ON ELEMENTARY IDEALS OF θ-CURVES IN THE 3-SPHERE AND 2-LINKS IN THE 4-SPHERE

Shin’ichi Kinoshita

Let L be a polyhedron in an n-sphere $S^{n}(n \geqq 3)$ that does not separate S^{n}. A topological invariant of the position of L in S^{n} can be introduced as follows: Let l be an integral ($n-2$)-cycle on L. For each nonnegative integer d, the d th elementary ideal $E_{d}(l)$ is associated to l on L in S^{n}. If l and l^{\prime} are homologous on L, then $E_{d}(l)$ is equal to $E_{d}\left(l^{\prime}\right)$. Now the collection of $E_{d}(l)$ for all possible l is a topological invariant of L in S^{n}.

In this paper the following two cases of $E_{d}(l)$ are considered: (1) l is a 1 -cycle on a θ-curve L in S^{3}, and (2) l is a 2-cycle on a 2 -link L in S^{4}, i.e., the union of two disjoint 2 -spheres in S^{4}, where each of two 2 -spheres is trivially imbedded in S^{4}.

The d th elementary ideal $E_{d}(l)$ of l on L is defined as follows (more precisely see [3]): Let G be the fundamental group $\pi\left(S^{n}-L\right)$ and H the multiplicative infinite cyclic group generated by t. Let ψ be a homomorphism of G into H defined by

$$
g^{\psi}=t^{\operatorname{lnnk}(g, l)},
$$

where link (g, l) is the linking number between g and l. Using Fox's free differential calculus, we associate to ψ the d th elementary ideal E_{d} of the group G, evaluated in the group ring $J H$ of H over integers. This d th elementary ideal E_{d} depends only on G and ψ, and hence it depends only on the position of l on L in S^{n}. We shall denote it by $E_{d}(l)$.

In this paper we shall prove the following two theorems.
Theorem 1. Let $f(t)$ be an integral polynomial with $f(1)=1$. Then there exists a θ-curve L_{f} in S^{3}, and an integral 1-cycle l on L_{f} such that

$$
\left\{\begin{array}{l}
E_{0}(l)=E_{1}(l)=(0), \\
E_{2}(l)=(f(t)) \quad \text { and } \\
E_{d}(l)=(1), \quad \text { if } \quad d>2
\end{array}\right.
$$

Theorem 2. Let $f(t)$ be an integral polynomial with $f(1)=1$. Then there exists a 2-link L_{f} in S^{4}, and an integral 2-cycle l on L_{f} such that
(1) each component of L_{f} is a trivially imbedded 2-sphere in S^{4}, and that
(2) we have

$$
\left\{\begin{array}{l}
E_{0}(l)=E_{1}(l)=(0), \\
E_{2}(l)=(f(t)) \quad \text { and } \\
E_{d}(l)=(1), \quad \text { if } \quad d>2
\end{array}\right.
$$

Corollary. Let $f(t)$ be an integral polynomial with $f(1)=1$. Then there exists an oriented 2-link L_{f} in S^{4} such that
(1) each component of L_{f} is a trivial 2-sphere in S^{4}, and that
(2) the dth elementary ideal of L_{f}, in the usual sense and in the reduced form, is as follows:

$$
\left\{\begin{array}{l}
E_{0}\left(L_{f}\right)=E_{1}\left(L_{f}\right)=(0) \\
E_{2}\left(L_{f}\right)=(f(t)) \quad \text { and } \\
E_{d}\left(L_{f}\right)=(1), \quad \text { if } \quad d>2
\end{array}\right.
$$

Remark. This kind of example was first considered in [1].
The construction of these two examples are closely related. They are also closely related to the construction of 2 -spheres in S^{4} in [2].

1. Let P be the family of all integral polynomials $f(t)$ which can be expressed in the following form:

$$
\begin{align*}
& t^{-\left(\varepsilon_{1}+\cdots+\varepsilon_{n}\right)}\left(1-t^{\delta_{1}}\right)+t^{-\left(\varepsilon_{2}+\cdots+\varepsilon_{n}\right)}\left(1-t^{\delta_{2}}\right) \\
& \quad+\cdots+t^{-\varepsilon_{n}}\left(1-t^{\delta_{n}}\right)+1 \tag{1}
\end{align*}
$$

where $\varepsilon_{i}= \pm 1$ and $\delta_{i}=\varepsilon_{i}$ or $\delta_{i}=0$ for $i=1,2, \cdots, n$. We assume that $1 \in P$.

Lemma. We have $f(t) \in P$, if and only if $f(1)=1$.

Proof. If $f(t) \in P$, then clearly we have $f(1)=1$. Suppose that $f(1)=1$. Then we have

$$
\begin{aligned}
f(t)-1= & (1-t)\left(a_{m} t^{m}+\cdots+a_{0}\right) \\
& -(1-t)\left(b_{m} t^{m}+\cdots+b_{0}\right) \\
= & (1-t)\left(a_{m} t^{m}+\cdots+a_{0}\right) \\
& +\left(1-t^{-1}\right)\left(b_{m} t^{m+1}+\cdots+b_{0} t\right),
\end{aligned}
$$

where $a_{i}, b_{i} \geqq 0$ for $i=1,2, \cdots, n$. This means that $f(t)$ with $f(1)=1$ can be obtained from 1 by applying a finite number of operation:

$$
g(t) \rightarrow g(t)+t^{p}\left(1-t^{\delta}\right),
$$

where $p \geqq 0$ and $\delta= \pm 1$.

We assume $1 \in P$. Hence we should prove that if $f(t) \in P$, then $f(t)+t^{p}\left(1-t^{s}\right) \in P$. Suppose that $f(t)$ has form (1). Now let

$$
p=-\left(\varepsilon_{1}^{\prime}+\cdots+\varepsilon_{k}^{\prime}+\varepsilon_{k+1}^{\prime}+\cdots+\varepsilon_{k+n}^{\prime}\right)
$$

where $\varepsilon_{k+i}^{\prime}=\varepsilon_{i}$ for $i=1,2, \cdots, n$ and let

$$
\delta_{1}^{\prime}=\delta, \delta_{2}^{\prime}=\cdots=\delta_{k}^{\prime}=0 \quad \text { and } \quad \delta_{k+i}^{\prime}=\delta_{i}
$$

for $i=1,2, \cdots, n$. Then clearly we have

$$
\begin{aligned}
& t^{-\left(\varepsilon_{1}^{\prime}+\cdots+\varepsilon_{k}^{\prime}+\varepsilon_{k+1}^{\prime}+\cdots+\varepsilon_{k+n}^{\prime}\right.}\left(1-t^{\delta_{1}^{\prime}}\right) \\
& \quad+\cdots+t^{\varepsilon_{k+n}^{\prime}}\left(1-t^{\delta_{k+n}^{\prime}}\right)=t^{p}\left(1-t^{\delta}\right)+f(t)
\end{aligned}
$$

Hence the proof is complete.
2. Let $f(t)$ be an integral polynomial with $f(1)=1$. Suppose that $f(t)$ is expressed as (1). Now we construct a 1-dimensional polyhedron K_{f} in $E^{3}\left(\subset S^{3}\right)$ as follows: The left-most side of K_{f} is shown in Fig. 1. Then for each $i(i=1, \cdots, n)$ we add step by step one of the four figures in Fig. 2. This depends on values of ε_{i} and

Fig. 1.

Fig. 3.

Fig. 2.
δ_{i} as in Fig. 2. The right-most side of K_{f} is shown in Fig. 3.
Now we give a presentation of the fundamental group of $E^{3}-K_{f}$ (and that of $S^{3}-K_{f}$, too). We use the Wirtinger presentation. If $a_{0}, \cdots, a_{n}, c_{0}, \cdots, c_{m}, d_{0}, \cdots, d_{m},\left(m+m^{\prime}=n\right)$ are paths in Fig. 4, and

Fig. 4.
also, as usual, the paths which represent elements of the fundamental group in question, then the presentation is given as follows:

Generators:

$$
\left\{\begin{array}{l}
a_{0}, \cdots, a_{n} \\
c_{0}, \cdots, c_{m} \\
d_{0}, \cdots, d_{m^{\prime}}\left(m+m^{\prime}=n\right)
\end{array}\right.
$$

Relations:
(i) If $\varepsilon_{i}=1, \delta_{i}=1$, then

$$
\left\{\begin{array}{l}
c_{j-1}=a_{i-1} c_{j} a_{i-1}^{-1} \\
a_{i}=c_{j} a_{i-1} c_{j}^{-1}
\end{array}\right.
$$

(ii) If $\varepsilon_{i}=-1, \delta_{i}=-1$, then

$$
\left\{\begin{array}{l}
c_{j}=a_{i} c_{j-1} a_{i}^{-1} \\
a_{i-1}=c_{j-1} a_{i} c_{j-1}^{-1}
\end{array}\right.
$$

(iii) If $\varepsilon_{i}=1, \delta_{i}=0$, then

$$
\left\{\begin{array}{l}
d_{j}=a_{i-1} d_{j-1} a_{i-1}^{-1} \\
a_{i}=d_{j} a_{i-1} d_{j}^{-1}
\end{array}\right.
$$

(iv) If $\varepsilon_{i}=-1, \delta_{i}=0$, then

$$
\left\{\begin{array}{l}
a_{i-1}=d_{j-1} a_{i} d_{j-1}^{-1}, \\
d_{j-1}=a_{i} d_{j} a_{i}^{-1}
\end{array}\right.
$$

for each $i=1, \cdots, n$, and

$$
c_{0} c_{m}^{-1} a_{n}=1
$$

3. Let k_{f} be a 1-cycle on K_{f} such that

$$
\begin{cases}\operatorname{link}\left(a_{i}, k_{f}\right)=0, & \text { for } \quad i=0,1, \cdots, n \\ \operatorname{link}\left(c_{i}, k_{f}\right)=1, & \text { for } i=0,1, \cdots, m \\ \operatorname{link}\left(d_{i}, k_{f}\right)=1, & \text { for } i=0,1, \cdots, m^{\prime}\end{cases}
$$

We consider the elementary ideals of k_{f} on K_{f} in S^{3}. For each pair a_{i-1} and a_{i} the corresponding two rows in the Alexander matrix are elementary equivalent to the following:
(1) If $\varepsilon_{i}=\delta_{i}$, then

$$
\left.\begin{array}{crrr}
\alpha_{i-1} & a_{i} & c_{j-1} & c_{j} \\
1-t^{\varepsilon_{i}} & 0 & -1 & 1 \\
t^{\varepsilon_{i}} & -1 & 0 & 0
\end{array}\right]
$$

(2) If $\delta_{i}=0$, then

$$
\left.\begin{array}{crrr}
a_{i-1} & a_{i} & d_{j-1} & d_{j} \\
{\left[\begin{array}{c}
1-t^{\varepsilon_{i}}
\end{array}\right.} & 0 & 1 & -1 \\
t^{\varepsilon_{i}} & -1 & 0 & 0
\end{array}\right] .
$$

From the last relation we have the following entries to the Alexander matrix.

a_{n}	c_{0}	c_{m}
$[1$	1	$-1]$

Hence we have matrix (${ }^{*}$) as an Alexander matrix of k_{f} on K_{f} in S^{3}. Matrix (*) is elementary equivalent to (**). Note that we add a suitable number of rows of zeros. Matrix (**) can be reduced to (***) by elementary operations. Now it is easy to see that

4. Proof of Theorem 1. Let $f(t)$ with $f(1)=1$ be given. First construct K_{f} in S^{3} and k_{f} on K_{f} as in 2 and 3 . The construction of the corresponding θ-curve L_{f} is shown in Fig. 5. The 1-cycle l_{f} on

Fig. 5.
L_{f} has coefficient 1 on the oriented arc c and on the oriented arc d, respectively, and coefficient 0 on the arc b. It is easy to see that
$\pi\left(S^{3}-L_{f}\right)$ is isomorphic to $\pi\left(S^{3}-K_{f}\right)$ and $E_{d}\left(l_{f}\right)=E_{d}\left(k_{f}\right)$ for every nonnegative integer d.

Remark. It is proved in [3] that if l is a l-cycle on a θ-curve L in S^{3}, then we have

$$
\left\{\begin{array}{l}
E_{0}(l)=E_{1}(l)=(0), \quad \text { and } \\
\left(E_{d}(l)\right)^{\circ}=(1), \quad \text { if } \quad d \geqq 2
\end{array}\right.
$$

where \circ is a trivializer (i.e., the operation to let $t=1$ in $\left.E_{d}(l)(t)\right)$.
5. Proof of Theorem 2. Let $f(t)$ with $f(1)=1$ be given. First construct K_{f} in S^{3} and k_{f} on K_{f} as in 2 and 3 . Then construct the corresponding two arcs C and D in E_{+}^{3} as in Fig. 6, where

Fig. 6.

$$
E_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \geqq 0\right\}
$$

Then the usual construction of the spinning of these arcs around the plane

$$
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}=0, x_{4}=0\right\}
$$

gives rise to a 2 -link L_{f} in S^{4}.
Now the arc C represents a trivial knot in E_{+}^{3}. A part of the step to see this is shown in Fig. 7. From this it follows that the 2 -sphere S_{C}^{2}, which is the result of spinning C, is trivial in S^{4}. Clearly the same is true for the 2 -sphere S_{D}^{2}, the result of spinning D.

We have

$$
\pi\left(S^{3}-K_{f}\right) \cong \pi\left(E_{+}^{3}-C \cup D\right) \cong \pi\left(S^{4}-L_{f}\right)
$$

and to find a 2-cycle l_{f} on L_{f} that corresponds to k_{f} on K_{f} is easy. Then we have

$$
E_{d}\left(k_{f}\right)=E_{d}\left(l_{f}\right)
$$

for every $d \geqq 0$. Hence the proof is complete.

Fig. 7.
Proof of Corollary. We have $L_{f}=S_{c}^{2} \cup S_{D}^{2}$ in S^{4} in the example above. Then $l_{f}=l_{c}+l_{d}$, where l_{c} and l_{d} are fundamental cycles of S_{C}^{2} and S_{D}^{2}, respectively. This completes the proof.

Remark. Let L be a 2 -link in S^{4}. Then it is known that for each 2-cycle l on L we always have

$$
\left\{\begin{array}{l}
E_{0}(l)=E_{1}(l)=0, \\
\left(E_{d}(l)\right)^{\circ}=(1), \text { if } \quad d \geqq 2,
\end{array}\right.
$$

where \circ is a trivializer. (See [3] and [4].)

References

1. E. H. Van Kampen, Zur Isotopie zweidimensionaler Flaechen im R^{4}, Abh. Math. Sem. Univ. Hamburg, 6 (1927), 216.
2. S. Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math., 74 (1961), 518-531.
3. ——. On elementary ideals of polyhedra in the 3-sphere, to appear in the Pacific J. Math., 42 (1972), 89-98.
4. Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc., 163 (1972), 101-121.

Received August 3, 1972. The author of this paper is partially supported by NSF Grant GP-19964.

