SELF-ADJOINT EXTENSIONS OF SYMMETRIC DIFFERENTIAL OPERATORS

Arnold Villone

Let \mathscr{H} denote the Hilbert space of square summable analytic function on the unit disk, and consider those formal differential operators

$$
L=\sum_{i=0}^{n} p_{i} D^{i}
$$

which give rise to symmetric operators in \mathscr{H}. This paper is devoted to a study of when these operators are actually self-adjoint or admit of self-adjoint extensions in \mathscr{C}. It is shown that in the first order case the operator is always selfadjoint. For $n>1$ sufficient conditions on the p_{i} are obtained for the existence of self-adjoint extensions. In particular a condition on the coefficients is obtained which insures that the operator has defect indices equal to the order of L.

Let \mathscr{A} denote the space of functions analytic on the unit disk and \mathscr{H} the subspace of square summable functions in \mathscr{A} with inner product

$$
(f, g)=\int_{|z|<1} \int f(z) \overline{g(z)} d x d y
$$

A complete orthonormal set for \mathscr{H} is provided by the normalized powers of z,

$$
e_{n}(z)=[(n+1) / \pi]^{1 / 2} z^{n}, \quad n=0,1, \cdots
$$

From this it follows that \mathscr{H} is identical with the space of power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ which satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} /(n+1)<\infty . \tag{1.1}
\end{equation*}
$$

Consider the formal differential operator

$$
L=p_{n} D^{n}+\cdots+p_{1} D+p_{0},
$$

where $D=d / d z$ and the p_{i} are in \mathscr{H}. We now associate two operators as follows. Let \mathscr{D}_{0} denote the span of the e_{n} and \mathscr{D} the set of all f in \mathscr{H} for which $L f$ is in \mathscr{H}, and define T_{0} and T as

$$
\begin{array}{rl}
T_{0} f=L f & f \in \mathscr{D} \\
T f=L f & f \in \mathscr{D} .
\end{array}
$$

It is shown in [2] that T_{0} and T are both densely defined operators
in $\mathscr{H}, T_{0} \subseteq T$ and T is closed. Moreover, T_{0} is symmetric if and only if

$$
\begin{equation*}
\left(L e_{n}, e_{m}\right)=\left(e_{n}, L e_{m}\right), \quad n, m=0,1, \cdots \tag{1.2}
\end{equation*}
$$

Such a formal operator is said to be formally symmetric. Regarding symmetric T_{0} we have the following result.

Theorem 1.1. If T_{0} is symmetric, $T_{0}^{*}=T$ and $T^{*} \cong T$. The closure of $T_{0}, S=T_{0}^{* *}=T^{*}$, is self-adjoint if and only if $S=T$.

Proof. See [2].
For f and g in \mathscr{D} consider the bilinear form

$$
\begin{equation*}
\langle f, g\rangle=(L f, g)-(f, L g) \tag{1.3}
\end{equation*}
$$

and let $\tilde{\mathscr{D}}$ be the set of those f in \mathscr{D} for which $\langle f, g\rangle=0$ for all g in \mathscr{D}. Since $S=T^{*}$ and $\mathscr{D}\left(T^{*}\right)=\mathscr{D}, S$ has domain $\tilde{\mathscr{D}}$.

Let \mathscr{D}^{+}and \mathscr{D}^{-}denote the set of all solutions of the equation $L u=i u$ and $L u=-i u$ respectively, which are in \mathscr{H}. It is known from the general theory of Hilbert space [1, p. 1227-1230] that $\mathscr{D}=$ $\tilde{\mathscr{D}}+\mathscr{D}^{+}+\mathscr{D}^{-}$, and every $f \in \mathscr{D}$ has a unique such representation. Let the dimensions of \mathscr{D}^{+}and \mathscr{D}^{-}be m^{+}and m^{-}respectively. Clearly, m^{+}and m^{-}cannot exceed the order of L. These integers are referred to as the deficiency indices of S, and S has self-adjoint extensions if and only if $m^{+}=m^{-}$. Moreover, S is self-adjoint if and only if $m^{+}=m^{-}=0$.
2. In [2] it is shown that the general formally symmetric first order operator is given by

$$
\begin{equation*}
L=\left(c z^{2}+a z+\bar{c}\right) D+(2 c z+b) \tag{2.1}
\end{equation*}
$$

where a and b are real. In this case it is possible to compute the solutions of $L u= \pm i u$ explicitly and show that the solutions so obtained are not in \mathscr{H}. Proceeding in this manner we obtain the following result.

Theorem 2.1. If L is a first order formally symmetric operator, the associated operator T is self-adjoint.

Proof. We shall show that m^{+}and m^{-}are both zero. When $c=0 L$ is just the first order Euler operator, and hence T is selfadjoint by the corollary to Theorem 1.3 of [2]. When $c \neq 0$ we have

$$
\begin{equation*}
\left(z^{2}+(a / c) z+\bar{c} / c\right) u^{\prime}+(2 z+b / c-i / c) u=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(z^{2}+(a / c) z+\bar{c} / c\right) u^{\prime}+(2 z+b / c+i / c)=0 . \tag{2.3}
\end{equation*}
$$

The coefficient of u^{\prime} has zeros at

$$
\begin{aligned}
\alpha & =-a / 2 c+\left(a^{2}-4|c|^{2}\right)^{1 / 2} / 2 c . \\
\beta & =-a / 2 c-\left(a^{2}-4|c|^{2}\right)^{1 / 2} / 2 c .
\end{aligned}
$$

There are three cases to consider:

1. $a^{2}<4|c|^{2}$
2. $a^{2}=4|c|^{2}$
3. $a^{2}>4|c|^{2}$.

In case 1 we have $\alpha=-\alpha / 2 c+i R / 2 c, \beta=-\alpha / 2 c-i R / 2 c$ where $R=\left(4|c|^{2}-\alpha^{2}\right)^{1 / 2}$, moreover $|\alpha|=|\beta|=1$. Every solution of (2.2) is a multiple of the fundamental solution $\phi(z)=(z-\alpha)^{-r}(z-\beta)^{-s}$ where $r=(R-1) / R-i(b-a) / R$ and $s=(R+1) / R+i(b-a) / R$. Hence every (nontrivial) solution of (2.2) is analytic in the open unit disc D with at least one singularity on the boundary at $z=\beta$. We now show that ϕ is not in \mathscr{H}, i.e., the integral $\int_{D} \int|\phi(z)|^{2} d x d y$ diverges. Introduce polar coordinates at β so $z-\beta=\rho e^{i \theta}$. Let δ be less than $|\beta-\alpha|$, then there exist suitable θ_{1} and θ_{2} such that for $0<\varepsilon<\delta$, the regions $W_{\varepsilon}=\left\{z \mid \varepsilon \leqq \rho \leqq \delta, \theta_{1} \leqq \theta \leqq \theta_{2}\right\}$ lie within D and $\alpha \notin W_{\varepsilon}$. Now

$$
\begin{equation*}
\int_{D}|\phi(z)|^{2} d x d y \geqq \lim _{\varepsilon \rightarrow 0} \int_{W_{s}} \int\left|(z-\alpha)^{-r}\right|^{2}\left|(z-\beta)^{-s}\right|^{2} d x d y . \tag{2.4}
\end{equation*}
$$

Since $\alpha \notin W_{\text {e }}$ it follows from continuity that $\left|(z-\alpha)^{-r}\right|^{2} \geqq m>0$ for z in W_{ε}, all $0<\varepsilon<\delta$. Using this and the fact that $\left|(z-\beta)^{-s}\right|=$ $\rho^{-u} e^{v \theta}$, where $s=u+i v$, the inequality of (2.4) becomes

$$
\begin{aligned}
\int_{D} \int|\phi(z)|^{2} d x d y & \geqq \lim _{\varepsilon \rightarrow 0} m \int_{\theta_{1}}^{\theta_{2}} \int_{\varepsilon}^{\delta} \rho^{-2 u+1} e^{2 v \theta} d \rho d \theta \\
& \geqq \lim _{\varepsilon \rightarrow 0} m k\left(\theta_{2}-\theta_{1}\right) \int_{\varepsilon}^{\delta} \rho^{-2 u+1} d \rho,
\end{aligned}
$$

where $k=$ infimum of $e^{2 v \theta}$ on $\theta_{1} \leqq \theta \leqq \theta_{2}$ which is greater than zero. But $-2 u+1=-2(R+1) / R+1=-1-2 / R<-1$, hence the integral on the left diverges and ϕ is not square summable.

The fundamental solution for (2.3) is given by $\phi(z)=(z-\alpha)^{-r}(z-$ $\beta)^{-s}$, where $r=(R+1) / R-i(b-a) / R$ and $s=(R-1) / R+i(b-a) / R$. Hence $\phi(z)$ is analytic in the open unit disc D with a singularity on the boundary at α. Let $z-\alpha=\rho e^{i \theta}$, then there exist suitable θ_{1} and θ_{2} such that for $0<\varepsilon<\delta<|\alpha-\beta|$, the regions $W_{\varepsilon}=\{z \mid \varepsilon \leqq \rho \leqq \delta$, $\left.\theta_{1} \leqq \theta \leqq \theta_{2}\right\}$ lie within D and $\beta \notin W_{\varepsilon}$. As before, we obtain

$$
\int_{D} \int|\phi(z)|^{2} d x d y \geqq \lim _{\varepsilon \rightarrow 0} m k\left(\theta_{2}-\theta_{1}\right) \int_{\varepsilon}^{\delta} \rho^{-2 \mu+1} d \rho
$$

where $\left|(z-\beta)^{-s}\right|^{2} \geqq m>0$ for all z in W_{ε} and $0<\varepsilon<\delta, k$ is the infimum of $e^{2 v \theta}$ on $\theta_{1} \leqq \theta \leqq \theta_{2}$ and $r=u+i v$. But $-2 u+1=-$ $(R+2) / R<-1$, hence the integral on the left diverges and ϕ is not square summable.

In case 2 the coefficient of u^{\prime} has a double zero at $\alpha=-\alpha / 2 c$ where $|\alpha|^{2}=a^{2} / 4|c|^{2}=1$. The functions $\phi_{+}(z)=(z-\alpha)^{-2} e^{r(z-\alpha)^{-1}}, r=$ $(b-a-i) / c$ and $\phi_{-}(z)=(z-\alpha)^{-2} e^{r(z-\alpha)^{-1}}, r=(b-a+i) / c$ are fundamental solutions for (2.2) and (2.3) respectively. Let us introduce polar coordinates at $z=\alpha$ so that $z-\alpha=\rho e^{i \theta}$ and let us agree to set $\theta=0$ so that for $|z|<1$, the argument of $z-\alpha$ is restricted to the intervals $0 \leqq \theta<\pi / 2$ and $3 \pi / 2<\theta<2 \pi$. Let $r=u+i v$, then

$$
\begin{aligned}
\left|\phi_{ \pm}(z)\right| & =\left|\rho^{-2} e^{-i 2 \theta} e^{(u+i v)(\cos \theta-i \sin \theta) / \rho}\right| \\
& =\rho^{-2} e^{(u \cos \theta+v \sin \theta) / \rho} .
\end{aligned}
$$

We note that u and v are not both zero, for then $b-a \pm i=0$ where a and b are real. Now consider the function $F(\theta)=u \cos \theta+$ $v \sin \theta$. If $u>0, F(0)=u>0$ and by continuity there exist θ_{1} and θ_{2} such that $F(\theta) \geqq u / 2>0$ for $\theta_{1} \leqq \theta \leqq \theta_{2}<\pi / 2$, similarly if $v>0$, $F(\pi / 2)=v$ and there exist θ_{1} and θ_{2} such that $F(\theta) \geqq v / 2>0$ for $\theta_{1} \leqq \theta \leqq \theta_{2} \leqq \pi / 2$. If $v<0, F(3 \pi / 2)=-v>0$ and there exist θ_{1} and θ_{2} such that $F(\theta) \geqq-v / 2>0$ for $3 \pi / 2<\theta_{1} \leqq \theta \leqq \theta_{2}$. Hence for all $r=u+i v$, except for the case $u<0, v=0$, there exists a $M>0$ and suitable θ_{1} and θ_{2} for which $F(\theta) \geqq M, \theta_{1} \leqq \theta \leqq \theta_{2}$. This case requires only a minor modification which will be provided shortly. It is easy to see that for given θ_{1} and θ_{2} we can find $\delta>0$ for which the regions $W_{\varepsilon}=\left\{z \mid \varepsilon \leqq \rho<\delta, \theta_{1} \leqq \theta \leqq \theta_{2}\right\}$ lie entirely within the disc for $0<\varepsilon<\delta$.

Now consider $\left\|\phi_{ \pm}\right\|^{2}$:

$$
\begin{aligned}
\int_{D} \int\left|\phi_{ \pm}(z)\right|^{2} d x d y & \geqq \lim _{\varepsilon \rightarrow 0} \int_{W_{\varepsilon}} \int\left|\phi_{ \pm}(z)\right|^{2} d x d y \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\theta_{1}}^{\theta_{2}} \int_{\varepsilon}^{\delta} \rho^{-3} e^{2 F(\theta)^{\prime} \rho} d \rho d \theta \\
& \geqq \lim _{\varepsilon \rightarrow 0}\left(\theta_{2}-\theta_{1}\right) \int_{\varepsilon}^{\delta} e^{2 M / \rho} \rho \rho^{-3} d \rho
\end{aligned}
$$

Since $\int_{0}^{\delta} e^{2 M / \rho} \rho^{-3} d \rho$ diverges it follows that the $\phi_{ \pm}$are not square summable, provided r is not a negative number. When $r=u+i v=u<0$ we merely agree to set $\theta=0$ so that for $|z|<1$ the argument of $z-\alpha$ is restricted to the interval $\pi / 2<\theta<3 \pi / 2$. Then $F(\pi)=-$ $u>0$ and the argument is the same as before.

In case 3, $a^{2}>4|c|^{2}$, the coefficient of u^{\prime} has distinct zeros at $\alpha=(-a+R) / 2 c$ and $\beta=(-a-R) / 2 c$ where $R=\left(a^{2}-4|c|^{2}\right)^{1 / 2}>0$. For $a>0$,

$$
|\beta|=\frac{R+a}{2|c|}>\frac{a}{2|c|}>1
$$

and therefore $|\alpha|<1$. For $a<0$,

$$
|\alpha|=\frac{R-a}{2|c|}>\frac{|a|}{2|c|}>1
$$

and therefore $|\beta|<1$. Without loss of generality we assume $|\alpha|<1$, and $|\beta|>1$. For $|z|<|\alpha|<1$, the functions ϕ_{+}and ϕ_{-}given by

$$
\begin{aligned}
& \phi_{+}(z)=(z-\alpha)^{-r}(z-\beta)^{-t} \\
& \phi_{-}(z)=(z-\beta)^{-s}(z-\alpha)^{-u}
\end{aligned}
$$

where $r=(R+b-a) / R-i / R$ and $s=(R+b-a) / R+i / R$, are fundamental solutions for $L u=i u$ and $L u=-i u$ respectively. Now suppose ψ is any nontrivial element of \mathscr{H} which satisfies $L u= \pm i u$. In particular ψ is analytic for $|z|<|\alpha|<1$. From uniqueness results this implies that $\dot{\psi}(z)=c \dot{\phi}_{ \pm}(z)$ for $|z|<|\alpha|$, where $c \neq 0$. By the identity theorem for analytic functions this implies $\psi(z)=c \phi_{ \pm}(z)$ for $|z|<1$, hence $\phi_{ \pm}(z)$ is analytic in $|z|<1$. But $\phi_{ \pm}(z)$ has a singularity at $|\alpha|<1$, therefore, the equations $L u= \pm i u$ have no nontrivial solutions in \mathscr{H}.
3. In this section we obtain conditions on the coefficients of L which insure that for all λ every solution of $L \phi=\lambda \phi$ is in \mathscr{H}. If L is a formally symmetric operator satisfying these conditions the defect indices of the operator T_{0} are equal to the order of L and T_{0} has a self-adjoint extension in \mathscr{H}.

In [2] it was shown that if $L=\sum_{k=0}^{n} p_{k} D^{k}$ is formally symmetric then the p_{i} are polynomials of degree at most $n+i$. Regarding such L with polynomial coefficients we have

Theorem 3.1. Let $L=\sum_{k=0}^{n} p_{k} D^{k}$ where $n \geqq 2, p_{x}(0) \neq 0$, and $p_{k}=\sum_{i=0}^{n+k} a_{i}(k) z^{k}$, and

$$
\begin{align*}
& A=\left|a_{0}(n)\right|^{-1} \sum_{i=1}^{2 n}\left|a_{i}(n)\right| \\
& \widehat{B}=n(n+1) / 2, \quad \text { and } \tag{3.1}\\
& B=\left|a_{0}(n)\right|^{-1} \sum_{i=1}^{2 n}\left|a_{i}(n) n[(n+1) / 2-i]+a_{i-1}(n-1)\right|
\end{align*}
$$

If $A<1$ or $A=1$ and $B<\hat{B}$ then every solution of $L \phi=0$ is in \mathscr{H}.
Proof. Since $p_{n}(0)=a_{0}(n) \neq 0$, every solution of $L u=0$ at the origin is analytic in some neighborhood of the origin. Let $\phi(z)=$ $\sum_{j=0}^{\infty} b_{j} z^{j}$ be any such solution, we will show that there exists a positive constant K and positive integer p such that $\left|b_{j}\right| \leqq K j^{-1 / p}$ for j sufficiently large. Consequently the series $\sum_{j=0}^{\infty}\left|b_{j}\right|^{2} /(j+1)$ converges and ϕ belongs to \mathscr{H}.

We begin by obtaining a recurrsion formula for the b_{j}. Substituting $\phi(z)=\sum_{j=0}^{\infty} b_{j} z^{j}$ into the equation $L \phi(z)=0$ we obtain

$$
L \phi(z)=\sum_{j=0}^{\infty} \sum_{k=0}^{n} \sum_{i=0}^{n+k} \alpha_{i}(k) \pi_{k}(j-i+k) b_{j-i+k} z^{j},
$$

where

$$
\begin{aligned}
\pi_{k}(\lambda) & =\lambda(\lambda-1) \cdots(\lambda-k+1) & & k \leqq \lambda \\
& =0 & & k>\lambda
\end{aligned}
$$

Hence $L_{\phi}=0$ if and only if the following relationship holds for all j.

$$
\begin{equation*}
\sum_{k=0}^{n} \sum_{i=0}^{n+k} a_{i}(k) \pi_{k}(j-i+k) b_{j-i+k}=0 . \tag{3.2}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \sum_{k=0}^{n-1} \sum_{i=0}^{n+k} a_{i}(k) \pi_{k}(j-i+k) b_{j-i+k} \\
+ & \sum_{i=1}^{2 n} a_{i}(r) \pi_{n}(j-i+r) b_{j-i+n}+a_{0}(r) \pi_{n}(j+n) b_{j+n}=0 .
\end{aligned}
$$

Noting that the sums involve only the b_{j-n} thru b_{j+n-1} (where $j>n$) and $\pi_{n}(j+n)$ never vanishes we may solve for b_{j+n} to obtain

$$
\begin{equation*}
b_{j+n}=-\left(S_{1}+S_{2}\right) / a_{0}(n) \pi_{n}(j+n) \tag{3.3}
\end{equation*}
$$

where

$$
S_{1}=\sum_{i=1}^{2 n} a_{i}(n) \pi_{n}(j-i+n) b_{j-i+n},
$$

and

$$
S_{2}=\sum_{k=0}^{n-1} \sum_{i=0}^{n+k} a_{i}(k) \pi_{k}(j-i+k) b_{j-i \nmid k},
$$

for $j>n$.
We now investigate the nature of S_{1} and S_{2} as polynomials in j. It can be shown that $\pi_{n}(j+n-1)$ is a polynomial of degree n in j,

$$
\begin{equation*}
\pi_{n}(j+n-i)=j^{n}+\left[\frac{n(n+1)}{2}-i n\right] j^{n-1}+\cdots \tag{3.4}
\end{equation*}
$$

for $i=1, \cdots, 2 n$. Using (3.4) in (3.3) we obtain

$$
\begin{align*}
S_{1}= & j^{n} \sum_{i=1}^{2 n} a_{i}(n) b_{j-i+n} \\
& +j^{n-1} \sum_{i=1}^{2 n} a_{i}(n)\left[\frac{n(n+1)}{2}-i n\right] \tag{3.5}\\
& + \text { lower powers of } j
\end{align*}
$$

Now consider S_{2}. Since $\pi_{k}(j-i+k)$ is a polynomial of degree k in j, an examination of (3.3) shows that S_{2} is a polynomial of degree $n-1$ in j, and that the only terms which contribute to the coefficient of j^{n-1} are those corresponding to $k=n-1$. Hence

$$
\begin{align*}
S_{2}= & j^{n-1} \sum_{i=0}^{2 n-1} a_{i}(n-1) b_{j-i+n-1} \tag{3.6}\\
& + \text { lower powers of } j .
\end{align*}
$$

Combining (3.5) and (3.6) we obtain

$$
\begin{align*}
S_{1}+S_{2}= & j^{n} \sum_{i=1}^{2 n} a_{i}(n) b_{j-i+n} \\
& +j^{n-1} \sum_{i=1}^{2 n}\left[a_{i}(n)\left(\frac{n(n+1)}{2}-i n\right)+a_{i-1}(n-1)\right] b_{j-i+n} \tag{3.7}\\
& +\cdots, \quad(j>n) .
\end{align*}
$$

Since $\pi_{n}(j+n)=j^{n}+(n(n+1)) / 2 j^{n-1}+\cdots$, is always positive (3.3) yields

$$
\begin{equation*}
\left|b_{j+n}\right|=\frac{\left|S_{1}+S_{2}\right|}{\left|a_{0}(n)\right|\left[j^{n}+\hat{B} j^{n-1}+\cdots\right]} . \tag{3.8}
\end{equation*}
$$

We now estimate $\left|S_{1}+S_{2}\right|$. Let $M(j)=\operatorname{Max}\left(\left|b_{j-n}\right|, \cdots,\left|b_{j+n-1}\right|\right)$, then it follows from (3.1) and (3.7) that $\left|S_{1}+S_{2}\right| \leqq\left|a_{0}(n)\right|\left[M(j) A j^{n}+\right.$ $\left.M(j) B j^{n-1}+\cdots\right]$. Hence

$$
\begin{equation*}
\left|b_{j+n}\right| \leqq \frac{A j^{n}+B j^{n-1}+\cdots}{j^{n}+\widehat{B} j^{n-1}+\cdots} M(j) \tag{3.9}
\end{equation*}
$$

for $j>n$, where A, B, and \hat{B} are given by (3.1).
Consider the estimate (3.9) for $\left|b_{j+n}\right|$,

$$
\begin{equation*}
\left|b_{j+n}\right| \leqq Q(j) M(j) \quad j>n \tag{3.10}
\end{equation*}
$$

where $Q(j)=\left(A j^{n}+B j^{n-1}+\cdots\right) /\left(j^{n}+\hat{B} j^{n-1}+\cdots\right)$. We note that for fixed $\zeta, Q(j) \leqq 1+\zeta j^{-1}$ for j sufficiently large if and only if $A j^{n}+$
$B j^{n-1}+\cdots \leqq j^{n}+(\hat{B}+\zeta) j^{n-1}+\cdots$. Hence if $A<1$ or $A=1$ and $B<\hat{B}+\zeta$ we have

$$
\begin{equation*}
Q(j) \leqq 1+\zeta j^{-1} \tag{3.11}
\end{equation*}
$$

for j sufficiently large. Now consider the expression

$$
\left(1+\zeta(j+1)^{-1}\right)(j-n+1)^{-1 / p}
$$

where $\zeta<0$ and p a positive integer. It is not difficult to see that this is dominated by $(j+n+1)^{-1 / p}$ for j sufficiently large if and only if

$$
j^{p+1}+(p+p \zeta+n+1) j^{p}+\cdots \leqq j^{p+1}+(p-n+1) j^{p}+\cdots
$$

for j sufficiently large. Hence, we have

$$
\begin{equation*}
\left(1+\zeta(j+1)^{-1}\right)(j-n+1)^{-1 / p} \leqq(j+n+1)^{-1 / p} \tag{3.12}
\end{equation*}
$$

for j sufficiently large if $p \geqq-2 n \zeta^{-1}$.
We now show that there exists a positive constant K and positive integer p for which $\left|b_{j}\right| \leqq K j^{-1 / p}, j$ sufficiently large. By hypothesis either $A<1$ or $A=1$ and $B<\hat{B}$. If $A<1$ let $\zeta=-1$ and $p=2 n$, if $A=1$, select ζ such that $B-\hat{B}<\zeta<0$ and $p>-2 n \zeta^{-1}$. For j sufficiently large, say $j>j_{1}$, (3.11) and (3.12) hold. Set

$$
K=\max _{j \leqq j_{1}+n}\left|b_{j}\right| j^{1 / p}
$$

so that $\left|b_{j}\right| \leqq K j^{-1 / p}$ for $j \leqq j_{1}+n$. Using (3.10) and (3.11) it follows that

$$
\left|b_{j_{1}+n+1}\right| \leqq\left(1+\zeta\left(j_{1}+1\right)^{-1}\right) M\left(j_{1}+1\right)
$$

where

$$
\begin{aligned}
M\left(j_{1}+1\right) & =\operatorname{Max}\left(K\left(j_{1}-n+1\right)^{-1 / p}, \cdots, K\left(j_{1}+n\right)^{-1 / p}\right) \\
& =K\left(j_{1}-n+1\right)^{-1 / p}
\end{aligned}
$$

Hence $\left|b_{j_{1}+n+1}\right| \leqq\left(1+\zeta\left(j_{1}+1\right)^{-1}\right) K\left(j_{1}-n+1\right)^{-1 / p}$, and using (3.12) this yields

$$
\begin{equation*}
\left|b_{j_{1}+n+1}\right| \leqq K\left(j_{1}+n+1\right)^{-1 / p} \tag{3.13}
\end{equation*}
$$

We now proceed inductively to establish

$$
\begin{equation*}
\left|b_{j_{1}+n+k}\right| \leqq K\left(j_{1}+n+k\right)^{-1 / p} \quad k=2,3, \cdots \tag{3.14}
\end{equation*}
$$

Let $K_{1}=\max _{j \leqq j_{1}+n+1}\left|b_{j}\right| j^{1 / p}$, now $K_{1}=\max \left\{K,\left|b_{j_{1}+n+1}\right|\left(j_{1}+n+1\right)^{1 / p} \mid\right\} \leqq$ K, making use of (3.13). Using (3.11) yields

$$
\left|b_{j_{1}+n+2}\right| \leqq\left(1+\zeta\left(j_{1}+2\right)^{-1}\right) M\left(j_{1}+2\right)
$$

where

$$
\begin{aligned}
M\left(j_{1}+2\right) & =\operatorname{Max}\left(K\left(j_{i}-n+2\right)^{-1 / p}, \cdots, K\left(j_{1}+n+1\right)^{-1 / p}\right) \\
& =K\left(j_{1}-n+2\right)^{-1 / p}
\end{aligned}
$$

Using (3.12) it follows that

$$
\left|b_{j_{1}+n+2}\right| \leqq K\left(j_{1}+n+2\right)^{-1 / p}
$$

Continuing on in this manner we establish (3.14) and the theorem is proved.

We note that the conditions (3.1) of Theorem 3.1 involve only the coefficients of the polynomials p_{n} and p_{n-1}, hence if L satisfies the conditions of (3.1) so do the operators $L \pm i$. Hence we have established the following.

Theorem 3.2. Let L be a formally symmetric operator which satisfies (3.1), then the associated operator T_{0} has defect indices $n_{+}=$ $n_{-}=n$.

Corollary 3.3. The operator $L=\left(c_{1} z^{4}+\bar{c}_{1}\right) d^{2} / d z^{2}+\left(6 c_{1} z^{3}+c_{3} z^{2}+\right.$ $\left.a_{2} z+\bar{c}_{3}\right) d / d z+\left(6 c_{1} z^{2}+2 c_{3} z+a_{3}\right)$, where a_{3} and a_{2} are real and $\left|c_{1}\right|>$ $\left|c_{3}\right|+\left|a_{2}\right| / 2$, has self-adjoint extensions.

Proof. Applying the algorithm given in Theorem 2.3 of [2] the general second order formally symmetric operator has coefficients

$$
\begin{aligned}
& p_{2}(z)=c_{1} z^{4}+c_{2} z^{3}+a_{1} z^{2}+\bar{c}_{2} z+\bar{c}_{1} \\
& p_{1}(z)=6 c_{1} z^{3}+\left(c_{3}+3 c_{2}\right) z^{2}+a_{2} z+\bar{c}_{3} \\
& p_{0}(z)=6 c_{1} z^{2}+2 c_{3} z+a_{3},
\end{aligned}
$$

where a_{1}, a_{2}, and a_{3} are real.
Now $A=\left(\left|c_{1}\right|+2\left|c_{2}\right|+\left|a_{1}\right|\right) /\left|c_{1}\right| \geqq 1$ and $A=1$ if and only if $c_{2}=$ $a_{1}=0$. Now $\hat{B}=3$ and $B=\left(\left|c_{1}\right|+\left|a_{2}\right|+2\left|c_{3}\right|\right) /\left|c_{1}\right|<3$ if and only if $\left|c_{1}\right|>\left|c_{3}\right|+\left|a_{2}\right| / 2$. Hence the result follows from the previous theorem.

References

1. N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience Publishers, 1963.
2. A. L. Villone, Self-adjoint differential operators, Pacific J. Math., 35 (1970), 517531.

Received September 15, 1972 and in revised form January 5, 1973. This work was supported in part by NSF Grant GP-3594.

