MAXIMAL INVARIANT SUBSPACES OF STRICTLY CYCLIC OPERATOR ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra \mathscr{A} on a complex Banach space $X(\dim X \ge 2)$ is a uniformly closed subalgebra of $\mathscr{L}(X)$ such that $\mathscr{A}x = X$ for some x in X. In this paper it is shown that (i) if \mathscr{A} is strictly cyclic and intransitive, then \mathscr{A} has a maximal (proper, closed) invariant subspace and (ii) if $A \in \mathscr{L}(X)$, $A \neq zI$ and $\{A\}'$ (the commutant of A) is strictly cyclic, then A has a maximal hyperinvariant subspace.

1. Notation and terminology. Throughout the paper X is a complex Banach space of dimension greater than one and $\mathscr{L}(X)$ is the algebra of continuous linear operators on X. \mathscr{A} will denote a uniformly closed subalgebra of $\mathscr{L}(X)$ which is *strictly cyclic* and x_0 will be a *strictly cyclic vector* for \mathscr{A} : that is, $\mathscr{A}x_0 = X$. We do not insist that the identity element I of $\mathscr{L}(X)$ be an element of \mathscr{A} .

If $\mathscr{B} \subset \mathscr{L}(X)$, then the commutant of \mathscr{B} is $\mathscr{B}' = \{E: E \in \mathscr{L}(X) \text{ and } EB = BE \text{ for all } B \text{ in } \mathscr{B}\}$. We shall use the terminology of "invariant" and "transitive" as follows: if $M \subset X$ and $\mathscr{B} \subset \mathscr{L}(X)$, then (i) M is invariant under \mathscr{B} if $\mathscr{B}M = \{Bm: B \in \mathscr{B} \text{ and } m \in M\} \subset M$, (ii) M is an invariant subspace for \mathscr{B} if M is invariant under \mathscr{B} and M is a closed, nontrivial $(\neq \{0\}, X)$ linear subspace of X, (iii) \mathscr{B} is transitive if \mathscr{B} has no invariant subspace and intransitive if \mathscr{B} has an invariant subspace. Further, if $A \in \mathscr{L}(X)$ and $\{A\}'$ is intransitive, then each invariant subspace of $\{A\}'$ is called a hyperinvariant subspace of A. Finally an invariant subspace of \mathscr{B} is maximal if it is not properly contained in another invariant subspace of \mathscr{B} .

2. Introduction. Strictly cyclic operator algebras have been studied by A. Lambert, D. A. Herrero, and the auther of this paper. (See for example [2]-[6].) One of the major results in [2, Theorem 3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive subalgebra of $\mathscr{L}(X)$ containing a strictly cyclic algebra is necessarily strongly dense in $\mathscr{L}(X)$. In each of three developments the following is a key lemma: The only dense linear manifold invariant under a strictly cyclic subalgebra of $\mathscr{L}(X)$ is X. In Lemma 1 we shall present a generalization of this lemma which will be useful in the study of maximal invariant subspaces and noncyclic vectors of a strictly cyclic algebra \mathscr{A} .

LEMMA 1. If M is invariant under \mathscr{A} and $x_0 \in \overline{M}$, then M = X.

(It should be noted that we do not require M to be linear nor do we require, as was done in Lemma 3.4 of [2], that $I \in \mathcal{N}$. The proof given here is a slight modification of that given in [2].)

Proof. We shall show that $\mathscr{A}x_0 \subset M$ and thus $X = \mathscr{A}x_0 \subset M$. Let $\{x_n\}$ be a sequence in M such that $\lim_{n\to\infty} x_n = x_0$. By [2, Lemma 3.1 (ii)] there exists a sequence $\{A_n\}$ in \mathscr{A} such that $A_nx_0 = x_0 - x_n$ and $\lim_{n\to\infty} ||A_n|| = 0$. Thus for n sufficiently large, $||A_n|| < 1$ and $(I - A_n)^{-1} = \sum_{k=0}^{\infty} (A_n)^k$. Consequently, $\mathscr{A}(I - A_n)^{-1} \subset \mathscr{A}$ and since $x_0 = (I - A_n)^{-1}x_n$, we have $\mathscr{A}x_0 = \mathscr{A}(I - A_n)^{-1}x_n \subset \mathscr{A}x_n \subset M$, as desired.

For the sake of future reference we restate and reprove the transitivity theorem.

THEOREM 1. If \mathscr{A} is a strictly cyclic transitive subalgebra of $\mathscr{L}(X)$, then \mathscr{A} is strongly dense in $\mathscr{L}(X)$.

Proof. Using Lemma 1 we can show (as in [2, Lemma 3.5]) that each densely defined linear transformation commuting with \mathscr{A} is everywhere defined and continuous. Further, again using Lemma 1, we can show that if $E \in \mathscr{A}$ and $z \in \sigma(E)$, then either zI - E is not one-to-one or does not have dense range. Thus if \mathscr{A} is transitive, necessarily E = zI. Consequently, it follows from [1, p. 636 and Cor. 2.5, p. 641] that \mathscr{A} is strongly dense in $\mathscr{L}(X)$

3. Maximal invariant subspaces. In [2, Theorem 3.1] it is shown that every strictly cyclic, separated operator algebra \mathscr{A} has a maximal invariant subspace. (\mathscr{A} is separated by x_0 if A = 0whenever $A \in \mathscr{A}$ and $Ax_0 = 0$.) Theorem 2 allows us to obtain the same result without the hypothesis that \mathscr{A} be separated, provided \mathscr{A} is intransitive.

THEOREM 2. An intransitive, strictly cyclic subalgebra \mathcal{N} of $\mathscr{L}(X)$ has a maximal invariant subspace.

Proof. Let $\mathscr{M} = \{M: M \text{ is an invariant subspace of } \mathscr{A}\}$. By hypothesis $\mathscr{M} \neq \emptyset$. We shall order \mathscr{M} by set inclusion and show that each linearly ordered subset of \mathscr{M} has an upper bound in \mathscr{M} . To this end we let $\{M_{\alpha}\}$ be a linearly ordered subset of \mathscr{M} . Then $\bigcup_{\alpha} M_{\alpha}$ is invariant under \mathscr{N} . By Lemma 1, if $\overline{\bigcup_{\alpha} M_{\alpha}} = X$, then $\bigcup_{\alpha} M_{\alpha} = X$ and consequently $x_0 \in M_{\alpha}$ for some value of α . Since this last implies that $X = \mathscr{M} x_0 \subset \mathscr{M} M_{\alpha} \subset M_{\alpha}$ and contradicts the fact that M_{α} is a proper closed linear subspace of X, we see that $\bigcup_{\alpha} M_{\alpha}$ is not dense in X. Thus $\overline{\bigcup_{\alpha} M_{\alpha}}$ is an element of \mathscr{M} and is an upper bound for $\{M_{\alpha}\}$. By the Maximality Principle \mathscr{M} has a maximal element.

Lemma 1 and the Maximality Principle can be combined to arrive at other similar results. For example, (i) if \mathscr{A} is intransitive and strictly cyclic, then \mathscr{A} has a proper maximal invariant subset (this will be discussed further in §4) and (ii) if X is a Hilbert space and \mathscr{A} has a reducing subspace (that is, an invariant subspace of \mathscr{A} which is also invariant under $\mathscr{A}^* = \{A^* : A \in \mathscr{A}\}$), then \mathscr{A} has a maximal reducing subspace.

In [2, Theorem 3.7] it is shown that if A is not a scalar multiple of I and $\{A\}'$ is strictly cyclic, then A has a hyperinvariant subspace. This result combined with Theorem 2 yields the following:

COROLLARY 1. If A is not a scalar multiple of I and $\{A\}'$ is strictly cyclic, then A has a maximal hyperinvariant subspace.

We shall now turn our attention to intransitive, strictly cyclic operator algebras on a Hilbert space X. If M is a closed linear subspace of X, P_M will denote the orthogonal projection of X onto M and M^{\perp} the orthogonal complement of $M: M^{\perp} = \{y: \langle y, m \rangle = 0 \text{ for all } m \text{ in } M\}$. Furthermore, $\mathscr{A}^* = \{A^*: A \in \mathscr{A}\}$.

In the Hilbert space situation we are able to conclude that \mathscr{M}^*/M is strongly dense in $\mathscr{L}(M^{\perp})$ when M is a maximal invariant subspace for \mathscr{N} . This remains an open question if X is an arbitrary Banach space and is a particularly interesting one if X is reflexive. For in that case if M is a maximal invariant subspace of \mathscr{N} , then $M^{\perp} =$ $\{x^*: x^*(M) = 0\}$ is a minimal invariant subspace of \mathscr{N}^* .

THEOREM 3. Let \mathscr{A} be a strictly cyclic operator algebra on a Hilbert space X. If M is a maximal invariant subspace of \mathscr{A} , then (i) $(I - P_{M}) \mathscr{A} (I - P_{M}) x_{0} = M^{\perp}$ and (ii) $\mathscr{A}^{*}(I - P_{M})$ is strongly dense in $\mathscr{L}(M^{\perp})$.

Proof. Note first that $(I - P_M) \mathscr{N}(I - P_M) = (I - P_M) \mathscr{N}$, so that (i) is immediate. Since M is a maximal invariant subspace for \mathscr{N}, M^{\perp} is a minimal invariant subspace for \mathscr{N}^* . Thus each of $\mathscr{N}^*(I - P_M)$ and $(I - P_M) \mathscr{N}(I - P_M)$ is transitive on M^{\perp} . Thus the uniform closure of $(I - P_M) \mathscr{N}(I - P_M)$ in $\mathscr{L}(M^{\perp})$ is transitive and by (i) is strictly cyclic; hence by Theorem 1 $(I - P_M) \mathscr{N}(I - P_M)$ is strongly dense in $\mathscr{L}(M)$, which concludes our proof of (ii).

THEOREM 4. Let X be a Hilbert space, $A \in \mathscr{L}(X)$ and $\{A\}'$ strictly cyclic. If M is a maximal invariant subspace for $\{A\}'$, then there exists a multiplicative linear functional f on $\{A\}''$ such that for each E in $\{A\}'', (E - f(E)I)(X) \subset M$.

Proof. As we noted in the proof of Theorem 3,

$$\mathscr{B} = (I - P_{M})\{A\}'(I - P_{M})$$

is strongly dense in $\mathscr{L}(M^{\perp})$ and thus its commutant consists of the scalar multiples of the identity operator on M^{\perp} . Since $\{A\}'' \subset \{A\}'$ and M is invariant under $\{A\}'$, we know that $(I - P_M)\{A\}''(I - P_M)$ is contained in the commutant of \mathscr{B} on M^{\perp} and hence $(I - P_M)\{A\}''(I - P_M) \subset \{z(I - P_M)\}$. Thus for E in $\{A\}''$, there exists a complex number z such that $(I - P_M)E(I - P_M) = z(I - P_M)$. Therefore, $(I - P_M)(E - zI) = 0$ since M is invariant under $\{A\}''$; or equivalently $(E - zI)(X) \subset M$. Since M is a proper subset of X, it is now obvious that the number z for which $(E - zI)(X) \subset M$ is unique. Define f(E) = z.

That f is linear follows immediately from the fact that f(E) is the unique number for which $(E - f(E)I)(X) \subset M$. Furthermore, since M is invariant under $\{A\}'', (FE - f(E)F)(X) \subset M$ for all $E, F \in \{A\}''$. Consequently (by uniqueness again), 0 = f(FE - f(E)F) = f(FE) - f(E)f(F) and thus we see that f is multiplicative.

COROLLARY 2. Let $A \in \mathcal{L}(X)$ where X is a Hilbert space. If the range of A - zI is dense in X for each complex z, then $\{A\}'$ is not strictly cyclic.

Proof. Except for one minor technicality, Corollary 2 follows immediately from Theorem 4. For, if $\{A\}'$ is strictly cyclic and intransitive, by Theorem 4 there exists a complex number f(A) such that the range of A - f(A)I is contained in a proper subspace of X. By Corollary 1 the only other way in which $\{A\}'$ can be strictly cyclic is when A = zI for some complex z, in which case the range of A - zI is certainly not dense in X.

In [2, Lemma 3.6] and [3, Proposition 2], it is shown that if $E \in \mathcal{M}$,' where \mathcal{M} is strictly cyclic and $z \in \sigma(E)$, then either zI - E is not one-to-one or zI - E does not have dense range. Corollary 2 now adds to our knowledge of $\sigma(A)$ where $\{A\}'$ is strictly cyclic: in this case we know that for at least one value of z, the range of A - zI is nondense. Indeed we have the stronger result:

COROLLARY 3. Let $A \in \mathscr{L}(X)$ where X is a Hilbert space. If $\{A\}'$ is strictly cyclic, then there exists a common eigenvector for $\{A^*\}''$.

Proof. The case in which $\{A\}' = \mathscr{L}(X)$ is trivial. Thus we assume $A \neq zI$. By Theorem 4 if $E \in \{A\}''$, there exists a complex number f(E) such that $(E - f(E)I)(X) \subset M$ where M is a maximal

invariant subspace of $\{A\}'$. Therefore, $E^*(I - P_M)x_0 = f(E)^*(I - P_M)x_0$ and $(I - P_M)x_0 \neq 0$ since x_0 is cyclic for $\{A\}'$ and M is a proper invariant subspace for $\{A\}'$.

4. Noncyclic vectors of \mathscr{N} . In this last section of this paper we shall discuss briefly several properties of the set of noncyclic vectors of a strictly cyclic operator algebra \mathscr{N} . A vector x is noncyclic for \mathscr{N} if $\mathscr{N}x$ is not dense in X. These results are summarized in Theorem 5. Parts (i) and (iii) of Theorem 5 also are found in [5, Theorem 2].

THEOREM 5. Let N be the set of noncyclic vectors of a strictly cyclic operator algebra \mathcal{A} ,

(i) if $x \notin N$, then x is a strictly cyclic vector for \mathcal{A} ,

(ii) N is invariant under \mathcal{A} ,

(iii) N is closed in X,

(iv) N is the unique proper maximal invariant subset of \mathcal{A} ,

(v) if N is not linear, then N + N = X, where $N + N = \{x + y : x, y \in N\}$.

Proof. (i) If $x \notin N$, then $\Re x = X$ and thus by Lemma 1 since $\Re x$ is invariant under \Re , we have $\Re x = X$ and x is strictly cyclic. (ii) Assume that $x \in N$ and $A \in \Re$. Then $\Re Ax \subset \Re x$ and consequently $\Re Ax \neq X$. That is, $Ax \in N$ for each A in \Re which proves (ii). (iii) By (ii) $\Re N \subset N$. Since \Re has a strictly cyclic vector, we know by Lemma 1 that \overline{N} contains no strictly cyclic vector for \Re . Thus by (i) \overline{N} contains only noncyclic vectors for \Re , which says that N is closed. (iv) By (ii) N is invariant under \Re . By hypothesis \Re has a strictly cyclic vector so that $N \neq X$. These two observations essentially prove (iv) since an element x of a proper invariant subset of \Re is necessarily an element of N. (v) If N is nonlinear, then since N is homogeneous, we know that $N \neq N + N$. Therefore, since N + N is invariant under \Re (by (ii) we know that N + N = X by (iv)).

To see that there exist strictly cyclic operator algebras for which N is linear and those for which N is nonlinear let us reconsider Example 1 of [2].

EXAMPLE. Let X be a Banach space, dim $X \ge 2$ and let $x_0 \in X$, $x_0 \ne 0$. Let each of x^* and y^* be a continuous linear functional on X such that $x^*(x_0) = y^*(x_0) = 1$. For each x in X define A_x by

$$A_x y = x^*(x)[y - y^*(y)x_0] + y^*(y)x_0$$

and let $\mathcal{A} = \{A_x : x \in X\}.$

It was observed in [2] that \mathscr{A} is a strictly cyclic operator algebra with strictly cyclic, separating vector x_0 .

A simple argument shows that a vector y_0 of X is cyclic (and hence by Theorem 5 strictly cyclic) if and only if $y^*(y_0) \neq 0$ and $x^*(y_0) \neq 0$. Thus the set N of noncyclic vectors coincides with ker $y^* \cup \ker x^*$. Consequently, N is linear if x^* and y^* are dependent and nonlinear otherwise.

References

1. W. B. Arveson, A density theorem for operator algebras, Duke Math. J., 34 (1967), 635-647.

2. M. R. Embry, Strictly cyclic operator algebras on a Banach space, Pacific J. Math., 45 (1973), 443-452.

3. D. A. Herrero, Algebras de Operadores Transitivas que Contienen una Subalgebra de Multiplicidad Estricta Finita, Revista de la Union Mat. Argentina, (to appear).

4. _____, Operator algebras of finite strict multiplicity, Indiana Univ. Math. J., 22 (1972), 13-24.

5. D. A. Herrero and A. Lambert, On Strictly Cyclic Algebras, P-Algebras and Reflexive Operators, preprint.

6. A. Lambert, Strictly cyclic operator algebras, Pacific J. Math., 39 (1971), 717-726.

Received July 14, 1972 and in revised form August 25, 1972.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

50