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COHOMOLOGICAL DIMENSION OF DISCRETE
MODULES OVER PROFINITE GROUPS

JUAN JOSE MARTINEZ

The main purpose of this note is to show that the finiteness
of the cohomological dimension of a discrete module is closely
related to the finiteness of its injective dimension. Moreover,
a sufficient condition for the finiteness of the cohomological
dimension is given. Both results are proved making a heavy
use of the theory of cohomological triviality for finite groups.

The reader is referred to [3] for a treatment of proίinite cohomo-
logy.

Throughout this note, G is a profinite group. As usual, the
cohomology of G is denoted by H(G, ).

Recall that, if A is a discrete G-module, the infimum of the (set
of) nonnegative integers r such that Hn(S, A) = 0, for any integer
n > r and any closed subgroup S of G, is called the cohomological
dimension of A, and is denoted by cd(G, A). If S is a closed sub-
group of G, Hn(S, A) = \imHn(V, A), where V runs through all open

subgroups of G containing S [3, Chap. I, Proposition 8, p. 1-9]. Hence,
if H*(V, A) = 0 for every open subgroup V of G, then Hn(S, A) = 0
for every closed subgroup S of G.

In this paper, a discrete module is called injective only when it
is injective in the corresponding category of discrete modules. If A
is injective, it is well-known that cd(G, A) — 0, because, for instance,
A is F-injective for all open subgroups V of G. Finally, recall that
the injective dimension of A, denoted by id(G, A), is the least length
of an injective resolution of A.

The connection between cohomologically trivial modules over finite
groups [2, Chap. IX, § 3, p. 148] and discrete modules of cohomological
dimension zero over profinite groups was observed, and used, by Tate
in his duality theory for profinite cohomology [3, Annexe au Chapitre
I, p. 1-79]. Tate's observation is quoted, for future reference, in the
following.

LEMMA 1. Let A be a discrete G-module. Then, cd{G, A) = 0 if,
and only if, for every open, normal subgroup U of G, the G/ U-module
Au is cohomologically trivial.

Proof. See [3, Annexe au Chapitre I, Lemme 1, p. 1-82]. Notice
that G/U is a finite group, because G is compact and U is open.

The Nakayama-Tate criterion for cohomological triviality takes
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the following form, in the cohomology theory of profinite groups.

PROPOSITION 2. Let A be a discrete G-module. If there exists a
positive integer q such that Hq(V, A) = Hq+1(V, A) = 0 for all open
subgroups V of G, then cd(G, A) < q.

Proof. Since A embeds in an injective, whose cohomological di-
mension is zero, by repeated applications of dimension-shifting it
suffices to consider the case q = 1. Let U be an open, normal sub-
group of G. If V is any subgroup of G containing U, the Hochschild-
Serre spectral sequence of the F/ί7-module Au yields the exact
sequence for low degrees

0 > H\V/U, Au) > Hι(V, A) > Hι{U, A)vlu

> H2(V/U, Au) > H\V, A) .

Since U is open, so is V, and thus, H\U, A) = H\V, A) = H\V, A) =
0. Therefore, H'iV/U, Aϋ) - H2(V/U, Au) = 0, and applying the
Nakayama-Tate criterion [2, Chap. IX, Theoreme 8, p. 152], the G/U-
module Au is cohomologically trivial. By (1), the proof is complete.

The main result of this paper can be stated as follows.

THEOREM 3. Let A be a discrete G-module, and let q be a positive
integer. Then, id(G, A) ̂  q if, and only if, cd{G, A) <̂  q and Hq(U, A)
is a divisible abelian group for every open, normal subgroup U of G.

Proof. Assume the assertion true for q — 1, with q > 1. If
id(G, A) <Ξ q, A has an injective resolution of length <Ξ q, say

0 >A — X o - ^ U X , > >Xq_^Xq , o .

If B = Coker e and f: Xo—> B is the canonical morphism, the sequence
of discrete G-modules

0 > A — Xo -L+ B > 0

is exact. Since cd{G, XQ) = 0 (injectivity of Xo), from the correspond-
ing cohomology sequence it follows that

Hn(S, B) ~ Hn+ι(S, A)

for any positive integer n and any closed subgroup S of G. Therefore,
it is enough to prove that cd(G, B) <̂  q — 1, and that if-^C/, B) is
divisible for all open, normal subgroups U of G. By the induction
hypothesis, this follows from showing that id(G, B) ̂  q — 1. In fact,
if e': B —• Xλ is the morphism induced by dQ: Xo —> X19 then Ker ef — 0
and Im e' = Im d0. Thus, the sequence
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Λ k p e' v xr dj γ. dq-ί

U > JJ > A t > -Λ2 > > Λ.q_ι > A 9 > U

is exact.
Reciprocally, if cd{G, A) ^ q, let

be an exact sequence of discrete G-modules, with Q injective. Then,
cd(G, C) ^ q — 1, because

H*(S, C) s ff +1(S, A)

for all positive integers π and all closed subgroups S of G. By the
same reason, if Hq(U, A) is divisible for every open, normal subgroup
U of G, then so is Hq~ι{U, C). Hence, by induction, C admits an
injective resolution of length <̂  q — 1, say

Since Ker ih — Ker h and Im ih = Im ΐ, the sequence

is exact, and so id(G, A) <̂  q.
It remains to prove the assertion for q = 1.
Let

0 > A • X o > Xγ > 0

be a n exact sequence of discrete G-modules, w h e r e Xo a n d Xί a r e in-
ject ives . Since cd(G, Xo) = cd(G, X J ~ 0, pass ing t o cohomology i t
follows t h a t cd(G, A) ^ 1, and t h a t t h e connect ing operator ds: Xf —>
Hι(S, A) is an epimorphism for all closed subgroups S of G. But , if
J9 is a n y injective, d iscrete G-module and U is a n y open, normal
s u b g r o u p of G, i t is easy to check t h a t Du is an injective G/t7-module,
w h e n c e [2, Chap. IX, L e m m e 7, p . 153] implies Du is divisible. There-
fore, as the image of a divisible group, H\U, A) is divisible for all
open, normal subgroups U of G.

Reciprocally, suppose cd(G, A) ^ 1, and let

0 > A > Yo > Y, > 0

be an exact sequence of discrete G-modules, with Yo injective. Since
cd(G, Yo) = 0, taking cohomology it follows that cd{G, YO = 0, and
that the sequence of abelian groups

Yo

s —-* Yf -^U H'iS, A) > 0
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is exact for all closed subgroups S of G. If U is an open, normal
subgroup of G, Ker3^ is divisible, because so is Yξ. Therefore, if
lmdu = Hι(U, A) is divisible, then Domd^ = Y7 is also divisible, and
the proof is complete applying to Yι the following.

PROPOSITION 4. Let A be a discrete G-module. If cd(G, A) = 0,
and Au is a divisible abelian group for every open, normal subgroup
U of G, then A is injective.

Proof. Recall that the category of discrete G-modules has in-
jective envelopes for each of its objects. Since (Z[G/U])u, where U
runs through all open, normal subgroups of G, is a family of genera-
tors, this result can be obtained by using a general theorem from
category theory, due to Mitchell [1, Chap. Ill, Theorem 3.2, p. 89].

Let / : A —•> Q be an injective envelope of A (in the category of
discrete G-modules). If C = Coker/ and g:Q—>C is the canonical
morphism, the sequence of discrete G-modules

0 >A-^Q-^C >0

is exact. Thus, if U is an open, normal subgroup of G, the sequence
of G/ [/-modules

0 > Au -^—> Qu -£-» Cu > 0

is exact, because cd(G, A) = 0. Since Qu is an injective G/[/-module
and R Π Imfu = R n I m / for any sub-G/[/-module R of Qu (because,
regarding R as a G-module, U operates trivially on R), fu:Au—+Qu

is an injective envelope of Au (in the category of G/[/-modules). On
the other hand, since cd(Gy A) = 0, AF is a cohomologically trivial
G/[/-module, by (1). Thus, Au is G/ JT injective [2, Chap. IX, Theoreme
10, p. 154], and hence, Cu = 0 [1, Chap. Ill, Proposition 2.5, p. 88].
Since C = U Cu, C = 0, whence the result.

COROLLARY 5. Lei A δβ α discrete G-module, and let r be a
nonnegative integer. If cd(G, A) ^ r, then id(G, A) ^ r + 1.

Proo/. Take g = r + 1 in (3).
This result can be applied to profinite groups of finite dimension,

as follows.

COROLLARY 6. Let r be a nonnegative integer. The following
statements are true:

( i) If p is a prime number and cdp(G) ^ r, then id(G9 A) <;
r + 1 for all discrete G-modules A which are p-primary abelian groups.
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(ii) If cd(G) ^ r, then id(G, A) ^ r + 1 for all discrete G-mod-
ules A which are torsion abelian groups.

(iii) If scd(G) g r, then id(G, A) <; r + 1 for all discrete G-mod-
ules A.

(iv) // cd(G) ^ r, ίfcew ίd(G, A) ^ r + 2 /or αiί discrete G-mod-
ules A.

Proof. Applying [3, Chap. I, Proposition 14, p. 1-20] and [3,
Chap. I, Proposition 11, p. 1-17], the following three equivalences are
clear:

( i ) cdp(G) ̂  r if, and only if, cd(G, A) <. r for all ^-primary,
discrete G-modules A.

(ii) cd(G) fg r if, and only if, cd(G, A) S r for all torsion, discrete
G-modules A.

(iii) scd(G) ̂  r if, and only if, cd(Gf A) <; r for all discrete G-
modules A.

Finally, (6, iv) is clear by [3, Chap. I, Proposition 13, p. 1-19].
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