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COTORSION THEORIES

STEPHEN D. BRONN

In this paper A is a ring with unit, and Mod-A denotes
the category of unitary right A-modules. The aim of the
paper is to dualize the concept of torsion and develop the
corresponding idea of cotorsion.

One generalization of torsion was given by Goldman,
using what he called a kernel functor. These kernel functors
are here dualized to give cokernel functors. Cokernel functors
are categorized over Mod-A.

The final section investigates what information the cotor-
sion functors can reveal about the homological properties of
the rings under discussion.

1. Definition. An I-functor is a pair (F, ) where F' is an
additive covariant functor from Mod-4A to Mod-4 and X\ is a natural
transformation from the identity functor on Mod-4 to F.

Thus if M and N are A-modules and f e Hom,(M, N) we have
the commutative diagram

M———f—-——>N

7~1\1J' j,)w

FOD -2, ey

That is Ayf = F(f)Hry.
An A-module M is said to be:

(i) F-reduced if »; is a monomorphism.

(ii) F-divisible if A, = 0.

(iii) F-cotorsion if A, is an isomorphism.

(iv) F-d-strong if D, = cokernel of X\, is F-divisible.

In addition the I-functor (F,\) is said to be:

(a) epi if Ay is an epimorphism for every M e Mod-A.

(b) idempotent if F(M) is F-cotorsion for every M e Mod-A.

(¢) restricted idempotent if F(M) is F-cotorsion whenever M is
F'-reduced.

(d) d-strong if every Me Mod-A is F-d-strong.

The cotorsion completion functor of Matlis [4] is an example of
a d-strong I-functor. This I-functor is idempotent if and only if the
homological dimension of @ (4 is an integral domain and @ is the
quotient field of A in this case) is one as an A-module.

If A is a commutative ring and S is a multiplicatively closed set
of elements from A then the localization of every module at S is an
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I-functor. If every element of S is a nonzero divisor this I-functor
is idempotent and d-strong.
The following proposition follows directly from the definitions.

ProrosiTION 1.1. Let (F,\) be an I-functor.

(a) FEwvery F-cotorsion module is F-reduced.

(b) Every submodule of an F-reduced module ts also F-reduced.

(c) Ewvery quotient module of an F-divisible module is also F-
divisible.

(d) Hom, (M, N) =0 whenever M is F-divisible and N is F-
reduced.

(e) The additive condition ts unnecessary if (F,\) is an epi
I-functor or if (F', \) is idempotent and d-strong.

ProrosiTION 1.2. Let (F,)\) be an I-functor and M be an F-d-
strong A-module. For every A-module N we denote by By the group
homorphism from Hom, (F(M), N) to Hom, (M, N) defined by com-
position with .

(a) If N is F-reduced By is a monomorphism.

(b) If N is F-cotorsion By is an isomorphism.

Proof. (a) Suppose that N is F-reduced and that ¢ is in the
kernel of By. Thus gx, = 0. Let u,: F(M)— D, be the cokernel of
\y. There exists h e Hom, (D,, N) such that hu, = g. By 1.1

Homxi (DJIy N) =0

and therefore 7z = 0. Hence g = 0 and so By is a monomorphism.

(b) By the preceding part we need only show that B, is onto if
N is F-cotorsion. Let ge Hom, (M, N), since N is F-cotorsion \, has
an inverse \y'. Let 2 = \7'F(g). Now Ay = N7 F(ghy = Ay'\yg = ¢
hence g, is onto.

ProrosiTiON 1.3. Let J be a directed set and B;, 1 €J, be a family
of A-modules indexed by J. Whenever (F, \) is an I-functor on Mod-A
then:

(a) lim B; is F-reduced if each B;, i1edJ, is F-reduced.

(b) lﬁieril B, is F-divisible if each B;, ied, is F-divisible.
(e) liieﬁll B; is F-cotorsion if each B;, 1 €J, is F-cotorsion and if

ied
(F',\) is d-strong and restricted idempotent.

Proof. Let M = lim B; and N = lim B, with respect to the defining
«— —_—

jed jed
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homomorphisms P;: M — B; and ¢;: B;— N for i¢J.

(a) Suppose that each B;,ve€J, is F-reduced. If X e Mod-A and
h e Hom, (X, M) such that x,h = 0 then 0= F(P)\;h = Ay P;h for
each t1eJ. But )\, is a monomorphism thus P;h = 0 for each ieJ
and hence & = 0 which means that A, is a monomorphism.

(b) Suppose that each B;, 7e.J, is F-divisible. Now M yq; =
F(g)\p; = 0 for each ieJ and therefore 1y = 0.

(c) Suppose that each B;,i1eJ, is F-cotorsion and that (#, \) is
d-strong and restricted idempotent. Thus ), has an inverse \j; for
each 7eJ and so there exists » e Hom, (F(M), M) such that Pk =
A5 F(P;) for each ieJ. Now Pihhy = Nz F(P)\y = Ngjhg,P; = P; for
each 7eJ and thus hr, = 1,. By (a) M is F-reduced and since (F, \)
is restricted idempotent it follows that F(M) is F-cotorsion and thus
by 1.2 Brun is an isomorphism. Since MNyhhy, = Myly = Ny = Lpaphy
it follows that A,k = 1,,, and thus A, is an isomorphism and M is
F-cotorsion.

We now make a definition which allows us to compare I-functors.

DerFINITION. If (F,)) and (G, @) are I-functors on Mod-A and g
is a natural transformation from F' to G such that g\ = @ we say
that ¢ is an I-morphism. If in addition g, is an isomorphism for
each Me Mod-A we say that g is an I-isomorphism and that (F,\)
and (G, «) are equivalent I-functors.

THEOREM 1.4. Let (F,\) and (G, @) be I-functors on Mod-A where
(F,\) is d-stromg and G(M) is F-cotorsion for every M e Mod-A.
There exists an I-morphism p from (F,\) to (G, «).

Proof. Let Me Mod-A, now G(M) is F-cotorsion so by 1.2 there
exists a unique g, € Hom, (F(M), G(M)) such that g\, = a,. Suppose
now that f € Hom, (M, N). Thus uyF(f)\y = oy f = @nf = G(fa, =
G(f)ttxhy. But G(N) is F-cotorsion hence by 1.2 u F(f) = G(f)tty
which means that £ is an I-morphism.

2. The purpose of this section is to show that F(4) is a ring for
most I-functors (F, \).

THEOREM 2.1. Let (F',\) be an I-functor on Mod-A such that A
18 F-d-strong and F(A) is F-cotorsion.

(a) F(A) is a ring with unit and N, is a ring homomorphism.

(b) Ewery F-cotorsion module Me Mod-A is also a right F(A)-
module.

(¢) Whenever M and N are right F(A)-modules and N s F-
reduced as a right A-module then Hom, (M, N) = Homy (M, N).

(d) F(A) is commutative if A is commutative.
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Proof. Let M be any F-cotorsion right A-module and let e M.
Define u, € Hom, (4, M) by u,(r) = ar for every re A. By 1.2 there
exists w, € Hom,(F(A), M) such that w2\, = u,.

(i) Clearly u,+ w, = %,,, and so by 1.2 w, + w, = w,,, for every
x,ye M.

(i) Let xe M, sec F(A) and set y = w.(s). w,w A, (r) = w,(sr) =
w,(8)r = yr = u,(r) = wh,(r) for every re¢ A. Thus by 1.2 w,w, = w,.

Now F(A) is F-cotorsion so by (i) and (ii) F(A) becomes a ring
under the multiplication xy = w,(y) where z, y € F(A). By the same
taken M is a right F(A)-module.

If r,se Alet & = N (), then A (78) = N, (1)s = 8 = U,(8) = WA, (8) =
Ma(r)24(s) and therefore A, is a ring homomorphism. Clearly A (1) is
the unit of F(A).

Suppose now that M and N are right F(4)-modules and that N
is F-reduced when considered as a right A-module. Let f e Hom, (J,
N) and zeM. Define h,geHom, (F(A), N) by g(s) = f(z)s and
h(s) = f(xs) for se F(A). It is easily seen that gn, = hr, so by 1.2
g =h. That is f is a right F(A)-module homomorphism and so
Hom, (M, N) = Homy ,,(M, N).

Now assume that A is commutative. Let re A, x e F(A) and set
Yy = N4(r). Define geHom, (F(4)) by g(s) = shi(r) = sy = w,(y) =
u,(r) = sr for se F(A). Now gr, = w,n, and so by 1.2 g = w, and
therefore A (r)s = s\ (r) for every rc A, se F(A).

Define h,e Hom,(F'(4), F(A)) by h,(s) = sx — xs where x ¢ F(A).
Now A\, = 0 by the previous paragraph and so by 1.2 &, = 0 which
means that F(A) is commutative. This completes the proof of the
theorem.

DEFINITION. Let (F, \) be an I-functor such that A4 is F-d-strong
and F(A) is F-cotorsion. By 2.1 F(4) is a ring with unit A ,(1) where
1 is the unit of A. We define a new I-functor (F,X) on Mod-A by
F(M)=M@,F(A) for every MecMod-A and X(y) = y @ M, (1) for
every yc M.

THEOREM 2.2. Let (F,\) be an idempotent, d-strong I-functor
on Mod-A. (F,\) and (F,X\) are equivalent I-fumctors on Mod-A if
and only if F(M) is F-cotorsion for every module M e Mod-A.

Proof. If (F,2\) and (F,X) are equivalent I-functors then F(M)
and F(M) are isomorphic for every Me Mod-A. But F(M) is F-
cotorsion and thus F(M) is F-cotorsion.

Conversely suppose that F(M) is F-cotorsion for every M e Mod-A.
By 1.4 there exists an I-morphism g from (F,)) to (F,X). By 2.1
F(M) is a right F(A)-module for every module M e Mod-A. Thus
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there exists @, ¢ Hom, (F(M), F(M)) such that @,(y Q s) = Ay(y)s for
every ye M,se F(A). Now a,tt,\y =\, and F(M) is F-cotorsion
thus by 1.2 a,p¢, = 1, for every Me Mod-A.

Let ye M and seF(4) uyy(y ® 8) = tu(Mu(y)s = tu(\u(¥))s by
2.1 thus gy, = 15, and hence ¢ is an I-isomorphism.

3. In this section the kernel functor of Goldman [3] is dualized.
Stenstrom (6) studied a particular type of this kernel functor in one
attempt to extend the work of Matlis [4].

DEFINITION. A cokernel functor on Mod-A is an epi I-functor
(F, \) on Mod-A such that whenever g € Hom, (M, N) is an epimorphism
then the following diagram is a pushout

M—2 N

3N Ay
F(]ll/.f) BEACIN FJ’N) .

PROPOSITION 3.1. Ewvery cokernel functor is idempotent and d-
strong.

Proof. Let (F,\) be a cokernel functor on Mod-A. (F,)\) is
clearly d-strong since it is an epi I-functor. Suppose that M e Mod-A
and N = F(M). Now F(\y)hy = Myhy, thus F(A,) = \y since Ay is an
epimorphism. This means that

M—2 F(M)

| [

F(M) —2 F(F(M))

is a pushout and therefore )\, is an isomorphism. Hence (F, ) is
idempotent.

PROPOSITION 3.2. Let (F,\) be an epi I-functor on Mod-A. The
following statements are equivalent:

(i) (F,\) is a cokernel functor.

(ii) F is a right exact functor.

(iii) (F, \) is idempotent and any homomorphic image of an F-
cotorsion module is also F-cotorsion.

Proof. The equivalence of (i) and (ii) follows from Mitchell [5]
Chapter 1, Proposition 13.2*.
Suppose that (F, ) is a cokernel functor. By 3.1 (F, \) is idem-
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potent. If ge Hom, (M, N) is an epimorphism and M is F-cotorsion
then

b

F() 2 F(N)
is a pushout where 1, is an isomorphism. Thus by Mitchell [5]
Chapter 1, Propositions 7.2* and 20.2* A, is an isomorphism. This
shows that (i) implies (iii).

Conversely assume (iii). Let g e Hom, (M, N) be an epimorphism
and let w: G — M be the kernel of g. Let v: F(M) — X be the cokernel
of Ayu. Since F(M) is F-cotorsion it follows that X is also F-cotorsion.
Since g is the cokernel of u there exists ke Hom, (N, X) such that
hg = vhy. Thus by 1.2 there exists fe Hom, (F(N), X) such that
fay = h. Therefore, fF(g) =v and so F(9): F(M)— F(N) is the
cokernel of \,u. Hence by Mitchell [5] Chapter 1, Proposition 13.2*

M—2 N

ZM ZN

FO) 22, pvy

is a pushout and so (F, \) is a cokernel functor.

THEOREM 3.3. If (F,\) s a cokernel fumctor on Mod-A then
(F,\) and (F,\) are equivalent I-functors.

Proof. Let J = kernel of A,. By 8.1 and 2.1 F(A) is a ring and
J is a 2-sided ideal of A. Also F(A) is ring isomorphic to A/J.

Let M be any free right F(A)-module. M can be embedded in a
direct product of copies of F(4). By 1.3 a direct product of copies
of F(A) is F-cotorsion and so by 1.1 M is F-reduced. But ), is an
epimorphism thus M is F-cotorsion.

If N is any right F(A)-module then N is the homomorphic image
of a free F(A)-module M and so by 3.2 N is F-cotorsion. If Ue Mod-
A then F(U) is a right F(A)-module and so F(U) is F-cotorsion.
Thus by 2.2 (F, ) and (F,\) are equivalent I-functors.

If J is any 2-sided ideal of A then M— M@, A/J is easily seen
to define a cokernel functor on Mod-4. Combining this with 3.3 we
have a complete classification of all cokernel functors.

4. We now investigate the relationship between homological
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properties of F(A) and those of A where (F,\) is an I-functor on
Mod-A, much in the same manner as Turnidge [7].

LEMMA 4.1. Let (F,\) be a restricted idempotent, d-strong I-
Sunctor such that A is F-reduced. If every F-reduced right A-module
is flat them A s left semi-hereditary.

Proof. Every direct product of F-reduced modules is F-reduced
by 1.8 and submodules of F-reduced modules are also F-reduced by
1.1. Thus every torsionless right A-module is F-reduced since A is
F-reduced and therefore every torsionless right A-module is flat.
Hence by [2, Thm. 4.1] A is left semi-hereditary.

We will need to refer to a restricted idempotent, d-strong I-functor
where A is F-reduced frequently throughout this section. We therefore
call such an I-functor special for easy reference.

LEMMA 4.2. Suppose that (F,\) is a special I-functor on Mod-A.
Every F-reduced right A-module is also F-reduced.

Proof. Let MeMod-A be F-reduced. Since (F,\) is restricted
idempotent, F(M) is F-cotorsion and hence by 2.1 is a right F(A)-
module. Thus there exists u,, € Hom,(F(M), F(M)) such that u,(y @)=
Mu(y)r for every ye M re F(A). That is uy,h, = ), and since A, is a
monomorphism so is X,. Therefore M is F-reduced.

The following theorem investigates the weak dimension (WD) of
F-reduced modules if the global weak dimensions (GWD) of F(A) and
A are known.

THEOREM 4.3. Let (F, \) be a special I-functor on Mod-A such that
F(A) is flat as a right A-module. If GWD F(A) < m and GWD A <
n + 1 where m and n are nonnegative integers such that m < n then
WD M < n for every F-reduced right A-module M.

Proof. Let MecMod-A be F-reduced. Since GWDF(4)<m
thus F(M) = M ®., F(A) has weak dimension < m as an F(A4)-module.
Hence by [1, Prop. VI 4.12] M @, F(A) has weak dimension < m as
an A-module.

Let B = cokernel X, M — M®, F(A). This gives rise to exact
sequences

Tori., (B, X) — Tori (M, X) — Tori (M Q. F(4), X) —
Tori (B, X)

for every nonnegative integer k£ and left A-module X. If £ > n then
kE+1>n+1and k> m. Thus Tori,, (B, X) =0 = Torf{ (M@, F(A),
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X) so Tor{ (M, X) = 0 and therefore WD M < .

COROLLARY 4.4. Let (F,\) be a special I-functor on Mod-A such
that F'(A) is flat as a right A-module and GWD F(A) = 0. The
following statements are equivalent:

(i) A s left semi-hereditary.

(ii) GWDA < 1.

(iii) Ewery F-reduced right A-module is flat.

(iv) Ewvery F-reduced right A-module is flat.

Proof. (i) = (ii) follows from [1, Prop. VI 2.9]
(ii) = (iv) is a consequence of 4.3.

(iv) = (iii) is immediate from 4.2.

(iii) = (i) is immediate from 4.1.

THEOREM 4.5. Let (F,\) be a special I-functor on Mod-A. If
F(A) is projective as a right A-module and is a semi-simple Artinian
ring, the following statements are equivalent:

(i) A is right hereditary.

(i) M s projective for every F-reduced M e Mod-A.

Proof. Since (F,\) is special every right ideal of A is F-reduced
by 1.1. Thus (ii) = (i) is immediate.

(i) = (ii). Let MecMod-A be F-reduced. By 4.2 M is F-reduced
so we have an exact sequence

0—M— MQ, F(A)— B—0.

Now F(A) is semi-simple Artinian so M @, F(A) is a projective
F(A)-module. F(A) is a projective A-module and thus M @, F(4) is
a projective A-module. Therefore, by [1, I Thm. 5.4] M is a projective
A-module.

We now investigate a relationship between the global dimension
(GD) of F(A) and the injective dimension (ID) of F-cotorsion modules
over a commutative ring.

THEOREM 4.6. Let A be a commutative ring and (F, \) a special I-
Sfunctor on Mod-A such that F(A) is flat as an A-module. If GD F(A) <
n where n is a nonnegative integer then ID M < n for every F-cotor-
ston MeMod-A. In addition if GWD F(A) < m where m s a mon-
negative integer then WD M < m for every F-cotorsion M e Mod-A.

Proof. Let MeMod-A be F-cotorsion. By 2.1 M is an F(A)-
module and by [1, Prop. VI 4.1.3 and 4.1.2] we have isomorphisms
Exth ., (X Q. F(4), M) = Extt (X, M) and Tori (M, X) = Tori® (M,
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X @, F(A)) for every X e Mod-A. Since GD F(A) < nand GWD F(4) <
m it follows that ID M < n and WD M < m.

COROLLARY 4.7. Let A be a commutative ring and (F, \) a special
I-functor on Mod-A such that F(A) is flat as an A-module and such
that A/l is F-cotorsion for every nonzero ideal I of A. Then GWD A <
GWD F(A).

Proof. Assume GWD F(A) = m. Then by 4.6 WD A/I < m for
every ideal I of A. Hence GWD A < m.

An example of a special I-functor of the type in the preceding
corollary is the cotorsion completion functor of Matlis [4] which is
given by M — Ext' (K, M) for every M e Mod-A where A is an integral
domain and K = @/A where @ is the quotient field of A.
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