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CONTENT OF THE FRUSTUM OF A SIMPLEX

MIR M. ALI

In the Euclidean space of n dimensions, Rn, the (n — 1)-
dimensional content of the portion of an (n — l)-dimensional
simplex contained in a semispace is evaluated. Also, in Rn,
the content of the portion of an ^-dimensional simplex con-
tained in a semispace is evaluated.

More precisely, the following theorems are proved.
Set up a Cartesian coordinate system in Rn and refer to a general

point in the w-space by (yu y2y , yn). Let Sn, Sn^ and Hbe defined
as follows:

Sn: {(»!, y%, , yn)\Vi ^ 0, i = 1, . . , n, Σ Vi ^ 1}

Sn^ι {(yl9 y2, , v»)IVi ^ 0, i = 1, . . , n, Σ Vi = 1}

and

H: {{yu yz, , yn) \ Σ α ^ ^ a;} .

Let [f(x) I α; = xu x2, , ίcr+1] denote the r t h divided difference of f(x)
with arguments for x as xly x2, , a?r+1. Define x_ = a? if a? < 0 and
α_ = 0 if a; ̂  0.

THEOREM 1. The content of the frustum Snf] H expressed as a
ratio of the content of Sn, C[Sn], say, C[Sn] = (nl)~\ is given by

] = [{(x - *)-}•!* = a0, al9 α2, . . , α j

where aQ is defined by α0 = 0.

THEOREM 2. The (n — ϊ)-content of the frustum Sn^ Π H expressed
as a ratio of C[Sn^] = λ/n\{n — 1)! is given by

[\{£ z)_) \x ~ au a2, , αwj .

An algorithm suitable for automatic computation of the divided
differences occurring in the above theorems is discussed.

The result of Theorem 1 has applications (see Ali, 1969) to the
statistical problem of the distribution of linear combination of ordered
observations arising from a population uniformly distributed over [0,
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1] while the result of Theorem 2 may find application in linear pro-
gramming and allocation theory.

G. Varsi [7] has considered the problem in Theorem 2 and by
means of a successive dissection technique, he arrives at an algorithm
suitable for automatic computation. It is shown that the formula of
the present paper leads to the algorithm proposed by Varsi.

The evaluation of the divided differences occurring in the above
theorems is discussed in §3. For numerical computation of these
divided differences, an algorithm suitable for automatic computation
is discussed in §4.

The particular choice of Sn and jSn-1 in the above theorems does
not involve any loss of generality as shown below.

Consider in Rn an ^-simplex Tn whose vertices are V* for i = 1,
2, •••,% + 1 . Let the co-ordinates of F, referred to an ^-dimen-
sional cartesian co-ordinate system with origin at Vn+1 be denoted by
8*,i, χί,2, " , E»,») for i = 1, 2, >",n. Let σn denote the semispace
given by σn: {{xu x2, , xn) \ Σ C& ^ z).

The frustum is defined by Tn Π σn and let C[Tn Π σn] denote its
content.

Define the n x n matrix V in double suffix notation as V = (Xij)
Let X' = (xu x2, , xn) and Y' = (yl9 y2, , yn). Then it is easily
checked that the linear transformation from X to Y given by X =
VΎ transforms Tn to the simplex Sn as defined in Theorem 1 and
σn is transformed to H given by H: {(yl9 , yn) \ Σα»2/< = z) Therefore,
it follows that C[Tn Π σn] = \\V\\C[Sn n H], with Σ<W,/ = α<.

Likewise, in i?71 let T%_! denote an (n — l)-simplex. With origin
not on the (n — l)-flat passing through TΓ

n_1, refer to the n vertices
Vi for i= 1, * ,n with co-ordinates as before. Let σn be defined
as before. Proceeding in an analogous manner as in the former case
it is seen that

where ai is defined exactly as in the former case.

2* Divided difference. For convenience we state some standard
results on divided differences.

The rth divided difference of a function f(x) with arguments x —
xOi xly , xr is defined as:

[f(x) I x - x0, xλ, • , xr] = Σ /(
(1) '-" TΛ

= \A\l\B\

where
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A =

JL XQ XQ

1 r r2

1 xr xl XT" f{Xr)\

and

1 x0 xl xl

1 x1 xl xl

xr
χrΔ

when xθ9 xl9 , xr are distinct.

Finally, we state the following well-known result: (see Steffensen,
[6, p. 19]). For integral r,

( 2 ) [xn+r I x = α0, α1? αj =

0 if - n ^ r < 0

1 if r - 0

Σ ' αo

r α̂[̂  α> for r > 0

(r0 + n + + rΛ = r)

where X ' denotes the summation over all the distinct products with
nonnegative integral exponents whose sum is r.

For definitions of divided differences of f(x) with coincident argu-
ments the reader is referred to, for example, Hildebrand [3, p. 40],
Steffensen [6, p. 20] and Isaacson and Keller [4, p. 254],

3* Divided difference of {(x — z)J}\ Consider the r th divided
difference of {(x — z)_}r with possibly coincident arguments α0, al9 , ar

for x. We rule out the trivial case when z = α0 = aλ = = αr = 0.
Suppose α0, al9 , ar are relabelled as bl9 , bs, (δ̂  Φ bj for i Φ j)
where bu is repeated pu + 1 times py ^ 0, v — 1, 2, , s, so that ^ +
p2 + + Ps + s — r + 1. Taking appropriate limits of (1) (cf. Isaacson
and Keller, [4, p. 254]) we obtain

[{(x - z)_ \x = α0, al9 « ,

where the divided difference on the right is given by (1).
Another alternative form of (3) is obtained by taking appropriate

limit of \A\I\B\ in (1), for which we refer to Ali (1969). For example:
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[{(x - z)_Y\x = c,c,c9d]

I c e 2 {(c - z)_γ

0 1 2c 3{(c - z)_}

0 0 2 6(c - z)_

1 d ώ2 {(d - z)_f

I c e 2 c s

0 1 2c 3c2

0 0 2 6c

1 d d2 dz

The following two special cases of coincident arguments are of
interest.

( i ) Decompose α0, al9 , ar into disjoint sets

S,: {av\a,-z< 0} and S*: {au\a, - z ^ 0} .

Let the α^ belonging to St be renamed as au a2, •• ,ocJ while those
belonging to S* be renamed as βu /S2, , βκ so t h a t J + K — r + 1.
If #!, •••9OLj are distinct (whether /9X, -• ,βκ are distinct or not) we
have

[{(x = ao,al9 ,αr]

Σ

Likewise, if α0, α1? , ar are decomposed into S2: {a»\au — z ^ 0}
and S2*: {αjα^ — z > 0} and the αv belonging to S2 are relabelled as
au φ",aj while those belonging to S2* are distinct, say βu , βκ then

[{(α? - z)_}r\x = α0, α1? « ,α r ]

1 >Γ~1 / try

7 = 1

Π (/3, - «i) Π (/s, -
3 = 1

The last step follows from the fact t h a t

[(x - z)r\x = α0, al9 , ar] = 1 .

4* Computation of divided dijBierences of {(x — z)__}r. Consider
the r t h divided difference of {(x — z)J\r with arguments for x = α0, αx,
• , α r . Let as before the set of av satisfying av — z < 0 be relabelled
as c^, , tfjr while the remaining av satisfying αv — z ^ 0 be relabelled
as /Si, , βKy so that if + J = r + 1.
Define

Aλμ = [{(a? - s)_}

Further let

Xλ — ax — z for λ = 1, , J

and
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Yμ = βμ - z for μ = 1, , K .

Then

λ+'>-ι\X = X1,-..,Xλ, Yl9 . . . , Yμ].

Further by the use of (1) (temporarily assuming that al9 •• ,ochβ1,

••-, βμ are distinct) the following recurrence relation is easily verified.

A —
2μ

μA{X-.ι)μ

It is readily checked from (1) with [f(x) | x = a] = f(a) that AλQ = 1
for λ = 1, 2, , J and Aoμ = 0 for ^ = 1, 2, , K. Define Aoo = 1.
The recurrence formula then gives An — (X1)/(X1 — FJ as it should be.

The above recurrence formula sets up an algorithm to compute
successive values of Aλμ. This algorithm was proposed by Varsi (from
geometrical considerations) and is suitable for automatic computation.
We note that

[{(x - z)_Y\x = α0, alf , ar] = AJK .

ΓAβ Algorithm of Varsi.

Compute Uj = ctj — z for j = 0, 1, 2, , r. Label the % which
are nonnegative as Yu , Y^ and the remaining % as Xu , X^ so
that # + / = r + 1.

The following notations are computational rather than mathema-
tical notations.

Step 1. Set Λ = 1, Λ = Aa = = A* = 0 .

Siep 2. For each value of λ, repeat step 3 for h = 1, 2, , J.

Step 3.

AA< YkA" ~ X"Ak~ι for fc = l , 2 , . . . , # .

(The expression on the r ight hand side is computed and stored in

location Ak.) Then the quant i ty in Aκ after the above set of opera-

tions is the value of [{(a? — z)_}r\x = α0, αx, , α r ] .

I t is to be noted t h a t the above algorithm does not result in any

indeterminacy for coincident values of α0, au •••, ar since Yμ > Xλ for

all λ = 1, , J, and μ = 1, , iL

5* Proof of the theorems* Consider the simplex Ln defined by
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( 4 ) Ln:{(xl9 x2, •••,&•) I Σ » / ^ L and xs ^ 0, j = i, •••, w}

and the semispace if defined by

( 5 ) H: {(xly x2, , α.) | α ^ + + anxn ^ z} .

Temporarily assume that α0, α l f , an are distinct, where α0 = 0.
This restriction will be removed later.
Let

(6) F(z) = C[L

n:^
] = n\L-\ cfâ  . . . cfa. .

C[Ln] hnπH

It is easily shown that F(z) is a distribution function and that 0 ^

TO ^ 1.
Let the characteristic function (Fourier-Stiltjes transform) of F(z)

be φ(t), (see Loeve [5, p. 184]) where φ(t) is defined by

φ(t) = \*~eiudF(z) .

It is easily seen that

φ(t) = ™L[ eit{a^+a^+"'+a^^ -dx.dx, dxn .

Let x{ = Lyi for i = 1, , n.
Then we have

φ(t) = n\[ eitL{a^+'"+a^)*dyιdy2 dyn

where Sn:yt + y2 + + yΛ ^ 1 and yi ^ 0, i = 1, 2, , n.
Straightforward computation shows that for integral values of

nl\ y?y? - y:*dVιdyΛ *--dyn=
rjrj --rjnl

(n + n + r2 + + rn)!

so that by an easy computation we have

(n + r)\ *~

where Σ ' *s *^e s u m °^ distinct products of nonnegative exponents
whose sum is r, with α0 = 0.

Hence from (2) we obtain
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(n + r)l

dxr f β s t e f f e n s e n p β 23)

where ζ is a number between the smallest and the largest of the
numbers α0, au , an. Hence | μ\ | ^ MrLr, where M denotes the largest
value of the numbers |α o | , \aγ\, •••, \an\, and for some c > 0,

Lr\Mc\r _

which is finite for all values of c. Therefore, the series Σ*=i (&
is absolutely convergent for all finite values of c > 0. Hence from
a well-known theorem of Cramer [2], (for a proof see, for example,
Wilks [8, p. 125]) we have

[x'+r\x = α,, α1; , α j

r=0 γ\

r)\

since [αf|α; = α0, α^ , an] = 0 for s < n, from (2).
Hence, we have

φ(t) = n\{ιLty«± Σ ^ ^ / ΓΠ (a, - αy)
o o s i /

Σ
s=o §1

»=0 JL.
Π (Λp -

= n\{iLt)-n Σ βίLίo^ / Π (αp - αy) .

By the inversion formula (Loeve, [5, p. 186]) we obtain

β f t ( L "-'} I Π (α, - α
o io

The above integral is analytic everywhere and the range of
integration may be changed to the contour Γ consisting of the real
axis from - oo to - c, the small semicircle with radius c with center
at the origin and the real axis from c to oo,

Now by the use of
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2πϊ

we have

L-\z~neiazdz = - {a_y-ιl{n - 1)!

( A W ) = - nL-± {{Lav - s)_r7Π (a, - a,)
\dz I v=o i=o

and therefore integration over z yields

= [((a? - ~γ)

It is easily verified that: for z/L < min (α0, αx, , α j , Lnf)H = 0 ,
and hence F(^) = 0; since in this case

we immediately have K — 0, so that,

Hence substituting L = 1, Theorem 1 is proved for the case when α0,
al9 * , an are distinct.

The distance of the (n — 1) flat Σ xt = L from the origin is
L/λ/n. Consider the simplexes Lw, (L + δL)n as defined in (3) and
the semispace H as in (4). The elementary volume C[(L + δL)n] —
C[Ln] divided by hL\Vn by letting dL —> 0 gives the (w — ̂ -dimen-
sional content of the portion of the simplex Σ $< = L, α?< 2* 0 contained
in H. From (6) this volume is equal to i/n(d/dL)C[Ln Π H]

t l r -«)-!» = «o, Ox, , αJ) .

A simple calculation shows that the last expression is equal to

-J^JL^liLx - *)r ι |* - α,, α2, , α.]

Hence, setting L — 1, we finally obtain
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SO t h a t

U Π ff] = [{{χ _ z)_γ-^x = alf α2, . , an] .
J

Hence, Theorem 2 is established when the au are distinct.
The continuity theorem for the characteristic function along with

the definition of divided differences for k coincident argument show
that (with the definition of the divided difference for coincident argu-
ments) both Theorem 1 and Theorem 2 are also true for the case of
coincident arguments with expressions for divided differences as given
in §3. In particular, the algorithm discussed in §4, is not only
suitable for numerical computation, but also can be applied in all
cases since there is no indeterminacy for coincident arguments.

6* Asymptotic case* A sequence of real numbers (clw, c2n, , cnn)
will be said to obey Condition C if the following is satisfied:

Condition C:

lim max (cjn - cnf / Σ(c*» - O 2 = 0 ,

where cn = (c1Λ + c2n + + cnn)/n.

THEOREM. If the sequence (cίn, c2n, , cnn) satisfies Condition C,

lim [{(x - zU^\x = cln, , cnn] =
n-*oo

where z = cn + [Σ? β l (c4n - c.)*M(^ +

Before proving this general result we state the following result
obtained from statistical considerations by Ali [1]:

LEMMA.

lim [{(x - z)J\n\x = α0, alf , an] = -75—Γ e~tt

where a0 = 0, ami aΛ = (a0 + aλ + + an)/(n + 1) cmd 2; = an +
[Σ?=o (aί ~" ΰ%)2/(n + 1)(^ + 2)]1/2 £ provided the sequence a0, aL, , aw

satisfies Condition C.

Let us now consider [{(a? — ̂ )_}%~1| a? — α1? , an]. Write c{ = α* —
αL, i = 1, •••, u; so that ^ = 0. It is readily checked that if the
sequence (al9 •••,«») obeys Condition C so does the sequence (cλ = 0,
02, " , O Straightforward application of the above Lemma shows that
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lim [{(x - z)_}n~ι\x = au , an] = — i = Γ e~*i2du

where an = (αx + + αΛ)/w, and 2 = αΛ + [ Σ (a{ — an)
2/n(n + ϊ)]ίβt.

This proves the theorem.
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