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RINGS OF QUOTIENTS OF RINGS WITHOUT
NILPOTENT ELEMENTS

STUART A. STEINBERG

The first theorem gives a number of characterizations of
when a ring with zero right singular ideal has a strongly regu-
lar right quotient ring. This result (and also Theorem 2) is a
generalization of a similar theorem of F. W. Anderson for a
certain class of lattice-ordered rings and a theorem of G. Renault
for reduced rings (i.e., rings without nilpotent elements). As
a corollary one obtains a characterization of when a semiprime
ring has a strongly regular right quotient ring similar to
Utumi's characterization of when a ring has a regular right
quotient ring. Also, some theorems on commutative regular
rings are extended to strongly regular rings and regular rings
that satisfy a polynomial identity. For instance, a reduced ring
is regular if and only if each of its prime homomorphic images
is regular. This theorem has been obtained independently by
Herstein, by Snider, and by Wong. Using rings of quotients
some theorems of R. Wiegand are also generalized. It is shown
that the endomorphism ring S of an ideal J of a strongly regular
ring R is strongly regular, and some characterizations of when
R is self-injective are obtained.

1* Rings of quotients. We first review some definitions and
facts and fix some notation. Good references are [8], [21], [17], and
[22]. Let A be a subset of the right J?-module M. Then rR(A) =
τ(A) = {x G R I Ax = 0} is the right annihilator of A in R. Similarly,
l(A), where appropriate, will denote the left annihilator of A. A ring
R is called reduced if it has no nonzero nilpotent elements; i.e., xeR
and x2 = 0 implies x = 0. If A is a subset of a reduced ring R> then
l(A) = r(A) will be denoted by A!. If A is an ideal of a semiprime
ring R, then, again, A! ~ l(A) = r(A). If R is semiprime, the set of
annihilator ideals of R is a Boolean algebra [17, p. 110].

A submodule N of the right ϋ?-module M is essential in M if
JV D K Φ 0 for each nonzero submodule K of M. The set of essential
submodules of MR is a dual ideal in the lattice of submodules of M.
The closure of N in M is the submodule Gl (N) = {xeM\xD £ N for
some essential right ideal D of R}, and N is closed in M if N =
Cl (ΛΓ). Since the intersection of a family of closed submodules is
closed, the collection of closed submodules of M forms a complete
lattice which will be denoted by Cr(M). The singular submodule of
M is Z{MB) = {x eM\r(x) is essential in RR} [14]. If Z{MR) - 0, then
Cl (N) is closed and is the largest essential extension of N in M; and
N is closed if and only if N is a complement in M— i.e., there is a
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submodule K of M such that N is maximal with respect to Nf]K —
0 [8, p. 61].

A ring S is a right quotient ring of its subring R if for all x,
yeS with y Φ 0, there exists r e R with xreR and #r Φ 0. Each
ring JK with l(R) = 0 has a maximal right quotient ring [21].
Throughout this paper R will denote a ring with l(R) = 0 and maxi-
mal right quotient ring Q — Q(R). Let i£ denote the injective hull
of the right i?-module RR. A right ideal D of R is dense if lE{D) =
0; equivalently, if h e HomΛ {E, E) and h(D) — 0, then h = 0; equiva-
lently, <3(JD) = Q [8, p. 58 and §8]. For each qeQ there is a dense
right ideal D of R such that qD^R. If #(#*) = 0, then a right
ideal of Λϊ is dense if and only if it is essential [21, Theorem 3];
also, in this case, Cr(R) contains each right annihilator of R [8, p. 71,
Proposition 5].

The ring R is regular if for each aeR there exists xeR with
a — axa; equivalently, each principal left (right) ideal is generated by
an idempotent [8, p. 42]. R is strongly regular if it is regular and
has no nonzero nilpotent elements; alternatively, each idempotent is
central. The ring R has a regular right quotient ring, and then Q
is regular, right injective, and the injective hull of RR, exactly when
Z(RR) = 0 [8, p. 69]. If Q is regular, then the closure in QB of each
right ideal of R is a summand of QQ [8, p. 70, Theorem 4].

LEMMA 1. Let R be a reduced ring and let a19 , αn, x be elements
of R. Let P be a product of aly , an (in any order); let Pi be a
product of alf , α ^ , α i+1, , an; and let Px be a product of aly ,
αΛ, x.

( 1 ) P = 0 -> θχ an = 0.
( 2 ) If aι = a5 for some i Φ j, then P ~ 0 «-• P ^ O .
(3) If P=0, then Px = 0.

Proof. Each of these statements is trivial if ϋ? is a domain.
Since R is a subdirect product of domains [3] each is true when R
is merely reduced.

An /-ring is a lattice-ordered ring that is a subring and a sub-
lattice of a product of totally ordered rings. The equivalence of (1)
and (2) in Theorem 1 has essentially been proven by Anderson [2,
Theorem 4.3] for the case in which R is a unital /-ring, and the
equivalence of (1) through (4) has been proven by Renault [19,
Theorem 4.1] for the case in which R is a unital reduced ring.

THEOREM 1. Let R be a ring with zero right singular ideal and
maximal right quotient ring Q. The following statements are equiva-
lent.
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(1) If a, b e R, then aR Π bR — 0 implies ab = 0.
(2) Q has no nilpotent elements.
(3) Each element of Cr(R) is the right annihilator of an ideal

of R.
(4) Each element of Cr(R) is an ideal of R.

If R has no nilpotent elements, then (1) is equivalent to each of the
following.

(5) If I is a right ideal of R, then I is essential in I" (and
I" is the maximal essential extension of I in R).

(6) If I is a right ideal of R, then Γ is a (unique) right com-
plement of I.

Proof. (1) -> (2): We first claim that I + r(I) is an essential
right ideal of R for each right ideal I of R. For if J is a right ideal
of R and [7 + r(I)\ Π / = 0, then, since 7 Π J = 0, (1) implies that
IJ == 0. Thus / £ r ( 7 ) , and hence J = 0; so the claim is proven.
Next we show that R is semiprime. Let 7 be a right ideal such
that Γ = 0. Then I[I + r(I)] = 0, so Z(RR) = 0 implies that 7 = 0 .
Next we show that R is reduced. Let a e R and let J = r(aR).
Then aRJ = 0 yields 72Jα — 0, and hence Ja = 0, since iϋJ is an ideal
of the semiprime ring i?. If α2 = 0, then a(aR + J) = 0; so α = 0
by the essentiality of aR + J.

Let q e Q and let D be a dense right ideal of R for which qD £
jβ. Since 7) is essential in R, (qD)r Π D is essential in (qD)f. So
[(#£>)' Π J5] 0 qD is essential in (qD)' 0 gD, and hence [(qD)' Π £>] 0
ί/D is an essential right ideal of J?. If a? e (gD)' Π D, then #gD = 0;
so xq = 0. Since qxeR and (go;)2 = 0, go; = 0. Thus q2 = 0 implies
?([(?-D)' Π Z>] © ΦD) = 0, and hence q = 0. So Q is reduced.

(2) ->(1): Let a,beR with αi2 Π 65 = 0. Let J be the closure
of (aR)R in Q and let J be the closure of (bR)B in Q. Then I = eQ
and J = fQ for some idempotents e and / of Q. Since I and / are
closed jβ-submodules of QRJ and since aR £ I and δi? S J, α e ί and
6 6 J". Since αJK is essential in / and 6i2 is essential in J, aR Π bR =
0 implies I n J" = 0. Since I and J are ideals of Q, α6 e // £ J Π J = 0.

(2) —>(3): If IeCr(R) and J is a complement of J, then I is a
complement of J. Let 7t be the closure of 7 in Q and let J t be the
closure of J in Q. Then, as in the previous argument, IJ £ 71J

Γ

1 = 0;
i.e., j £ 7'. Since 7fl Γ = 0, the maximality of J" implies that «/ =
Γ. Similarly, 7 = J', so 7 = 7".

That (3) implies (4) is trivial; and that (4) implies (1) follows
from the fact that ab e Cl (aR) Cl (bR) £ Cl (aR) Π Cl (bR) = 0, if aR Π
bR = 0.

(1) -> (5): If 7 and J are right ideals of R for which 7Π J = 0,
then (1) implies that / £ 7'. Thus / £ 7" yields J = 0, and hence 7
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is essential in /". Since an annihilator is closed, I " is the closure
of I in R.

(5) — (6): If / Π J = 0, then, since I is essential in J", Γ f] J =
0. But then J £ Γ" = /' since I" is an ideal. Since I f] Γ = 0, Γ is
the unique right complement of /.

(6) —(3): Let IeCr(R). By (6) Γ is a right complement of /'
which contains /. But I is a right complement of /', so / = /".

There are reduced rings R for which Q(R) is not reduced. For
an example take any domain that is not a right Ore domain.

A right ideal A of the ring R is called an Af-right ideal provided
xe A whenever there exists a dense right ideal D for which xD £ A.
In [21, §§3 and 4] Utumi has shown that every right complement
and every right annihilator in R is an Λf-right ideal, and that Q is
regular if and only if each ikf-right ideal of R is a right complement.
The following corollary takes this result one step further.

COROLLARY 1. Let R be a semiprime ring with maximal right
quotient ring Q. Then Q is strongly regular if and only if each
M-right ideal of R is an (annihilator) ideal.

Proof. In view of the preceding theorem and Utumi's theorem
it suffices to show that each Λf-right ideal / of R is a right com-
plement, assuming that each such / is an (annihilator) ideal. Let J
be a right complement of / and let Ix be a right complement of J
containing I. If IJ' Φ 0, then, since / is essential in Il9 If] IJ.' Φ 0.
This contradicts the assumption that R is semiprime.

Note that this corollary is false without the hypothesis that R
is semiprime. For an example take any commutative quasi-Frobenius
ring that is not regular.

The next corollary generalizes a well-known fact about integral
domains.

COROLLARY 2. A ring R has a strongly regular right quotient
ring if and only if each of its right ideals has a strongly regular
right quotient ring.

Proof. Suppose that R has a strongly regular right quotient
ring and let A be a right ideal of R. Let a, be A with aAf]bA = 0.
By Theorem 1, since Q(R) is strongly regular, aAbA = 0. Thus a2b2 =
0, and hence ab = 0 by Lemma 1 (2). By Theorem 1, again, Q(A)
is strongly regular.

Corollary 2 is false if "strongly" is deleted; for a right ideal
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need not even have a right quotient ring (in the sense of Utumi).
To give a concrete example let R be the two-by-two matrix ring over
the rationale and let A — en R be the right ideal of R consisting of
those matrices whose second row is zero. Then A is a right injective
ring that is clearly not regular [20, Example 5.3].

There is a generalization of Corollary 2, however, which is an
immediate consequence of the proof of [8, Theorem 1.2, p. 97]: Let
R be a semiprime ring with a regular right quotient ring and let A
be a right ideal of R with lA(A) = 0. Then A is semiprime and has
a regular right quotient ring; and

Q(A) ~ eQ(R)e s Q(ΆomR (A, A)) ,

where eQ(R) is the injective hull of AR in Q(R).

COROLLARY 3. (Utumi [22, Theorem 1.4].) If a ring R has a
strongly regular right quotient ring and a strongly regular left quotient
ring, then Q is also the maximal left quotient ring of R.

Proof. Since Q is a strongly regular right injective ring it is
also left injective (see [21, Theorem 4], for example). Thus it suffices
to show that RR is essential in RQ. Let 0 Φ q e Q. Since RB is
essential in QR there exists d e R such that 0 Φ qd e R. By the left-
sided version of Theorem 1 Rqd Π Rd Φ 0, so there exists a, beR
with 0 Φ aqd = bd. Let yeQ with dyd — d, and note that dy = yd
is idempotent. Then daq = dydaq = daqdy — dbdy = dydb = db Φ 0,
so Rq Π R Φ 0.

Next we impose chain conditions on the reduced ring R to obtain
a ring theoretic generalization of a theorem about /-rings which is due
to Anderson [1, Theorems 6.1 and 6.2] (also see [19, Proposition 5.3]).

LEMMA 2. Let A be an ideal of the reduced ring R. The fol-
loiving statements are equivalent.

(1) A' is a maximal annihilator of R.
( 2) RjAf is a domain.
( 3 ) A is a domain.

Proof. If A is not a domain there are nonzero elements α, 6 e A
such that ab — 0. If J is the ideal of R generated by Af (J {a}, then
A ' g j " ξ = Λ , since aeJ"\A' and b£j" (be A" C\a' = J')\ hence (1)
implies (3). That (3) implies (2) is straightforward (and known). If
R\A is a domain, then α« A! implies α' Π A" £ A! Π A!' = 0. There-
fore, ({a} U A!)" = (α' Π A")' — R; so A' is a maximal annihilator and
(2) implies (1).
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THEOREM 2. Let R be a reduced ring with the maximum condi-
tion on annihilators. Then Q = Q(R) is reduced if and only if R is
a right Ore ring. If this is the case Q is the classical right quotient
ring of R and it is a direct sum of division rings.

Proof. Since the Boolean algebra Szf of annihilators of R has
the maximum condition, it is finite. Let Au , An be the maximal
elements of Jϊf. Then fl At = 0. If Bt = A'i9 then Bi Π Σi** Bs £
Bi A (V jφiBj) = VjΦiBi A B3 = 0, where the lattice operations are
taken in j^f. Thus B = Σ θ ^ £ -B Since 2?' = 0 J5 is essential in
i2. Since each !?< is a domain B has regular elements, and since
B' — 0 the regular elements of Z? are still regular in R.

If R is right Ore, then so is B, and R and 5 have the same
classical right quotient ring T. Since T is a direct sum of division
rings it is equal to Q.

Suppose, conversely, that Q is reduced. Let a and x be elements
of R with x regular. If aBi = 0 let bi be any nonzero element of B{.
If aBi Φ 0, then the regularity of x implies that aBiXR Φ 0. By
Theorem 1, then, aBt Π xR Φ 0. Let 64 e J5< with 0 ̂  α&; e α i?. Then
6 = 6X + + bn is a regular element of R and αδ e xR. Thus i2 is
a right Ore ring.

In [20, Theorem 3.5] we have shown that if R is an /-ring in
which each right ideal that has a finite number of positive generators
has a single positive generator, then Q is an /-ring extension of R.
This has motivated the next result.

THEOREM 3. If R is a reduced ring in which all finitely gener-
ated right ideals are principal, then Q is strongly regular.

Proof. It is well-known that a domain S can be embedded in a
unital domain. (Let S1 be the ring obtained from S by freely adjoin-
ing the integers to S. Then St is semiprime and SJS' is a domain.)
Since R is a subdirect product of domains it can be embedded in a
unital reduced ring T. Let R1 be the subring of T generated by R
and 1.

We now show that Q is reduced. Suppose that q e Q with q2 =
0, and let deR with qde R. Then qdRx + dRλ = cR1 for some ceR.
Hence there exist elements xu yu aly and bx in Rλ such that

(qd)xt + dy1 = c

d — ca1

qd = cbx .

Hence
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eδiS/A = <7%A = q[(G — Qdx^] = qcbγ = q2d = 0 .

Since i ^ is reduced, Lemma 1 (2) implies that cb1y1 — 0. Thus qdyt = 0
and hence qc — 0. Consequently gd = 0, and, since D = {d e R \ qd e R)
is a dense right ideal of R, necessarily q = 0.

COROLLARY 4. (Amitsur [1, p. 62], Cohn [7, Theorems 3.3, 4.1,
and 4.2].) A% integral domain in which each finitely generated right
ideal is principal is a right Ore domain.

The following corollary is an immediate consequence of Theorem 3.

COROLLARY 5. If R is a reduced ring in which each finitely
generated one-sided ideal is principal, then Q is also the maximal
left quotient ring of R.

If Q can be made into an /-ring extension of the /-ring R, then
R is called a qf-ring.

COROLLARY 6. A semiprime f-ring R in which each finitely gen-
erated right ideal is principal is a qf-ring.

Proof. Since R is reduced [4, p. 63, Theorem 16], Q is strongly
regular. Thus Theorem 1 and the nonunital version of [2, Theorem
4.3] imply that R is a g/-ring.

We close this section with a short proof of the following result
which has been proven by J. Georgoudis for the case in which R is
an /-ring [11, Proposition 7]. (It is valid even if S is not a faithful
extension of R.) The largest subring of Q that is a left quotient ring
of R is the maximal two-sided quotient ring of R [25, Theorem 8].

PROPOSITION 1. A two-sided quotient ring S {in particular, the
maximal two-sided quotient ring) of a reduced ring R is reduced.

Proof. Let seS with s2 = 0, and let A(A) be a dense left (right)
ideal of R with As S R (sD2 c R). If dλ e A and d2 e D2, then dxs

2d2 -
0 and Lemma 1 (3) imply that (d^d,)2 = 0. Thus As A = 0, so s = 0.

2* Strongly regular rings* The next theorem, which has also
been obtained by Herstein, by Snider [10], and by Wong [24], char-
acterizes regular rings among the class of reduced rings. Its motiva-
tion is the commutative version given in [16, p. 61]. Our proof is of
interest because it is quite similar to that of the commutative version
given in [16]. R. Snider has given a counterexample to show that
the theorem is not true for regular rings (see [10]), and the theorem
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has been obtained by Fisher and Snider [10] as a corollary of a
characterization of regular rings.

If P is a prime ideal of a ring R, then the intersection of a
maximal chain of prime ideals contained in P is a minimal prime ideal.
Recall that a minimal prime ideal of a reduced ring is completely
prime; i.e., the quotient is a domain [3]. (A prime ideal in a reduced
ring need not be completely prime. For example, let S be a right
primitive domain that is not a division ring. Then there exists a
division ring D and a subring R of S such that the two-by-two matrix
ring over D is a homomorphic image of R [11, Theorem 2.14, p. 43].)

LEMMA 3. Let P be a prime ideal of the reduced ring R. Then
P is a minimal prime if and only ifx'^P whenever xe P.

Proof. Suppose the condition is satisfied and let N be a minimal
prime ideal contained in P. If x e P\N there exists y & P such that
xy — 0. This contradicts the fact that N is completely prime, so
N= P.

Suppose conversely that P is a minimal prime and let xe P. Let
M = R\P and let

S = M U {a>i x a2 x an x an+11 a{ e M and n ^ 1} .

Then M is a multiplicatively closed subset of R maximal with respect
to excluding 0, and S is a multiplicative subset properly containing
M. Thus 0 = aλ x a2 an x an+1 for some a{ e M. By Lemma 1(1)
α ^ an x — 0, so %' §£ P.

THEOREM 4. A reduced ring is regular if and only if R/P is
regular for each prime ideal P of R.

Proof. Suppose that for each prime ideal P of R R/P is regular.
Since a regular domain is a division ring, each minimal prime is a
maximal left ideal, and therefore each prime is minimal. Let 0 Φ
aeR and let J = α\ Then α is a regular element in the reduced
ring R = RjJ. Suppose that R has an identity element. If Ra £ R
let A be a maximal left ideal containing Ra, and let P be a primitive
ideal contained in A. Then P = A and hence aeP. This contradicts
Lemma 3 which implies that P consists of zero divisors.

If R does not have an identity, then, by a change of notation,
we have a is a regular element of R and 1 $ R. Let

S = {anil - £> % 2 (1 ~ O α%fc(l - xk)\JC£l, n ^ l and α?€ e J?} .

Then S is a multiplicatively closed subset of R. If 0 e S, then, since
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R is embeddable in a unital reduced ring, Lemma 1 (2) implies that
α(l — x) = 0 for some x e R; hence x is the identity of R. If 0 g S,
and P is an ideal maximal with respect to being disjoint from S, then
P is prime, so R/P is a division ring. If e + P is the identity of
i?/P, then α(l — e)eP gives the contradiction.

We finish up by using rings of quotients to generalize some
theorems of R. Wiegand [23] on commutative regular rings to strongly
regular rings. If B(S) is the set of central idempotents of the ring
S, then B(S) is a generalized Boolean algebra with lattice operations
e A f = ef and e\/f=e+f-ef. (It is a Boolean algebra if 1 e S.)
The following lemma, though undoubtedly known, is included for
completeness.

LEMMA 4. Let R be a semiprime subring of S, and suppose that
SR is an essential extension of RR. If A is an ideal of R, then B,
the closure of AR in SB, is an ideal of S.

Proof. Let b e B and se S. Since RR is essential in SB9 there
exists an essential right ideal D of R such that δ f l g i , sD £ D,
and sbD £ R. So bsD £ bD S A; hence B is a right ideal of S.
Also sbD A' = 0, so sbD £ A". Since AE is essential in A", D1 =
{d G JD I sδd G A} is an essential right ideal of R. Thus sbeB and B
is a left ideal of S.

The next result appears in [9, p. 90, Theorem 11.9] for the case
that R is a commutative semisimple ring with unity.

PROPOSITION 2. Let R be a regular ring with maximal right
quotient ring Q. Then B(Q) is the completion of B(R) if and only if
each nonzero annihilator ideal of R contains a nonzero central element.

Proof. Since the center of R is contained in the center of Q [21,
1.3], B(R) £ B(Q). Since Q is right injective each annihilator ideal
A of Q, being a closed right ideal, is a summand of QQ, and hence
is a ring summand of Q. Thus B(Q) is isomorphic to the Boolean
algebra of annihilator ideals of Q, and, in particular, B(Q) is com-
plete. In [5] it is shown that the maximal quotient ring of a Boolean
ring B coincides with the completion of B considered as a generalized
Boolean algebra. So B(Q) is the completion of B(R) if and only if it
is a quotient ring of B(R).

Suppose that B(Q) is the completion of B(R). Let A be a nonzero
annihilator ideal of R and let B be the closure of A in QB. By Lemma
4 B is an ideal of Q, so B = eQ for some eeB(Q). If feB(R) with
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0 Φ efeB(R), then efeeQ Π R = A [8, p. 70, Theorem 4].
Assume, on the other hand, the condition of the proposition. Let

0 Φ e e B(Q) and let A = R Π eQ. Then A = [i? Π (1 - e)Q\, so A
contains a nonzero central element a. Since iϋ is regular there exists
be R with a = aba. Then ab = ba = feB(R) and aR = fR. So 0 Φ
f — ef and hence B(Q) is a quotient ring of B(R).

A ring iϋ is said to satisfy a polynomial identity if there exists a
(homogeneous multilinear) polynomial/^, x2, , xn) = Σ 4 WiX^x^ a?in

in noncommuting indeterminates {&.,•} (where i ranges over the
symmetric group Sn and n\. lies in the centroid of R) such that
/(^i, ?*2, , Tn) = 0 for all rlf r2, , rne R and the kernel of wγ = 0.
Such a ring is called a P.I. ring.

COROLLARY 7. If R is strongly regular or a regular P.I. rm#,
then B(Q) is the completion of B{R).

Proof. If R is strongly regular this is obvious. In the other
case, the conclusion is a consequence of the following theorem of
L. Rowen [18, Theorem A]: Each nonzero ideal of a semiprime P.I.
ring contains a nonzero central element.

If R is a regular ring, then B(Q) need not be the completion of
B(R). For instance, if R is the ring of linear transformations of
finite rank of an infinite dimensional vector space (or any regular
prime ring without an identity element), then B{R) = 0 while B(Q) =
{0, 1}. On the other hand, it is clear from the proof of Proposition 2
that if R is any semiprime ring with zero right singular ideal in
which each nonzero annihilator ideal contains a nonzero central idem-
potent, then B(Q) is the completion of B(R). Included in this class
of rings are the biregular rings and the semisimple weakly reducible
rings (see [21, p. 13]). (A ring R is biregular if each principal ideal
is generated by a central idempotent. An ideal of a ring is called a
matrix ideal if it is a matrix ring of finite degree over a unital
reduced ring in which each nonzero one-sided ideal contains a nonzero
central idempotent. A ring is semisimple weakly reducible if every
nonzero ideal contains a nonzero matrix ideal.)

PROPOSITION 3. The following statements are equivalent for a
regular ring R for which B{Q) is the completion of B(R).

(1) B(R) is complete.
(2) Each ideal of R is an essential submodule of a principal

right (left) ideal.
(3) R is unital and each annihilator ideal is a summand.
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Proof. To see that (1) implies (2) let I be an ideal of R and let
eQ be the closure of I in QR. By Lemma 4 eeB(Q) = B(R), so I is
essential in eR. Trivially (2) implies that R is unital and, since an
annihilator ideal is closed, it is a summand. Finally, (3) implies that
B{R) is isomorphic to the Boolean algebra of annihilator ideals of R,
and hence it is complete.

For the sequel, let / be an ideal of the regular ring R, I = eQ
the closure of / in QR, S = Homβ (IR, IR) and T = Hom^ (ΪR, ΪR).
Then, since Z(IR) = 0, S is embedded naturally in T; and T ~ eQe,
S ~ S1 = {eqe \ eqel £ /} [8, p. 97, Theorem 1.2].

THEOREM 5. Let I be an ideal of the strongly regular ring R.
Then S = Hom^ (ISf IR) ̂  Hom^ (BI, RI) is strongly regular.

Proof. Let aeQ and let be Q with aba — a. Let a* ~ ab = δα
and let a — bob. Then α* is the unique idempotent of Q with Qa =
Qa*, and α is the inverse of a in Qa. If CGQ, then, since each one-
sided ideal of Q is an ideal,

Qac = QaQc = Qa*Qc* = Qα^c* .

Thus ^ (~) is a multiplicative (anti-multiplicative) mapping of Q which
leaves each idempotent fixed. If a el, then, since R is regular, α*,
ae I. We claim that for aeQ, α / S / if and only if α j g /. For
if CG/, then ace I if and only if a*c* — (ae)*el; if and only if
a*c*R £ /; if and only if a*cel. Note, also, that since Qα = Qα,
αl S I if and only if a I £ I.

We will now show that S is regular. Take ae e & and let g —
a*e. Then g e Sλ since ael g I. We claim that S^ = Sxae. Since
ae = aea*e = αe#, Ŝ αe S Siβf. However, # = α^e = aeaee S±ae since
aeGiSi,* so Sxg ξΞ: Sxae. Thus Sx, and hence S, is regular.

Since α/ £ I if and only if la £ I, S ~ Hom^ (̂ Z, ^Z).

With the same notation as above let μz: R —* S be the homo-
morphism given by μΣ{x) is left multiplication by x. Note that S is
a right jβ-module: If seS, reR, and α e / , then (sr)a = s(rα).

THEOREM 6. Leί / δe α^ ideal of the unital regular ring R.
Let S = Hom^ (IB, IR) and let μ{. R —>• S be the left multiplication map.
Then SR is protective if and only if Γ is a summand of R and μΣ

is onto.

Proof. Let μ = μI and let Lβ denote left multiplication by
e (Le = μ(l)). The actions of R on S and of Le R on S correspond
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in the natural way. In particular, the JS-submodules and the Le R-
submodules of S are the same. By the proof of [8, Theorem 1.2, p.
97] T is the maximal right quotient ring of μ(I). Since μ(I) £Ξ
Le R Q S ϋ T, Le R is an essential submodule of SR.

Consider the right i2-module sequence

(x) 0 >Γ >R >Le R >0 .

If SB is protective, then by [15, Lemma 4] Le R is a summand of
S. Thus Le R = S and (x) splits; i.e., Γ is a summand of it!. Con-
versely, if ΐ is a summand and Le - R = S, then (x) splits and hence
SΛ is protective.

COROLLARY 8. Let R be either a unital strongly regular ring or
a unital regular P.I. ring. Then the following conditions are eq-
uivalent.

(1) R is self-injective.
( 2) μji R-* Horrid (IB, IB) is epic for each ideal I of R.
(3) B(R) is complete and I" = Hom^ (IBy IR) for each ideal I of R.
(4 ) HonVβ (IB, IR) is a protective R-module for each ideal I of R.

Proof. We first give a proof assuming that R is strongly regular.
(l)<-*(2): If I is an ideal of R and φeΉ.omB(IB, RB), then, since R
is regular, φ(I) ϋ /. But R is injective if and only if every such ψ
is the restriction of a left multiplication map of R [6, Theorem 1.3.2].

(l)-*(3): By Corollary 7 B(R) is complete. Since R = Γ 0 1 " ,

I " s μ2(I") = μΛR) = Horn* (IΛf IR) .

(3) —> (4): By Proposition 3 /' is a summand of R. Since I" ~
HovaR (IR, IR), μτ is epic. By Theorem 6 HomΛ (IBf IB) is a projective
i2-module.

(4)—* (2): This implication follows from Theorem 7.
Now if R is a regular P.I. ring, then the only part of the preced-

ing proof that needs modification is the implication (2) —> (1). Let J
be a right ideal of R and let φeΉ.omB (J, R). If K is a complement
of J, then J φ K is an essential right ideal of i2 and ^ can be ex-
tended to J 0 K. Thus we may assume that J is an essential right
ideal of R. By [18, Theorem 6], J contains an essential ideal / of
R. Then the restriction of φ to I is given by left multiplication by
some element x of R. If ae J, then, since IB is essential in J, there
is an essential right ideal D of R such that aΌ g I. So φ(a)d =
0(αd) = α αd for each de D. Hence φ(a) = xa, and so R is right in-
jective. But then R is also left injective since Q(T) is the maximal
left quotient ring of any semiprime P.I. ring T [18, Theorem 5].
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Added in proof. The following example shows that the analogue
of Theorem 5 is false for regular P.I. rings; i.e., the endomorphism
ring of an ideal of a regular P.I. ring need not be regular (but by
Martindale's theorem [18] it is P.L, since it is a subring of Q). Let
R be the ring of all sequences of 2 x 2 matrices over the field F

which are eventually in (Q ™ J, and let I be the ideal of all sequences

( jp r\\
Q QJ. Then Q is the ring of all sequences

of 2 x 2 matrices over F [21, 2.1], and S ~ \q e Q \ ql^ 1} = {q e Q \ q

is eventually in (
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