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SOME COMMUTANTS IN B{c) WHICH ARE
ALMOST MATRICES

B. E. RHOADES AND A. WILANSKY

We determine necessary and sufficient conditions for two
linear operators in B(c) to commute. Specializing one of the
operators to be a conservative triangular matrix we determine
that most such operators have commutants consisting of almost
matrices of a special form.

Almost matrices were developed in [10] for reasons not related to
this paper, but they find application here in that the commutants in
B(c) of certain matrices must be almost matrices.

Let c denote the space of convergent sequences, B(c) the algebra
of all bounded linear operators over c, e the sequence of all ones, and
ek the coordinate sequences with a one in the kth position and zeros
elsewhere. If TeB(c), then one can define continuous linear func-
tionals 1 and 1, by X(T) = lim Te - Σ* Km (Tek) and Xζ(T) = {Te)i -
Σ * (Tek)i, i = 1, 2, . . . . (See, e.g. [9, p. 241].) It is known [1, p. 8]
that any T e B(c) has the representation T = v (x) lim + B, where B
is the matrix representation of the restriction of T to c0, the subspace
of null sequences, v is the bounded sequence v = {^(T)}, and v (x)
lim x = (lim x)v for each x e c.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has
the matrix representation

β(T) bx b2

UT) bn b12

b21 b22

• a /

where the δ/s occur in the representation of lim°jΓe c' as (lim°T)(α;) =
lim (Tx) = (T) lima; + Σ* bkxk; namely, bt = lim Te\ With the use of
(*) it is easy to describe the commutant of any QeB(c).

THEOREM 1. Let Q = u (x) lim + A e B(c). Then Com (Q) in B(c) =
{T = v (x) lim + BeB(c): T satisfies (l)-(3)}, where

(1) unX(T) + Σ ankvk = vnX(Q) + Σ -
A = l fc=l

n = 1, 2,

unbk anjbjk = vnak
3 = 1
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OO CO

( 3 ) Σ Wit = Σ hv>k >

and where ak = lim Q(ek), bk = lim T(ek).

To prove Theorem 1, use the representation (*) for T" and Q"
and then equate the corresponding terms in the products T"Q" and
Q"T". For example, (1) is obtained by equating (Q"T")nl and (Γ"Q")»i.
When Q is a matrix A, each un = 0 and each αA = lim% αwA;. The
following result is an immediate consequence of Theorem 1.

COROLLARY 1. Let A be a conservative matrix, TeB(c). Then
A <-̂  T if and only if

(4 ) Av = l(A)v

OO OO

( 5) Σ anjbjk = vnak + Σ KjCLjk n, k = 1, 2, . . .
i=i i=i

( 6 ) α ± v, where a = {an} .

A conservative matrix A is called multiplicative if lim^ x =
X(A)\imx for each xec; i.e , if each αfc = 0.

COROLLARY 2. Lei A 6e a conservative multiplicative matrix.
Then A<-+ T if and only if A satisfies (4) and

(7) B< >A.

If A is multiplicative, then each ak = 0 and condition (5) of Co-
rollary 1 reduces to (7) of Corollary 2. Since a = 0, (6) holds auto-
matically.

THEOREM 2. Lei A be a conservative matrix. Then A <-^ v 0
lim if and only if

(8) ( l i m x ) A v — ( l i m ^ x)v f o r e a c h x e c .

To establish (8) note that A(v (x) lim)(a?) = A(limα;)i; = (limα)Ai ,
and (v (x) lim)(Ax) = (limAx)v = (lim^ a?)v

COROLLARY 3. Lβέ A 6e a conservative multiplicative matrix.
Then A^-+t6(x)lim if and only if A satisfies (4).

COROLLARY 4. Let A be a conservative multiplicative matrix.
Then A <-> T if and only if A *-+ v (x) lim α^d A <-> β.

For TeB(c), T is called an almost matrix if vec. A matrix A
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is called triangular if ank = 0 for each k > n. We shall now examine
some triangular matrices whose commutants consist of almost matrices.

THEOREM 3 Let A be a conservative triangular matrix with
ann Φ X(A) for n > 1. Consider the conditions

( 9 ) Σ ^ = ΆA) for n>l
k=ι

(10) T «-> A implies T is an almost matrix with v = Xe .

Then (9) => (10). //, in addition, X Φ 0, then (10) =* (9).

To prove that (9) => (10), suppose T+-* A. From (4) of Corollary 1,

n / n \

Σ α*fĉ Λ = Z(A)Vn = ( Σ ank )Vn , W > 1 .
fc=l \ fc=l /

We may rewrite the equation in the form Σϊ=i iVk — ̂ n)ct»fc = 0, which,
along with the hypothesis ann Φ X(A) for n > 1, yields vΛ = v^ for
^ > 1.

For n>l, (T"A")n+uι = λZ(A) and (A"Γ")»+ifi = λ Σ2=i ank. Thus,
if λ ^ 0, 1{A) = Σ!=i α»*.

The result stated at the end of paragraph 2 in the next section
shows that the condition λ Φ 0 is necessary for (10) to imply (9).

The identity matrix shows that the restriction ann Φ 1(A) for
n > 1 cannot be removed.

COROLLARY 5. Let A be a conservative triangular matrix with
Σϊ=i ank = Z(A) /or ^ > 1 α?jd αw% =£ Z(A) /or eαcfe w. Then T ̂  A
implies T is a matrix.

From Theorem 3, vn = vγ. From (4) with n = 1 we get aιιvι =
X(A)vι. Since αu ̂  %(A), ^ = 0 and A is a matrix.

Applications* 1. Let C denote the Casaro matrix of order 1.
Then Theorem 3 of [7] follows immediately from Theorem 3 of this
paper.

2. Endl [2], Hausdorff [4], Jakimovski [5] (see [11, p. 190]) and
Leininger [6] have defined summability methods which are generaliza-
tions of the Hausdorff methods. The (H, Xn; μn) transform of [5] is
defined by a triangular matrix H = (hnk) with entries hnn = μn, hnk =
(~l)n~kXk+ί . . . Xn[μk, - , μn], k <n, where

, μn] = Σ
Xk) * * * \Xi X{—i)\Xi Xi + l) φ * * (λ^ λ/%/
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{μn} is a real or complex sequence, and {Xn} satisfies 0 ^ λ0 < Xt <
• < λn < , limw Xn = oo and Σ« V 1 = °° If λ» = n, n >̂ 0, then
(H, Xn; μn) reduces to the ordinary Hausdorff transformations.

[4] is a special case of [5] with λ0 — 0. [2] is the special case
of [5] with Xn = n + a.

Each conservative method (H, Xn; μn) with distinct diagonal entries
and λ0 = 0 satisfies the conditions of Theorem 3. Thus, if T*-+
(H, λΛ; μn); T is an almost matrix with v = λe. If, in addition,
(H,Xn;μn) satisfies condition (1) of [7], then T^(H,Xn;μn) implies
that B is a generalized Hausdorff matrix of the same type as
(H, Xn; μn).

If λ0 > 0, then (9) of Theorem 3 is not satisfied. However,
limΛ Σfc hnk = £Ό> and one can establish the following: Let (H, Xn; μn)
be a multiplicative generalized Hausdorff matrix with λ0 > 0 and μn Φ
μQ for all n > 0. Then Com (H, Xn; μn) in Γ = Com (H, Xn; μn) in B(c).

The commutant question for the matrices of [6] remains open.
3. Let A be the shift, i.e., an+Un = 1, anh = 0 otherwise. Then

Theorem 1.1 of [8] follows from Corollary 5.
4. Let A be any regular Norlund method with pn > 0 for all n.

(A matrix A is said to be regular if limA x = lim x for each x e c.)
Then, by Theorem 3, if T <-• A then T is an almost matrix with
v = Xe.

5. A triangle is a triangular matrix with each ann Φ 0. A fac-
torable triangular matrix has entries of the form ank = ckdn, k ^ n.
Let A be a regular factorable triangle with all row sums one. By
Theorem 3, if T<-> A, then T is an almost matrix with v = Xe, This
result holds, in particular, for the weighted mean methods (see [3,
P 57]).

THEOREM 4. Let A be a conservative triangular matrix with
ΣJ?=I

 ank — %(A) for each n, and ann Φ X(A) for n > 1. Then the fol-
lowing are equivalent:

(i) A is multiplicative.
(ii) T *-+ A if and only if there exists a scalar X Φ 0 such that

T = Xe (x) lim + B, where B — A.

(i) => (ii). Suppose T^A. By Corollary 2 we have (4) andB*->
A. The hypotheses then allow us to use Theorem 3. Suppose now
that T has the indicated form. Since v = Xe and Σί=i &nk = Z(A) for
each n, A satisfies (4). By Corollary 2, A+-+T.

(ϋ) => (i)# Using Corollary 4 and Theorem 2 we have (8). Set
x — ek to get ak = 0 for each &, since X Φ 0. Thus A is multiplicative.

Note that the condition λ Φ 0 is not used in the proof of (i) =•
(ii). However, it is necessary for the converse. For, let H denote
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the Hausdorff matrix generated by μn = n(n + I)" 1 , K the compact
Hausdorff matrix generated by {1, 0, 0, •}. Then, since H = I — C;
where C is the Cesaro matrix of order 1, A <-> H if and only if A *->
C. But K <-* C. Therefore, K^-> H and K is not multiplicative.

The condition Σί=i ank — %(A) for each n cannot be removed. For
example, let A be the matrix defined by an = 1, (kn+i,2n-i — 1> #2»,2̂  =
(n + 1)M? n = 1, 2, , αwA; = 0 otherwise. Let Γ be the operator
with ^2^! = 1, v2n = 0, and J5 a diagonal matrix with b2n,2n = 1,
62*-i,2n-i = 0. Then TeB(c), A is regular, αww ^ 1 = X(A) for any w,
and A <-> T, but T is not an almost matrix.

COROLLARY 6. Lei A satisfy the hypotheses of Theorem 4 with
X(A) = 1. TΛe^ ίfee following are equivalent:

(i) A is regular.
(ii) T *-+ A if and only if there exists a scalar λ ^ 0 suc/i ίfcαί

T = λe 0 lim + .B, wλere B — A.

In Theorem 4 merely observe that the conditions A multiplicative
and X(A) = 1 imply A is regular.

A natural question to ask is whether there exist matrices whose
commutant in B(c) not only contains almost matrices different from
those with v = λe, but also such that Com (A) in B(c) is included in
the set of almost matrices. The answer is yes, as the following
example illustrates.

Let v be a positive nonconstant convergent sequence with vn Φ 0
for any n, limΛ vn Φ 0, vjvn^ ^ 1 for all n, and limn vn+1/vn = 1. Let
A be the matrix defined by an — 1, αΛ,Λ_! = vjvn-19 n > 1, α%fc = 0
otherwise. We wish to show that A •-> Γ = v ® lim + B, where B <-+
A. From Corollary 2 we need to verify (4) and (7).

To verify (4) for n = 1, a n ^ = vt = Z(A)^. For w > 1, Aw(v) =
a^.-i^-i = vn = X(A)vn.

It remains to determine those matrices B which commute with
A. I t is not difficult, using the techniques of [7], to show that
Com (A) in Δ = Com (A) in Γ.

We shall now show that Com (A) = {/(A):/ is analytic in D =

{*: M ^ 1}}.
For convenience set αw = vn+1/vn. Suppose B <-> A. Equating
) ^ ^ and (AB),,^ we get, for ft > 2,

T h u s w e m a y w r i t e

( 1 1 ) δ % , ^ _ ^ - α T O _ 1 α π _ 2 α % _ , λ f c , l ^ k ^ n - 2 ,
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— ft = 1, ft =

where Xk = bk+2t2/ak+1 a2, ft ^ 1.

F o r r = 1, 2, •••,

)n,n-k — "

Note that for n — ft > 1, the only nonzero entries of Ar occur on the
r t h diagonal. Thus for any n, there exists only one nonzero element
in row n. With λ0 any arbitrary scalar, and for any fixed n, ft with
n — ft > 1, ΣΓ=o ̂ i(-4.0»,Λ-jfe has at most two nonzero terms. One is
Xk(Ak)n>n_k and the other is λoδ;_A Therefore,

a,a2

α—i
• .
0

OCn-r ,

1

r = k

otherwise .

For n — k = 1, n > 1,

Σ = Σ

For n — k = 1, w = 1,

Σ
i=o

;(A0u = Σ λj = (/(A))n ,
io

assuming Σjλy converges, so that B = f(A).
Using (11), we may write λ̂  = bM_klan_γan_2

an = un+1/u19 we have
an_k; since

= Σ
1 ^

Since 11 B \ \ < oo and {un} is bounded away from zero, f(z) = Σ J ̂ JZJ is
analytic in D.

Conversely, if B has the form f(A) for some / analytic in D, then
clearly B commutes with A.

We conclude with a few remarks concerning conull matrices. A
conservative matrix is conull if 1{A) = 0. From (4) of Corollary 1,
Av = 0. Therefore, Com (A) in B(c) = {Te B(c): ve null space of A}.
If A is a triangle, then v = 0 and Com (A) in JS(c) = Com (A) in /\
If A is triangular, with only a finite number of zeros on the main
diagonal, then ve linear span (el9 e2, * ',en), where n is the largest
integer for which ann — 0. Of course, if A is the zero matrix, then
Com (A) in B(c) = B(c).
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