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ON THE KONHAUSER SETS OF BIORTHOGONAL
POLYNOMIALS SUGGESTED BY THE

LAGUERRE POLYNOMIALS

H. M. SRIVASTAVA

Recently, Joseph D. E. Konhauser discussed two poly-
nomial sets {Y%(x; k)} and {Z%(x; k)}9 which are biorthogonal
with respect to the weight function xae"x over the interval
(0, oo), where a > — 1 and k is a positive integer. For the
polynomials Yn(x; k), the following bilateral generating func-
tion is derived in this paper:

o = 11- r ( α +

( 1 ) G[x(l - t)-"*

where

(2) G[x, t] = Σ Wito *)«",

the λn ψ 0 are arbitrary constants, and ζn(y) is a polynomial
of degree n in y given by

(3) ζn(y) =
r

It is also shown that the polynomials Za

n{%\ k) can be
expressed as a finite sum of Z%(y; k) in the form

(4) Z'(x; k) = (Iff ± (α " J f

k ) ^ [ W ι - lγZϊ-r{y; k) .

For Λ = 2, formulas (1) and (4) yield corresponding properties for

the polynomials introduced earlier by Preiser [4]. Moreover, when fc = l,

both (1) and (4) would reduce to similar results involving the gen-

eralized Laguerre polynomials Ll{x). For results analogous to (1) and

(4), involving certain classes of functions, the reader may be referred

to our papers [5] and [6], respectively.

2* The following results will be required in our analysis.

( i ) The generating function [3, p. 803]:

n

= (1 - $)-<«+«*+!>/* Θ χp{x[ l - (1 - t)-ltk]}Yi(x(l - t)~ίlk; k) ,

where m is any integer >̂ 0.

(ii) The explicit expression for Zi(x;k):
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( o ) JUH\X\ k) —— - " '•

nl

which is equation (5), p. 304 of Konhauser [2].
Prom (6) it follows fairly easily that

Σ Z:(x; k)—-£—
( 7 )

= e\Fk[-; (a + l)/fc, . - - , ( « + k)/k; - (x/k)H) ,

since k is a positive integer.

3. Proof of the bilateral generating function (1). Substituting
for the coefficients ζn(y) from (3) on the left-hand side of (1), we find
that

n = Σ ( )£
0 0 \T

In + τ\
= Σ K(ytY Σ Fί+r(α;; k)tn

\ T

: exp {x[l - (1 - i)"1/fc]}

• Σ λrΓ;(a;(l - ί)"1 / 4; k)(yt/(l - ί))r ,

by applying (5), and formula (1) would follow if we interpret this
last expression by means of (2).

4* Proof of the summation formula (4)* In the generating
function (7), if we set t = (y/k)kz, we shall get

(8) Σ Zl(x; k) , ( y / * ) f c f = exp {(y/kYz}0Fk[ - (xy/W)*z] ,

which, on interchanging x and y, gives us

(9) Σ Z:(y; k) (β/ fe)*y = exp {(^)^} 0 FJ~ (xy/kψz] ,
=̂o (α + l)kn

where, for convenience,

(10) 0Fk[ξ] s o F J - (a + l)/fc, ••-,(« + fc)/fc; ί] .

From (8) and (9) it follows at once that

(ID w ( α + 1 ) -
= exp {z[(y/ky - (a /fc)*]} Σ

n=0
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and on equating coefficients of zn in (11), we shall be led to our
summation formula (4).

5* Applications* First of all we notice that formula (4) may-
be rewritten as

(12) Z iμx; k) = ± (
r=o \ lev

which provides us with a multiplication formula for the polynomials
Za

n(x; k).

On the other hand, by assigning suitable values to the arbitrary
coefficients Xn it is fairly straightforward to obtain, from our formula
(1), a large variety of bilateral generating functions for the poly-
nomials Yl(x; k). For instance, if we let

and make use of the definition (6), we shall readily arrive at the
bilateral generating function

(14) έ* Γ(β + ln + l) YΛX> k ) M y > l)t

i - (l - t)-llk]}H[x(i - t)~ι'k> -y't/(i - <)],

where, for convenience,

(15) H[x, t] =

For k = I = 1 and a = β, the generating relation (14) would
evidently reduce to the well-known Hille-Hardy formula for the
Laguerre polynomials.
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