SOME COMMUTANTS IN B(c) WHICH ARE ALMOST MATRICES

B. E. RHOADES AND A. WILANSKY

We determine necessary and sufficient conditions for two linear operators in B(c) to commute. Specializing one of the operators to be a conservative triangular matrix we determine that most such operators have commutants consisting of almost matrices of a special form.

Almost matrices were developed in [10] for reasons not related to this paper, but they find application here in that the commutants in B(c) of certain matrices must be almost matrices.

Let c denote the space of convergent sequences, B(c) the algebra of all bounded linear operators over c, e the sequence of all ones, and e^k the coordinate sequences with a one in the kth position and zeros elsewhere. If $T \in B(c)$, then one can define continuous linear functionals χ and χ_i by $\chi(T) = \lim Te - \sum_k \lim (Te^k)$ and $\chi_i(T) = (Te)_i - \sum_k (Te^k)_i$, $i = 1, 2, \cdots$. (See, e.g. [9, p. 241].) It is known [1, p. 8] that any $T \in B(c)$ has the representation $T = v \otimes \lim H = B$, where B is the matrix representation of the restriction of T to c_0 , the subspace of null sequences, v is the bounded sequence $v = {\chi_i(T)}$, and $v \otimes \lim x = (\lim x)v$ for each $x \in c$.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has the matrix representation

where the b_i 's occur in the representation of $\lim \sigma T \in c'$ as $(\lim \sigma T)(x) = \lim (Tx) = (T) \lim x + \sum_k b_k x_k$; namely, $b_i = \lim Te^i$. With the use of (*) it is easy to describe the commutant of any $Q \in B(c)$.

THEOREM 1. Let $Q = u \otimes \lim A \in B(c)$. Then Com (Q) in $B(c) = \{T = v \otimes \lim A \in B(c): T \text{ satisfies } (1)-(3)\}, where$

(1)
$$u_n \chi(T) + \sum_{k=1}^{\infty} a_{nk} v_k = v_n \chi(Q) + \sum_{k=1}^{\infty} b_{nk} u_k$$
; $n = 1, 2, \cdots$

(2)
$$u_n b_k + \sum_{j=1}^{\infty} a_{nj} b_{jk} = v_n a_k + \sum_{j=1}^{\infty} b_{nj} a_{jk}; \quad n, k = 1, 2, \cdots$$

$$(3) \qquad \qquad \sum_{k=1}^\infty a_k v_k = \sum_{k=1}^\infty b_k u_k \;,$$

and where $a_k = \lim Q(e^k)$, $b_k = \lim T(e^k)$.

To prove Theorem 1, use the representation (*) for T'' and Q''and then equate the corresponding terms in the products T''Q'' and Q''T''. For example, (1) is obtained by equating $(Q''T'')_{n1}$ and $(T''Q'')_{n1}$. When Q is a matrix A, each $u_n = 0$ and each $a_k = \lim_n a_{nk}$. The following result is an immediate consequence of Theorem 1.

COROLLARY 1. Let A be a conservative matrix, $T \in B(c)$. Then $A \leftrightarrow T$ if and only if

$$(5)$$
 $\sum_{j=1}^{\infty} a_{nj}b_{jk} = v_n a_k + \sum_{j=1}^{\infty} b_{nj}a_{jk}$; $n, k = 1, 2, \cdots$

$$(6) a \perp v, where a = \{a_n\}.$$

A conservative matrix A is called multiplicative if $\lim_A x = \chi(A) \lim x$ for each $x \in c$; i.e., if each $a_k = 0$.

COROLLARY 2. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow T$ if and only if A satisfies (4) and

$$(7) B \longleftrightarrow A .$$

If A is multiplicative, then each $a_k = 0$ and condition (5) of Corollary 1 reduces to (7) of Corollary 2. Since a = 0, (6) holds automatically.

THEOREM 2. Let A be a conservative matrix. Then $A \leftrightarrow v \otimes$ lim if and only if

(8) $(\lim x)Av = (\lim_A x)v \text{ for each } x \in c$.

To establish (8) note that $A(v \otimes \lim)(x) = A(\lim x)v = (\lim x)Av$, and $(v \otimes \lim)(Ax) = (\lim Ax)v = (\lim_{x \to a} x)v$.

COROLLARY 3. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow u \otimes \lim$ if and only if A satisfies (4).

COROLLARY 4. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow T$ if and only if $A \leftrightarrow v \otimes \lim$ and $A \leftrightarrow B$.

For $T \in B(c)$, T is called an almost matrix if $v \in c$. A matrix A

212

is called triangular if $a_{nk} = 0$ for each k > n. We shall now examine some triangular matrices whose commutants consist of almost matrices.

THEOREM 3. Let A be a conservative triangular matrix with $a_{nn} \neq \chi(A)$ for n > 1. Consider the conditions

(9)
$$\sum_{k=1}^{n} a_{nk} = \chi(A) \text{ for } n > 1$$

(10) $T \leftrightarrow A \text{ implies } T \text{ is an almost matrix with } v = \lambda e$.

Then (9) \Rightarrow (10). If, in addition, $\lambda \neq 0$, then (10) \Rightarrow (9).

To prove that $(9) \Rightarrow (10)$, suppose $T \leftrightarrow A$. From (4) of Corollary 1,

$$\sum\limits_{k=1}^n a_{nk} v_k = {{\chi}}(A) v_n = {\left(\sum\limits_{k=1}^n a_{nk}
ight)} v_n$$
 , $n>1$.

We may rewrite the equation in the form $\sum_{k=1}^{n} (v_k - v_n) a_{nk} = 0$, which, along with the hypothesis $a_{nn} \neq \lambda(A)$ for n > 1, yields $v_n = v_1$, for n > 1.

For n > 1, $(T''A'')_{n+1,1} = \lambda \chi(A)$ and $(A''T'')_{n+1,1} = \lambda \sum_{k=1}^{n} a_{nk}$. Thus, if $\lambda \neq 0$, $\chi(A) = \sum_{k=1}^{n} a_{nk}$.

The result stated at the end of paragraph 2 in the next section shows that the condition $\lambda \neq 0$ is necessary for (10) to imply (9).

The identity matrix shows that the restriction $a_{nn} \neq \chi(A)$ for n > 1 cannot be removed.

COROLLARY 5. Let A be a conservative triangular matrix with $\sum_{k=1}^{n} a_{nk} = \chi(A)$ for n > 1 and $a_{nn} \neq \chi(A)$ for each n. Then $T \leftrightarrow A$ implies T is a matrix.

From Theorem 3, $v_n = v_1$. From (4) with n = 1 we get $a_{11}v_1 = \chi(A)v_1$. Since $a_{11} \neq \chi(A)$, $v_1 = 0$ and A is a matrix.

Applications. 1. Let C denote the Casàro matrix of order 1. Then Theorem 3 of [7] follows immediately from Theorem 3 of this paper.

2. Endl [2], Hausdorff [4], Jakimovski [5] (see [11, p. 190]) and Leininger [6] have defined summability methods which are generalizations of the Hausdorff methods. The $(H, \lambda_n; \mu_n)$ transform of [5] is defined by a triangular matrix $H = (h_{nk})$ with entries $h_{nn} = \mu_n$, $h_{nk} = (-1)^{n-k} \lambda_{k+1} \cdots \lambda_n [\mu_k, \cdots, \mu_n]$, k < n, where

$$[\mu_k, \ \cdots, \ \mu_n] = \sum_{i=k}^n rac{\mu_i}{(\lambda_i - \lambda_k) \ \cdots \ (\lambda_i - \lambda_{i-1})(\lambda_i - \lambda_{i+1}) \ \cdots \ (\lambda_i - \lambda_n)}$$
 ,

 $\{\mu_n\}$ is a real or complex sequence, and $\{\lambda_n\}$ satisfies $0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_n < \cdots$, $\lim_n \lambda_n = \infty$ and $\sum_i \lambda_i^{-1} = \infty$. If $\lambda_n = n$, $n \geq 0$, then $(H, \lambda_n; \mu_n)$ reduces to the ordinary Hausdorff transformations.

[4] is a special case of [5] with $\lambda_0 = 0$. [2] is the special case of [5] with $\lambda_n = n + \alpha$.

Each conservative method $(H, \lambda_n; \mu_n)$ with distinct diagonal entries and $\lambda_0 = 0$ satisfies the conditions of Theorem 3. Thus, if $T \leftrightarrow$ $(H, \lambda_n; \mu_n)$; T is an almost matrix with $v = \lambda e$. If, in addition, $(H, \lambda_n; \mu_n)$ satisfies condition (1) of [7], then $T \leftrightarrow (H, \lambda_n; \mu_n)$ implies that B is a generalized Hausdorff matrix of the same type as $(H, \lambda_n; \mu_n)$.

If $\lambda_0 > 0$, then (9) of Theorem 3 is not satisfied. However, $\lim_n \sum_k h_{nk} = \mu_0$, and one can establish the following: Let $(H, \lambda_n; \mu_n)$ be a multiplicative generalized Hausdorff matrix with $\lambda_0 > 0$ and $\mu_n \neq \mu_0$ for all n > 0. Then Com $(H, \lambda_n; \mu_n)$ in $\Gamma = \text{Com}(H, \lambda_n; \mu_n)$ in B(c).

The commutant question for the matrices of [6] remains open.

3. Let A be the shift, i.e., $a_{n+1,n} = 1$, $a_{nk} = 0$ otherwise. Then Theorem 1.1 of [8] follows from Corollary 5.

4. Let A be any regular Nörlund method with $p_n > 0$ for all n. (A matrix A is said to be regular if $\lim_A x = \lim x$ for each $x \in c$.) Then, by Theorem 3, if $T \leftrightarrow A$ then T is an almost matrix with $v = \lambda e$.

5. A triangle is a triangular matrix with each $a_{nn} \neq 0$. A factorable triangular matrix has entries of the form $a_{nk} = c_k d_n$, $k \leq n$. Let A be a regular factorable triangle with all row sums one. By Theorem 3, if $T \leftrightarrow A$, then T is an almost matrix with $v = \lambda e$. This result holds, in particular, for the weighted mean methods (see [3, p. 57]).

THEOREM 4. Let A be a conservative triangular matrix with $\sum_{k=1}^{n} a_{nk} = \chi(A)$ for each n, and $a_{nn} \neq \chi(A)$ for n > 1. Then the following are equivalent:

(i) A is multiplicative.

(ii) $T \leftrightarrow A$ if and only if there exists a scalar $\lambda \neq 0$ such that $T = \lambda e \otimes \lim H B$, where $B \leftrightarrow A$.

(i) \Rightarrow (ii). Suppose $T \leftrightarrow A$. By Corollary 2 we have (4) and $B \leftrightarrow A$. The hypotheses then allow us to use Theorem 3. Suppose now that T has the indicated form. Since $v = \lambda e$ and $\sum_{k=1}^{n} a_{nk} = \chi(A)$ for each n, A satisfies (4). By Corollary 2, $A \leftrightarrow T$.

(ii) \Rightarrow (i). Using Corollary 4 and Theorem 2 we have (8). Set $x = e^k$ to get $a_k = 0$ for each k, since $\lambda \neq 0$. Thus A is multiplicative.

Note that the condition $\lambda \neq 0$ is not used in the proof of (i) \Rightarrow (ii). However, it is necessary for the converse. For, let *H* denote

the Hausdorff matrix generated by $\mu_n = n(n+1)^{-1}$, K the compact Hausdorff matrix generated by $\{1, 0, 0, \dots\}$. Then, since H = I - C; where C is the Cesàro matrix of order 1, $A \leftrightarrow H$ if and only if $A \leftrightarrow C$. But $K \leftrightarrow C$. Therefore, $K \leftrightarrow H$ and K is not multiplicative.

The condition $\sum_{k=1}^{n} a_{nk} = \chi(A)$ for each *n* cannot be removed. For example, let *A* be the matrix defined by $a_{11} = 1$, $a_{2n+1,2n-1} = 1$, $a_{2n,2n} = (n+1)/n$, $n = 1, 2, \dots, a_{nk} = 0$ otherwise. Let *T* be the operator with $v_{2n-1} = 1$, $v_{2n} = 0$, and *B* a diagonal matrix with $b_{2n,2n} = 1$, $b_{2n-1,2n-1} = 0$. Then $T \in B(c)$, *A* is regular, $a_{nn} \neq 1 = \chi(A)$ for any *n*, and $A \leftrightarrow T$, but *T* is not an almost matrix.

COROLLARY 6. Let A satisfy the hypotheses of Theorem 4 with $\chi(A) = 1$. Then the following are equivalent:

(i) A is regular.

(ii) $T \leftrightarrow A$ if and only if there exists a scalar $\lambda \neq 0$ such that $T = \lambda e \otimes \lim B$, where $B \leftrightarrow A$.

In Theorem 4 merely observe that the conditions A multiplicative and $\chi(A) = 1$ imply A is regular.

A natural question to ask is whether there exist matrices whose commutant in B(c) not only contains almost matrices different from those with $v = \lambda e$, but also such that Com (A) in B(c) is included in the set of almost matrices. The answer is yes, as the following example illustrates.

Let v be a positive nonconstant convergent sequence with $v_n \neq 0$ for any n, $\lim_n v_n \neq 0$, $v_n/v_{n-1} \leq 1$ for all n, and $\lim_n v_{n+1}/v_n = 1$. Let A be the matrix defined by $a_{11} = 1$, $a_{n,n-1} = v_n/v_{n-1}$, n > 1, $a_{nk} = 0$ otherwise. We wish to show that $A \leftrightarrow T = v \otimes \lim A$, where $B \leftrightarrow A$. From Corollary 2 we need to verify (4) and (7).

To verify (4) for n = 1, $a_{11}v_1 = v_1 = \chi(A)v_1$. For n > 1, $A_n(v) = a_{n,n-1}v_{n-1} = v_n = \chi(A)v_n$.

It remains to determine those matrices B which commute with A. It is not difficult, using the techniques of [7], to show that Com(A) in $\Delta = Com(A)$ in Γ .

We shall now show that $Com(A) = \{f(A): f \text{ is analytic in } D = \{z: |z| \leq 1\}\}.$

For convenience set $\alpha_n = v_{n+1}/v_n$. Suppose $B \leftrightarrow A$. Equating $(BA)_{n,k-1}$ and $(AB)_{n,k-1}$ we get, for k > 2,

$$b_{nk}=rac{lpha_{n-1}lpha_{n-2}\,\cdots\,lpha_{n-k+2}}{lpha_{k-1}\,\cdots\,lpha_2}\,b_{n-k+2,2}$$
 .

Thus we may write

(11)
$$b_{n,n-k}=lpha_{n-1}lpha_{n-2}\cdots lpha_{n-k}\lambda_k$$
 , $1\leq k\leq n-2$,

where $\lambda_k = b_{k+2,2}/\alpha_{k+1} \cdots \alpha_2, \ k \ge 1.$ For $r = 1, 2, \cdots,$

Note that for n-k > 1, the only nonzero entries of A^r occur on the rth diagonal. Thus for any n, there exists only one nonzero element in row n. With λ_0 any arbitrary scalar, and for any fixed n, k with n-k > 1, $\sum_{j=0}^{\infty} \lambda_j (A^j)_{n,n-k}$ has at most two nonzero terms. One is $\lambda_k (A^k)_{n,n-k}$ and the other is $\lambda_0 \delta_{n-k}^n$. Therefore,

$$\sum_{j=0}^{\infty} \lambda_j (A^j)_{n,n-k} = \left(\sum_{j=0}^{\infty} \lambda_j A^j \right)_{n,n-k} = (f(A))_{n,n-k}$$

For n - k = 1, n > 1,

$$\sum_{j=0}^{\infty} \lambda_j (A^j)_{n_1} = \sum_{j=n}^{\infty} \lambda_j (\alpha_1 \alpha_2 \cdots \alpha_{n-1}) = (f(A))_{n_1}$$

For n - k = 1, n = 1,

$$\sum\limits_{j=0}^\infty \lambda_j (A^j)_{_{11}} = \sum\limits_{j=0}^\infty \lambda_j = (f(A))_{_{11}}$$
 ,

assuming $\sum_j \lambda_j$ converges, so that B = f(A).

Using (11), we may write $\lambda_k = b_{n,n-k}/\alpha_{n-1}\alpha_{n-2}\cdots\alpha_{n-k}$; since $\alpha_1\cdots\alpha_n = u_{n+1}/u_1$, we have

$$\sum_{k=1}^n |\lambda_k| = \sum_{k=1}^n \left| rac{u_{n-k}}{u_n} b_{n,n-k}
ight| = rac{1}{u_n} \sum_{k=1}^n u_k |b_{nk}| \; .$$

Since $||B|| < \infty$ and $\{u_n\}$ is bounded away from zero, $f(z) = \sum_j \lambda_j z^j$ is analytic in D.

Conversely, if B has the form f(A) for some f analytic in D, then clearly B commutes with A.

We conclude with a few remarks concerning conull matrices. A conservative matrix is conull if $\chi(A) = 0$. From (4) of Corollary 1, Av = 0. Therefore, Com (A) in $B(c) = \{T \in B(c) : v \in \text{null space of } A\}$. If A is a triangle, then v = 0 and Com (A) in B(c) = Com (A) in Γ . If A is triangular, with only a finite number of zeros on the main diagonal, then $v \in \text{linear span } (e_1, e_2, \dots, e_n)$, where n is the largest integer for which $a_{nn} = 0$. Of course, if A is the zero matrix, then Com (A) in B(c) = B(c).

216

References

1. H. I. Brown, D. R. Kerr, Jr., and H. H. Stratton, The structure of B[c] and extensions of the concept of conull matrix, Proc. Amer. Math. Soc., **22** (1969), 7-14; **35** (1972), 515-518.

2. K. Endl, Untersuchen über Momentprobleme bei Verfahren von Hausdorffschen Typus, Math. Ann., 139 (1960), 403-432.

3. G. H. Hardy, Divergent Series, Oxford, 1949.

4. F. Hausdorff, Summationsmethoden und Momentfolgen II, Math. Zeit., 9 (1921), 280-299

5. A. Jakimovski, The product of summability methods; new classes of transformations and their properties, I, II, Technical (Scientific) Note No. 2, Contract No. AF61 (052)-187 (1959), Hebrew University.

6. C. W. Leininger, Some properties of a generalized Hausdorff mean, Proc. Amer. Math. Soc., **20** (1969), 88-96.

7. B. E. Rhoades, Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.

8. N. K. Sharma, Spectral aspects of summability methods, Ph. D. Dissertation, Indiana University, Bloomington, Indiana, (1971).

9. A. Wilansky, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc., **113** (1964), 240-251.

10. _____, Subalgebras of B(X), Proc. Amer. Math. Soc., 29 (1971), 355-360.

11. K. Zeller and W. Beekmann, *Theorie der Limitierungs-verfahren*, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Received August 30, 1972.

Indiana University and Lehigh University