SOME COMMUTANTS IN $B(c)$ WHICH ARE ALMOST MATRICES

B. E. Rhoades and A. Wilansky

Abstract

We determine necessary and sufficient conditions for two linear operators in $B(c)$ to commute. Specializing one of the operators to be a conservative triangular matrix we determine that most such operators have commutants consisting of almost matrices of a special form.

Almost matrices were developed in [10] for reasons not related to this paper, but they find application here in that the commutants in $B(c)$ of certain matrices must be almost matrices.

Let c denote the space of convergent sequences, $B(c)$ the algebra of all bounded linear operators over c, e the sequence of all ones, and e^{k} the coordinate sequences with a one in the k th position and zeros elsewhere. If $T \in B(c)$, then one can define continuous linear functionals χ and χ_{i} by $\chi(T)=\lim T e-\sum_{k} \lim \left(T e^{k}\right)$ and $\chi_{i}(T)=(T e)_{i}-$ $\sum_{k}\left(T e^{k}\right)_{i}, i=1,2, \cdots$. (See, e.g. [9, p. 241].) It is known [1, p. 8] that any $T \in B(c)$ has the representation $T=v \otimes \lim +B$, where B is the matrix representation of the restriction of T to c_{0}, the subspace of null sequences, v is the bounded sequence $v=\left\{\chi_{i}(T)\right\}$, and $v \otimes$ $\lim x=(\lim x) v$ for each $x \in c$.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has the matrix representation

$$
\text { (*) } \quad T^{\prime \prime}=\left(\begin{array}{cccccc}
\chi_{(}(T) & b_{1} & b_{2} & \cdot & \cdot & \cdot \\
\chi_{1}(T) & b_{11} & b_{12} & \cdot & \cdot & \cdot \\
\chi_{2}(T) & b_{21} & b_{22} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & . & . & \cdot \\
. & . & . & . & . & .
\end{array}\right)
$$

where the b_{i} 's occur in the representation of $\lim \circ T \in c^{\prime}$ as $(\lim \circ T)(x)=$ $\lim (T x)=(T) \lim x+\sum_{k} b_{k} x_{k} ;$ namely, $b_{i}=\lim T e^{i}$. With the use of (*) it is easy to describe the commutant of any $Q \in B(c)$.

Theorem 1. Let $Q=u \otimes \lim +A \in B(c)$. Then $\operatorname{Com}(Q)$ in $B(c)=$ $\{T=v \otimes \lim +B \in B(c): T$ satisfies (1)-(3)\}, where

$$
\begin{gather*}
u_{n} \chi(T)+\sum_{k=1}^{\infty} a_{n k} v_{k}=v_{n} \chi(Q)+\sum_{k=1}^{\infty} b_{n k} u_{k} ; \quad n=1,2, \cdots \tag{1}\\
u_{n} b_{k}+\sum_{j=1}^{\infty} a_{n j} b_{j k}=v_{n} a_{k}+\sum_{j=1}^{\infty} b_{n j} a_{j k} ; \quad n, k=1,2, \cdots \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} v_{k}=\sum_{k=1}^{\infty} b_{k} u_{k} \tag{3}
\end{equation*}
$$

and where $a_{k}=\lim Q\left(e^{k}\right), b_{k}=\lim T\left(e^{k}\right)$.
To prove Theorem 1, use the representation (*) for $T^{\prime \prime}$ and $Q^{\prime \prime}$ and then equate the corresponding terms in the products $T^{\prime \prime} Q^{\prime \prime}$ and $Q^{\prime \prime} T^{\prime \prime}$. For example, (1) is obtained by equating $\left(Q^{\prime \prime} T^{\prime \prime}\right)_{n 1}$ and $\left(T^{\prime \prime} Q^{\prime \prime}\right)_{n 1}$. When Q is a matrix A, each $u_{n}=0$ and each $a_{k}=\lim _{n} a_{n k}$. The following result is an immediate consequence of Theorem 1.

Corollary 1. Let A be a conservative matrix, $T \in B(c)$. Then $A \leftrightarrow T$ if and only if

$$
\begin{equation*}
A v=\chi(A) v \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{j=1}^{\infty} a_{n j} b_{j k}=v_{n} a_{k}+\sum_{j=1}^{\infty} b_{n j} a_{j k} ; \quad n, k=1,2, \cdots \tag{5}\\
a \perp v, \text { where } a=\left\{a_{n}\right\} \tag{6}
\end{gather*}
$$

A conservative matrix A is called multiplicative if $\lim _{A} x=$ $\chi(A) \lim x$ for each $x \in c$; i.e., if each $\alpha_{k}=0$.

Corollary 2. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow T$ if and only if A satisfies (4) and

$$
\begin{equation*}
B \longleftrightarrow A \tag{7}
\end{equation*}
$$

If A is multiplicative, then each $\alpha_{k}=0$ and condition (5) of Corollary 1 reduces to (7) of Corollary 2. Since $a=0$, (6) holds automatically.

Theorem 2. Let A be a conservative matrix. Then $A \leftrightarrow v \otimes$ \lim if and only if

$$
\begin{equation*}
(\lim x) A v=\left(\lim _{A} x\right) v \text { for each } x \in c \tag{8}
\end{equation*}
$$

To establish (8) note that $A(v \otimes \lim)(x)=A(\lim x) v=(\lim x) A v$, and $(v \otimes \lim)(A x)=(\lim A x) v=\left(\lim _{A} x\right) v$.

Corollary 3. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow u \otimes \lim$ if and only if A satisfies (4).

COROLLARy 4. Let A be a conservative multiplicative matrix. Then $A \leftrightarrow T$ if and only if $A \leftrightarrow v \otimes \lim$ and $A \leftrightarrow B$.

For $T \in B(c), T$ is called an almost matrix if $v \in c$. A matrix A
is called triangular if $a_{n k}=0$ for each $k>n$. We shall now examine some triangular matrices whose commutants consist of almost matrices.

Theorem 3. Let A be a conservative triangular matrix with $a_{n n} \neq \chi(A)$ for $n>1$. Consider the conditions

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n k}=\chi(A) \text { for } n>1 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
T \leftrightarrow A \text { implies } T \text { is an almost matrix with } v=\lambda e . \tag{10}
\end{equation*}
$$

Then $(9) \Rightarrow(10)$. If, in addition, $\lambda \neq 0$, then $(10) \Rightarrow(9)$.
To prove that $(9) \Rightarrow(10)$, suppose $T \leftrightarrow A . \quad$ From (4) of Corollary 1,

$$
\sum_{k=1}^{n} a_{n k} v_{k}=\chi(A) v_{n}=\left(\sum_{k=1}^{n} a_{n k}\right) v_{n}, \quad n>1
$$

We may rewrite the equation in the form $\sum_{k=1}^{n}\left(v_{k}-v_{n}\right) a_{n k}=0$, which, along with the hypothesis $\alpha_{n n} \neq \chi(A)$ for $n>1$, yields $v_{n}=v_{1}$, for $n>1$.

For $n>1,\left(T^{\prime \prime} A^{\prime \prime}\right)_{n+1,1}=\lambda \chi(A)$ and $\left(A^{\prime \prime} T^{\prime \prime}\right)_{n+1,1}=\lambda \sum_{k=1}^{n} a_{n k} . \quad$ Thus, if $\lambda \neq 0, \chi(A)=\sum_{k=1}^{n} a_{n k}$.

The result stated at the end of paragraph 2 in the next section shows that the condition $\lambda \neq 0$ is necessary for (10) to imply (9).

The identity matrix shows that the restriction $a_{n n} \neq \chi(A)$ for $n>1$ cannot be removed.

Corollary 5. Let A be a conservative triangular matrix with $\sum_{k=1}^{n} a_{n k}=\chi(A)$ for $n>1$ and $a_{n n} \neq \chi(A)$ for each n. Then $T \leftrightarrow A$ implies T is a matrix.

From Theorem 3, $v_{n}=v_{1}$. From (4) with $n=1$ we get $\alpha_{11} v_{1}=$ $\chi(A) v_{1}$. Since $a_{11} \neq \chi(A), v_{1}=0$ and A is a matrix.

Applications. 1. Let C denote the Casàro matrix of order 1. Then Theorem 3 of [7] follows immediately from Theorem 3 of this paper.
2. Endl [2], Hausdorff [4], Jakimovski [5] (see [11, p. 190]) and Leininger [6] have defined summability methods which are generalizations of the Hausdorff methods. The $\left(H, \lambda_{n} ; \mu_{n}\right)$ transform of [5] is defined by a triangular matrix $H=\left(h_{n k}\right)$ with entries $h_{n n}=\mu_{n}, h_{n k}=$ $(-1)^{n-k} \lambda_{k+1} \cdots \lambda_{n}\left[\mu_{k}, \cdots, \mu_{n}\right], k<n$, where

$$
\left[\mu_{k}, \cdots, \mu_{n}\right]=\sum_{i=k}^{n} \frac{\mu_{i}}{\left(\lambda_{i}-\lambda_{k}\right) \cdots\left(\lambda_{i}-\lambda_{i-1}\right)\left(\lambda_{i}-\lambda_{i+1}\right) \cdots\left(\lambda_{i}-\lambda_{n}\right)}
$$

$\left\{\mu_{n}\right\}$ is a real or complex sequence, and $\left\{\lambda_{n}\right\}$ satisfies $0 \leqq \lambda_{0}<\lambda_{1}<$ $\cdots<\lambda_{n}<\cdots, \lim _{n} \lambda_{n}=\infty$ and $\sum_{i} \lambda_{i}^{-1}=\infty$. If $\lambda_{n}=n$, $n \geqq 0$, then ($H, \lambda_{n} ; \mu_{n}$) reduces to the ordinary Hausdorff transformations.
[4] is a special case of [5] with $\lambda_{0}=0$. [2] is the special case of [5] with $\lambda_{n}=n+\alpha$.

Each conservative method ($H, \lambda_{n} ; \mu_{n}$) with distinct diagonal entries and $\lambda_{0}=0$ satisfies the conditions of Theorem 3. Thus, if $T \leftrightarrow$ $\left(H, \lambda_{n} ; \mu_{n}\right) ; T$ is an almost matrix with $v=\lambda e$. If, in addition, $\left(H, \lambda_{n} ; \mu_{n}\right)$ satisfies condition (1) of [7], then $T \leftrightarrow\left(H, \lambda_{n} ; \mu_{n}\right)$ implies that B is a generalized Hausdorff matrix of the same type as $\left(H, \lambda_{n} ; \mu_{n}\right)$.

If $\lambda_{0}>0$, then (9) of Theorem 3 is not satisfied. However, $\lim _{n} \sum_{k} h_{n k}=\mu_{0}$, and one can establish the following: Let $\left(H, \lambda_{n} ; \mu_{n}\right)$ be a multiplicative generalized Hausdorff matrix with $\lambda_{0}>0$ and $\mu_{n} \neq$ μ_{0} for all $n>0$. Then $\operatorname{Com}\left(H, \lambda_{n} ; \mu_{n}\right)$ in $\Gamma=\operatorname{Com}\left(H, \lambda_{n} ; \mu_{n}\right)$ in $B(c)$.

The commutant question for the matrices of [6] remains open.
3. Let A be the shift, i.e., $a_{n+1, n}=1, a_{n k}=0$ otherwise. Then Theorem 1.1 of [8] follows from Corollary 5.
4. Let A be any regular Nörlund method with $p_{n}>0$ for all n. (A matrix A is said to be regular if $\lim _{A} x=\lim x$ for each $x \in c$.) Then, by Theorem 3, if $T \leftrightarrow A$ then T is an almost matrix with $v=\lambda e$.
5. A triangle is a triangular matrix with each $a_{n n} \neq 0$. A factorable triangular matrix has entries of the form $a_{n k}=c_{k} d_{n}, k \leqq n$. Let A be a regular factorable triangle with all row sums one. By Theorem 3, if $T \leftrightarrow A$, then T is an almost matrix with $v=\lambda e$. This result holds, in particular, for the weighted mean methods (see [3, p. 57]).

Theorem 4. Let A be a conservative triangular matrix with $\sum_{k=1}^{n} a_{n k}=\chi(A)$ for each n, and $a_{n n} \neq \chi(A)$ for $n>1$. Then the following are equivalent:
(i) A is multiplicative.
(ii) $T \leftrightarrow A$ if and only if there exists a scalar $\lambda \neq 0$ such that $T=\lambda e \otimes \lim +B$, where $B \leftrightarrow A$.
(i) \Rightarrow (ii). Suppose $T \leftrightarrow A$. By Corollary 2 we have (4) and B \leftrightarrow A. The hypotheses then allow us to use Theorem 3. Suppose now that T has the indicated form. Since $v=\lambda e$ and $\sum_{k=1}^{n} a_{n k}=\chi(A)$ for each n, A satisfies (4). By Corollary 2, $A \leftrightarrow T$.
(ii) \Rightarrow (i). Using Corollary 4 and Theorem 2 we have (8). Set $x=e^{k}$ to get $\alpha_{k}=0$ for each k, since $\lambda \neq 0$. Thus A is multiplicative.

Note that the condition $\lambda \neq 0$ is not used in the proof of (i) \Rightarrow (ii). However, it is necessary for the converse. For, let H denote
the Hausdorff matrix generated by $\mu_{n}=n(n+1)^{-1}, K$ the compact Hausdorff matrix generated by $\{1,0,0, \cdots\}$. Then, since $H=I-C$; where C is the Cesàro matrix of order $1, A \leftrightarrow H$ if and only if $A \leftrightarrow$ C. But $K \leftrightarrow C$. Therefore, $K \leftrightarrow H$ and K is not multiplicative.

The condition $\sum_{k=1}^{n} a_{n k}=\chi(A)$ for each n cannot be removed. For example, let A be the matrix defined by $a_{11}=1, a_{2 n+1,2 n-1}=1, a_{2 n, 2 n}=$ $(n+1) / n, n=1,2, \cdots, a_{n k}=0$ otherwise. Let T be the operator with $v_{2 n-1}=1, v_{2 n}=0$, and B a diagonal matrix with $b_{2 n, 2 n}=1$, $b_{2 n-1,2 n-1}=0$. Then $T \in B(c), A$ is regular, $a_{n n} \neq 1=\chi(A)$ for any n, and $A \leftrightarrow T$, but T is not an almost matrix.

Corollary 6. Let A satisfy the hypotheses of Theorem 4 with $\chi(A)=1$. Then the following are equivalent:
(i) A is regular.
(ii) $T \leftrightarrow A$ if and only if there exists a scalar $\lambda \neq 0$ such that $T=\lambda e \otimes \lim +B$, where $B \leftrightarrow A$.

In Theorem 4 merely observe that the conditions A multiplicative and $\chi(A)=1$ imply A is regular.

A natural question to ask is whether there exist matrices whose commutant in $B(c)$ not only contains almost matrices different from those with $v=\lambda e$, but also such that $\operatorname{Com}(A)$ in $B(c)$ is included in the set of almost matrices. The answer is yes, as the following example illustrates.

Let v be a positive nonconstant convergent sequence with $v_{n} \neq 0$ for any $n, \lim _{n} v_{n} \neq 0, v_{n} / v_{n-1} \leqq 1$ for all n, and $\lim _{n} v_{n+1} / v_{n}=1$. Let A be the matrix defined by $a_{11}=1, a_{n, n-1}=v_{n} / v_{n-1}, n>1, a_{n k}=0$ otherwise. We wish to show that $A \leftrightarrow T=v \otimes \lim +B$, where $B \leftrightarrow$ A. From Corollary 2 we need to verify (4) and (7).

To verify (4) for $n=1, a_{11} v_{1}=v_{1}=\chi(A) v_{1}$. For $n>1, A_{n}(v)=$ $a_{n, n-1} v_{n-1}=v_{n}=\chi(A) v_{n}$.

It remains to determine those matrices B which commute with A. It is not difficult, using the techniques of [7], to show that $\operatorname{Com}(A)$ in $\Delta=\operatorname{Com}(A)$ in Γ.

We shall now show that $\operatorname{Com}(A)=\{f(A): f$ is analytic in $D=$ $\{z:|z| \leqq 1\}\}$.

For convenience set $\alpha_{n}=v_{n+1} / v_{n}$. Suppose $B \leftrightarrow A$. Equating $(B A)_{n, k-1}$ and $(A B)_{n, k-1}$ we get, for $k>2$,

$$
b_{n k}=\frac{\alpha_{n-1} \alpha_{n-2} \cdots \alpha_{n-k+2}}{\alpha_{k-1} \cdots \alpha_{2}} b_{n-k+2,2} .
$$

Thus we may write

$$
\begin{equation*}
b_{n, n-k}=\alpha_{n-1} \alpha_{n-2} \cdots \alpha_{n-k} \lambda_{k}, \quad 1 \leqq k \leqq n-2, \tag{11}
\end{equation*}
$$

where $\lambda_{k}=b_{k+2,2} / \alpha_{k+1} \cdots \alpha_{2}, k \geqq 1$.
For $r=1,2, \cdots$,

$$
\left(A^{r}\right)_{n, n-k}=\left\{\begin{array}{cll}
1 & , & n-k=1, k=1 \\
\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}, & n-k=1<n \leqq r+1 \\
\alpha_{n-1} \cdots \alpha_{n-r}, & r=k \\
0, & \text { otherwise } .
\end{array}\right.
$$

Note that for $n-k>1$, the only nonzero entries of A^{r} occur on the r th diagonal. Thus for any n, there exists only one nonzero element in row n. With λ_{0} any arbitrary scalar, and for any fixed n, k with $n-k>1, \sum_{j=0}^{\infty} \lambda_{j}\left(A^{j}\right)_{n, n-k}$ has at most two nonzero terms. One is $\lambda_{k}\left(A^{k}\right)_{n, n-k}$ and the other is $\lambda_{0} \delta_{n-k}^{n}$. Therefore,

$$
\sum_{j=0}^{\infty} \lambda_{j}\left(A^{j}\right)_{n, n-k}=\left(\sum_{j=0}^{\infty} \lambda_{j} A^{j}\right)_{n, n-k}=(f(A))_{n, n-k} .
$$

For $n-k=1, n>1$,

$$
\sum_{j=0}^{\infty} \lambda_{j}\left(A^{j}\right)_{n 1}=\sum_{j=n}^{\infty} \lambda_{j}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}\right)=(f(A))_{n 1} .
$$

For $n-k=1, n=1$,

$$
\sum_{j=0}^{\infty} \lambda_{j}\left(A^{j}\right)_{11}=\sum_{j=0}^{\infty} \lambda_{j}=(f(A))_{11},
$$

assuming $\sum_{j} \lambda_{j}$ converges, so that $B=f(A)$.
Using (11), we may write $\lambda_{k}=b_{n, n-k} / \alpha_{n-1} \alpha_{n-2} \cdots \alpha_{n-k}$; since $\alpha_{1} \cdots$ $\alpha_{n}=u_{n+1} / u_{1}$, we have

$$
\sum_{k=1}^{n}\left|\lambda_{k}\right|=\sum_{k=1}^{n}\left|\frac{u_{n-k}}{u_{n}} b_{n, n-k}\right|=\frac{1}{u_{n}} \sum_{k=1}^{n} u_{k}\left|b_{n k}\right| .
$$

Since $\|B\|<\infty$ and $\left\{u_{n}\right\}$ is bounded away from zero, $f(z)=\sum_{j} \lambda_{j} z^{j}$ is analytic in D.

Conversely, if B has the form $f(A)$ for some f analytic in D, then clearly B commutes with A.

We conclude with a few remarks concerning conull matrices. A conservative matrix is conull if $\chi_{(A)}=0$. From (4) of Corollary 1 , $A v=0$. Therefore, $\operatorname{Com}(A)$ in $B(c)=\{T \in B(c): v \in$ null space of $A\}$. If A is a triangle, then $v=0$ and $\operatorname{Com}(A)$ in $B(c)=\operatorname{Com}(A)$ in Γ. If A is triangular, with only a finite number of zeros on the main diagonal, then $v \in$ linear span $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$, where n is the largest integer for which $a_{n n}=0$. Of course, if A is the zero matrix, then $\operatorname{Com}(A)$ in $B(c)=B(c)$.

References

1. H. I. Brown, D. R. Kerr, Jr., and H. H. Stratton, The structure of $B[c]$ and extensions of the concept of conull matrix, Proc. Amer. Math. Soc., 22 (1969), 7-14; 35 (1972), 515-518.
2. K. Endl, Untersuchen über Momentprobleme bei Verfahren von Hausdorffschen Typus, Math. Ann., 139 (1960), 403-432.
3. G. H. Hardy, Divergent Series, Oxford, 1949.
4. F. Hausdorff, Summationsmethoden und Momentfolgen II, Math. Zeit., 9 (1921), 280-299
5. A. Jakimovski, The product of summability methods; new classes of transformations and their properties, I, II, Technical (Scientific) Note No. 2, Contract No. AF61 (052)187 (1959), Hebrew University.
6. C. W. Leininger, Some properties of a generalized Hausdorff mean, Proc. Amer. Math. Soc., 20 (1969), 88-96.
7. B. E. Rhoades, Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.
8. N. K. Sharma, Spectral aspects of summability methods, Ph. D. Dissertation, Indiana University, Bloomington, Indiana, (1971).
9. A. Wilansky, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc., 113 (1964), 240-251.
10. -, Subalgebras of $B(X)$, Proc. Amer. Math. Soc., 29 (1971), 355-360.
11. K. Zeller and W. Beekmann, Theorie der Limitierungs-verfahren, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Received August 30, 1972.
Indiana University
AND
Lehigh University

