metric space £f ensures the measurability of all closed
sets in 6^.

Turning to some examples with a topological flavor, we establish
a theorem of Bourbaki [1] as a consequence of our theory. Next we
deal with applications which involve additivity of a measure on sets
whose closures do not intersect and the first of which is compact*
Some of these have been anticipated by A. P. Morse, but none have
appeared in the literature. In particular, Theorem 4.16 extends mea-
surability theory to regular spaces and a fairly general class of
measures.

We conclude by showing how some measurability results in a
recent paper by M. Sion and R. C. Willmott [5] dealing with con-
structed measures can be obtained from our approach.

We begin by introducing some necessary metric and topological
terminology.

DEFINITIONS 4.1.

1. p metrizes S^ if and only if p is such a function with domain
&> x S? that

0 = p(x, x) £ ρ(x, y) ^ p(x, z) + p(y, z) < oo

whenever x e S^> y e S^, and z e Sf.
2. sr pxr = {y: ρ{x, y) ^ r)
We note in passing that a function p of the kind referred to in

4.1.1 is often called a pseudometric.

DEFINITIONS 4.2.

1. Fsigma J7~ = {Be^~: ^~ is a topology and B is a countable
union of closed sets}.

2. Gdelta Jf~ — {C: Jf is a topology, C is closed, and C is a
countable intersection of elements of ^"}.

3. ^~ is locally compact if and only if ^~ is a topology and
each element of σ^~ has a neighborhood whose closure is compact.

The first theorem of this section shows that we have indeed
generalized the classical Caratheodory theorem on measurability of
closed sets in a metric space.

THEOREM 4.3. If p metrizes S^,R — {(A, B): the distance between
A and B is positive}, and φ e adt R, then:

1. Re separative,
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2. each closed set is an element of shut R, and
3. each closed set is φ-measurable.

Proof of 1. Clearly R e preseparative, so suppose (A, B) e R and
the distance between A and B is r. According to Definition 3.1.2,
we must verify the existence of a set A! e sp A such that (A', B) e R
and (A, a co A!) e R, whenever αedmni ί . If 0 < r < oo, a routine
argument shows that we may choose A' to be the set

U sr ρx(r/2) .
xeA

If r — oo, then either 4 or S is empty, and we may take A' = A.

Proof of 2. Suppose C is closed. For each neco, let An — {x:
the distance from x to C is greater than or equal to l/(n + 1)}.
Evidently

and, for each neco, (An9 C) e R. Reference to 3.1.4 completes the
proof.

Proof of 3. Use 1, 2, and Theorem 3.8.

With the help of Theorems 3.3.1, 3.4.2, and 3.5.2, one easily
checks that, if R is the relation given in the preceding theorem, then:
R e Separative, shut R = Shut R, and adt R = Adt R = Sepad R. Thus
the conclusion 4.3.3 is also a consequence of Theorem 3.15 and of
Theorem 3.12. In general, of course, the above equalities do not hold.
The following theorem, discussed at the beginning of this section,
provides an example in which shut R Φ Shut R.

THEOREM 4.4. If p metrizes S^, R = {(A, B): the distance between
A and B is positive and A and B are bounded}, and φ e adt R, then:

1. Re separative,
2. each closed set is an element of Shut R,
3. φ e Adt R, and

4. each closed set is φ-measurable.

Proof of 1. The proof is similar to that of 4.3.1, so we omit it.

Proof of 2. Suppose C is closed and a e dmn R. For each neω,let

An — {x: the distance from x to C is greater than or equal to

1/(Λ + 1)}
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and

Bn = An n a .

Then clearly

α=(αflC)UU5
we ω

Also, (Bn, a Π C) e R for each ίieαj. Thus Definition 3.1.5 assures us
that Ce Shut R.

Proof of 3. Let G = {sr |θm: %G6)} and refer to Definition 3.2.2.

Proof of 4. Use 1, 2, 3, and Theorem 3.15.
One verifies without difficulty that, if R is the relation described

in Theorem 4.4, then R e Separative and adt R = Adt R = Sepad R.
Hence the conclusion 4.4.4 also follows from Theorem 3.12. Of course,
shut R is not equal to Shut R, since an element of shut R must also
be an element of dmniϋ, and hence bounded.

After pausing to prove the Bourbaki Theorem, we shall consider
other applications of a topological nature which illuminate the diffe-
rences between our main concepts. In each case we will be dealing
with a relation R and will need to prove that R e separative or R e
Separative. Since it will always be obvious that R e preseparative, we
shall omit explicit mention of this fact from our proofs.

THEOREM 4.5. If ^ is a normal topology, Sf = tf^T R = {(A,
B): A n B = 0}, and φ e adt R, then:

1. Re separative,
2. G delta ^~ ashutR, and
3. Gdelta J^~

Proof of 1. Assume that A f] B — 0. Since ^" is normal, there
exists a set A' e^7~ such that

A a A' and A! c Sf oo B .

Hence (A', B)eR and (A, <y co A!) e R. Thus, for each a e dmn R,
(A, a co A!) e R. Reference to Definition 3.1.2 completes the proof.

Proof of 2. Let CeGdelta ^, and select such a countable
subfamily G of J7~ that C is the intersection of the elements of G.
Then
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and, for each g e G, we have S? co g n C = 0. According to Definition
3.1.4, CeshutB.

Proof of 3. Use 1, 2, and Theorem 3.8.

In Theorems 4.7 through 4.16 we agree that Jf is a topology,
~, and R is the relation defined as follows:

DEFINITION 4.6.

R = {(A, B): A Π B = 0 and A is compact}.
We begin by examining the relationship between R and the

topological structure of J7~.

THEOREM 4.7. If C is such a closed subset of S^ that 6^ ^ C is
a countable union of closed, compact sets, then C e shut R.

Proof. Write S? ̂  C — \Jne«>An with each An closed and compact,
and apply Definition 3.1.4.

THEOREM 4.8. G delta ̂ ~ c Shut R.

Proof. Suppose C e G delta J7~, select such a sequence A of ele-
ments of ^ that

C=Γ\An,
ne ω

and let a e dmn it!. Notice that

ff=(αnC)UU(«w^)
ne ω

Also, for each nea),

and

a GO Anaa .

Since a is compact, so is a oo An and hence (a co An, a n C) € i2, for
each n eo). The conclusion now follows from Definition 3.1.5.

THEOREM 4.9. If ^ is either regular or normal, then R e
Separative.

Proof. We shall assume ^~ is regular; the reasoning is similar
if ^~ is normal.
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Suppose A n B = 0, A is compact, and a e dmn R. Use Theorem
10, p. 141 in [3] to find such an Ά e ̂ ~ that Ad A! and A! c S? oo
Bo Since a f) A' n ̂ Π 5 c A' n 5 = 0, a f] Af c α, and α is compact,
we see that (α: n i ; , α ίl δ) e iϋ. Moreover, because

we have (A, a GO A') e j?. Reference to Definition 3d.3 completes the
proof.

THEOREM 4.10. // ̂ ~ is locally compact and either regular or
normal, then R e separative.

Proof. Suppose A Γ\ B = 0 and A is compact. We use the fact
that ^~ is locally compact by covering A with elements of J7~ whose
closures are compact and then extracting a finite subcover to find such
a Uzjf that A c U and Ό is compact. Next, we determine such a

that A c 7 and F c y ^ S . Letting A' = Z7n F, we see that

A c 1 c A',

and

A'czϋ.

Hence A' is compact and (A', B) e R,
Moreover, since 6^ oo A' is closed, it follows that

for each a e dmn R. Consequently (A, a oo Af) e R whenever a e dmn R.
A look at Definition 3.1*2 completes the proof.

We are now in a position to obtain measurability results.

THEOREM 4.11. // ̂  is locally compact and normal, φ e adt R,
and B is an element of ^ which can he expressed as a countable
union of closed, compact sets, then B e mbl φ.

Proof. According to Theorem 4.7, £f oo B e shut R. Hence Theo-
rems 4.10 and 3.8 assure us that S^ oo B e mbl φ. The desired conclu-
sion is at hand.

THEOREM 4.12. If J7~ is locally compact and regular, φ e adt R,
and B is an element of j?~ which can be expressed as a countable

n of compact sets, then .B
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Proof. Suppose B = \JneωAn and An is compact for each neω.
It is easy to check that, for each n e ω, An c B and An is compact.
Hence S/7 coβe shut R, and the measurability of B foliows.

THEOREM 4.13. Suppose ^7~ is locally compact and normal, Ce
G delta J7~, and φeadtR. If, in addition, for each T e dmn' φ there
exists such a family G of closed compact sets that φ(T cyj σG) — 0, then
C e mbl ψ.

Proof. Theorem 4.8 assures us that Ce Shut Ro Using the
additional hypothesis concerning φ, the fact that each closed compact
set is in dmn R, and Definition 3.2.2, we see that φ e Adt R. Hence
Theorems 4.10 and 3.15 ensure Ce mbl φ0

THEOREM 4.14. Suppose j?~ is locally compact and regular, Ce
G delta J7~, and φ e adt R. If, in addition, for each T e dmn' ψ there
exists such a family G of compact sets that φ(T GO σG) — 0, then
C e mbl ψ.

Proof. In a regular space, the closure of a compact set is compact.
Hence, (A, 0) e R whenever A is compact, so each compact set is in
dmn R. The conclusion now follows as in 4.13.

REMARK 4.15. We observe that R is not necessarily symmetric.
As a matter of fact, if R' is the symmetric relation defined by

R' = {{A, B): A Π B = 0 and A and B are compact} ,

then Theorems 4.10 and 4.14 remain valid if R is replaced by R'.
Thus, if a measure φ satisfies the additional hypothesis in Theorem
4.14, one may deduce that G delta ^~amblφ by checking that ψ is
additive on compact sets whose closures do not intersect.

If one is unwilling to place this restriction on ψ, but wishes to
determine a nontrivial class of ^-measurable sets solely from the
assumption that φ is additive on sets which are separatively related,
then the nonsymmetry of R is essential in many cases. This is due
to the fact that the only sets we are able to prove ^-measurable in
such generality are the elements of shut R. If R is symmetric, then
shut R — 0 unless 6^ is sigmacompact.

The above applies also to Theorem 4.13.
In our next theorem, we ask somewhat more of the measure than

before. In partial compensation, we are enabled to drop the assump-
tion of local compactness.

THEOREM 4.16. If ^ is regular or normal,
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φ e adt R, C e G delta ^ ,

and, corresponding to each Tedmn'<p, there exists such a family G
of compact elements of Gdelta S~ that φ(T co σG) — 0, then C e mbl φ.

Proof. We already know that R e Separative and that G delta ^ " c
Shut R. In view of Theorem 3.12, we need only show that φ e Sepad R.
Let T e dmn' φ and choose such a sequence K of compact elements of
G delta JΓ" that

\JK«) = 0.
n e ω

By taking unions if necessary, we may clearly assume without loss
of generality that K is an increasing sequence. Because each Kn is
closed and compact, we see that (Kn, 0) e R and therefore Kn e dmn R,
for each neω. Moreover, for each neω, Kne Shut R, so by Definition
3.2.3, φe Sepad R.

We conclude this paper by investigating a separative relation R
whose definition is considerably different in character from those
previously discussed. We employ R to deduce two measurability
theorems which were proved in a quite different manner by Sion and
Willmott in [5].

The following definitions which, for simplicity, have been slightly
modified, are given on pp. 276, 279, and 280 of [5].

DEFINITIONS 4.17.

1. £ίf is a filter base if and only if έ%f is a nonempty family of
sets such that for every M e 3ίf and N e £%f, there exists H e 3^
such that 0 Φ Hcz M n N.

2. 3ίf is a filterbase in Sf if and only if Sίf is a filterbase and
for every He £ί?, H is a family of subsets of £<*, 0 e H, and σH = ^

In all subsequent definitions and theorems, we shall assume the
hypothesis "β£^ is a filterbase in ^ " ' to be affixed.

DEFINITIONS 4.18.

1. If x e Sf and H e 2έf, then H[x] = σ{heH:xe h}.
2. If i c y and Heβ^, then

ff[A] = U flΐ»] = Φ e ff: A Π A ^ 0} .
a; e A

3. ^ ^ { G c ^ : for every x e G, there exists H e £έf for which
H[x] c G}.

4. ^f satisfies (5 II) if and only if for each H e βίf, there exist
ί e . T and i ί 2 e ^ r such that H^H^A]] aH[A], whenever A c Sf.

5. έ%f satisfies (5 III) if and only if there exists such an H e



SEPARATIVE RELATIONS FOR MEASURES 469

that H[A] c B, whenever A is ^-closed, JSeg7, and AaB.
6. έ%f satisfies (5 IV) if and only if there exists such a sequence

H of elements of £%f that, for every Ne βgf, there exists neω, such
that Hn c N.

Theorems 4.19 are for the most part taken directly from [5], p
280. They are all immediate consequences of the above definitions.

THEOREMS 4.19.

1. ^ is a topology and σ^ — 6^.
2. If He<%* and A^SS for each iel, then

mu A,] - u
iel iel

3. If He^Ke^AdS^, and Ha K, then H[A] c K[A].
4. // He ̂  A U B c ^ and AaB, then H[A] c H[B].
5. // H e ̂ f and AU Bcz^ then H[A] Π \B = 0 if and only if

A n H[B] - 0.
We now define, for future use, a certain relation.

DEFINITION 4.20.

R = {{A, B): for some He JT, H[A] n B = 0} .

THEOREM 4.21. R e preseparative.

Proof. In view of Theorem 4.19.5, we see that R is a symmetric
relation, and hence dmn R — rng R. Thus rim R — σ rng R.

Now suppose (A, B) e R, (C, J5) e R, Af c A, and 5 ' c J5. Let H
and iΓ be such elements of £έ? that iϊ[A] Π B = 0 and iΓ[C] Π J5 = 0
Using the fact that ^g^ is a filterbase, we find such an L e £έf that
LaHnK* Now, using Theorems 4.19.3 and 4.19.2, we infer:

L[A] cH[A], L[C]czK[C] , and L[A U C] = L[A] U L[C] .

Thus L[A U C] Π JB = 0 and (A U C, J5) e i2.
Finally, from Theorem 4.19.4, we infer that iϊ[A'] c i ϊ [A], and

thus H[A'] n 5 = 0. Hence iJ[A'] n ΰ ' = 0 and (A;, Bf) e R. Reference
to Definition 3.1.1 completes the proof.

THEOREM 4.22. // £ίf satisfies (5 II), then Re separative.

Proof. Suppose (A, B) e R, and let H be such an element of 3ίf
that H[A] Π B = 0. We invoke Definition 4.18.4 once to ascertain
such members Hx and H2 of £ίf that H\H\A^[ aH[A], and again to
determine elements Hz and if* of J%f such that
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Let A! = H4[H2[A]], and note that A! z> A.
From the above inclusions, it is evident that JSΓ8[A'] c H[A\. Hence

HZ[A'] Π B = 0 and {Af, B) e R. Moreover, we see that

and thus H2[A] Π (Sf co A') = 0. By Theorem 4.21 and Definition 3.1.2,
R 6 separative.

THEOREM 4.23. If £έf satisfies (5 II) and (5 III) αmZ φ e adt i2,
Fsigma ^ c mbl 9?.

Proof. Suppose B e F sigma ^ and let A be such a sequence of
^-closed sets that B = (J*eω An. By Definition 4.18.5, for each n e ω
there exists an He£έ? such that H[An]aB. Hence (An, £* 00 B) e
R, for each neω. Since ( ^ c o ^ u U ^ i ^ y , Definition 3.1.4
assures us that S^ 00 Be shut R. The desired conclusion follows from
Theorems 4.22 and 3,8.

THEOREM 4.24. // 3έ? satisfies (5 II) and (5 IV) and φ e adt R,
then each ^-closed set is φ-measurable.

Proof. Suppose C is ^"-closed, and let H be such a sequence of
elements of ^f that, for every i\Γe<^, there exists neω such that
Hn c N. For each a e y ω C there clearly exists an neω such that
Hn[x] c y c o C . Let An = {#: JϊJ#] c y w C } , for each w e ω. From
Definition 4.18.2 it follows that, for every neω,

Hence, for each neω, {Any C) eR. Since C [J \JneωAn = ̂  we have
Ceshuti?. Consequently, by Theorem 3.8, Cembl<p.

REMARK 4.25. On page 279 of [5], Sion and Willmott construct
a measure v, using Sίf and such a function τ on a subset j y of
σ£$f to the nonnegative real line that τ(0) = 0. They also prove that
v e adt R. Thus their Theorems 7.7 and 7.8 are corollaries of our
Theorems 4.23 and 4.24.
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