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We observe that Theorem 1 remains valid when we omit the
relative compactness requirement on the Ui9 and add the hypothesis
that M be complete. The proof of the alternative theorem is the
same as that of Theorem 1, except that some conclusions which were
previously based on relative compactness arguments now follow from
completeness.

The alternative Theorem 1 can be used to extend certain results
of the paper to the Hubert space l2. In what follows, M, N shall be
locally convex topological (real) vector spaces, and U a locally convex
subset of M having no isolated points. Given a continuous map
/: U—*N,2L point xe U is called a spiral point of f if given any
hyperplane ( = translate of a codimension one linear subspace) Π con-
taining f{χ), and any point y Φ x in U, then/([a;, y])f)Π is an infinite
set, where [x, y] denotes the (closed) line segment joining x and y.

PROPOSITION. Given a continuous map f: U—*N, with U, N as
above, the set of nonspiral points of f is dense in U.

Proof. Let x and y be any two points such that [x, y] c U. To
prove the proposition, it suffices to show that there is a point z in
the open segment (x, y) such that z is not a spiral point of /. Note
that if / is constant on [x, y], then [x, y] consists entirely of non-
spiral points of /. Hence, we can assume that there is a point
we(x, y) such that f(x) Φ f(w). Let Π be a hyperplane in N which
separates f(x) and f(w). Then there is a (unique) point ze (x, w) such
that f([x, z])f]Π = f{z)> so that z is not a spiral point of /, and the
proposition is proved.

In spite of the existence of a dense set of nonspiral points for
any continuous map /: U—*N, when M = N = the Hubert space Z2,
we have the following

THEOREM. Let U be a locally convex subset, having no isolated
points, of the Hilbert space 12 Then those topological imbeddings
of U into lz which have a dense set (in U) of spiral points form
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a dense subset, in the fine C° topology, of the set of topologίcal im-
beddings of U into l2.

The proof of this theorem, which requires the alternative form
of Theorem 1, is similar to the proof of Theorem 2 and is therefore
omitted. The principal modification needed consists in allowing the
maps FCfr>i>jtm, (which are now defined on l2 in the obvious way using
(9)-(9)'")> to act now on the left of the imbeddings via a suitably
defined infinite left composition, and where the positive integer j is
not subject to the condition j <̂  n of Theorem 2.

Correction to
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While recently answering a letter of inquiry of T. Wilhelm, I
discovered an error in Corollary 4.6. The result, as originally stated,
clearly requires that P F[[X]] c P[[X]]. However, if P is not branched,
it is possible that P F[[X]] = P[[-3Γ]J; a counterexample can be ob-
tained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the
proof of Theorem 4.7.

COROLLARY 4.6'. Let V bea valuation ring having a proper prime
ideal P which is branched. If P is idempotent, then there is a
prime ideal Q of V[[X)] which satisfies P V[[X]] S β c P [ [ I ] ] .

Proof. Since P is branched, there is a prime ideal P of V with
P c P a n d such that there are no prime ideals of V properly between
P and P [1; 173]. By passing to V[[X]]/P[[X]] (=(V/P)[[X]]), we
may assume that P is a minimal prime ideal of V.

Since P is idempotent, PVP is idempotent by Lemma 4.1; hence
VP is a rank one nondiscrete valuation ring. By Theorem 3.4, there is
a prime ideal Q of VP[[X]] such that (PFP) VP[[X]] S Qa(PVP)[[X]].
But then we see that Q a (PVP)[[X]] = P[[X]] £ V[[X]]. Hence
QΠ V[[X]] = Q and Q is a prime ideal of V[[X]] with P V[[X]] £
QcP[[X]].

The following result is now of interest.




