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ON EXACT LOCALIZATION

ROBERT A. RUBIN

In this paper we consider certain aspects of exact local-
ization (idempotent kernel functors having Property (T) in
the language we shall be employing). The major result is
that for commutative noetherian rings, every idempotent kernel
functor has Property (Γ) if and only if the Krull dimension
of the ring is less than or equal to 1.

1* Preliminaries* The terminology and notation in this paper
are that of Goldman [1], with which familiarity is assumed. In par-
ticular, if A is a ring we denote by K(A) (respectively I(Λ)) the set
of kernel functors (respectively idempotent kernel functors on the
category of left yl-modules) belonging to Λ. If σeK(Λ), we denote
by ^Z the associated filter of left ideals; i.e., ^Z is the set of left
ideals 2t of A such that A\% is σ-torsion, and such an 2t is called a
σ-open left ideal. Finally by the term "module" we mean a left
module over the ring in question.

Our primary concern will be with kernel functors satisfying any
of the conditions of Theorem 4.3 of [1], which we restate for easy
reference.

THEOREM 1.1. For any σeΙ(A), the following conditions are
equivalent:

( i ) Qσ(M) f& Qσ(A) ®Λ M for every module M;
(ii) Qσ(A)i(^L) = Qσ{A) for every %ej7σr where i is the canonical

map A—>Qσ(A);
(iii) Every Qσ(A)-module is faithfully σ-injective as a A-module;

i.e., given a Qσ(A)-module X, A-modules BξΞ A with σ(A/B) — A/B and
a A-homomorphism f: B—+X, there is a unique Λ-homomorphsim g:
A—+X extending f;

(iv) Every Qσ(A)-module is σΛorsion-free as a A-module;
(v) The functor Qσ is right exact and commutes with direct sums.
An idempotent kernel functor satisfying any of the above condi-

tions is said to have Property (T). Each of the conditions in (v)
above has a useful equivalent (Theorems 4.3 and 4.4 of [1]) which we
also list.

THEOREM 1.2. For σeΙ(A), the following are equivalent:
(i) Qσ is a right exact functor;
(ii) If 31 e J^~σ, if M > M" is an epimorphism of σ-torsion-free

modules, and if / : 3t ~> M" is a homomorphism, then there exists 33 e
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with 23 £ % and g:$8—»M such that πg is the restriction of f
to 33.

THEOREM 1.3. For σ e I(A) the following are equivalent:
(i) Qσ commutes with direct sums;
(ii) Given any countable chain of left ideals whose union is σ-

open, then some member of the chain is σ-open.

REMARKS, (i) The condition of Theorem 1.2 (ii) is described by
saying that every σ-open left ideal is σ-projective, while that of
Theorem 1.3 (ii) is given by: σ is noetherian.

(ii) Since for σ with Property (T) every σ-open left ideal contains
a finitely generated σ-open left ideal, it has been asked whether, for
σ noetherian, every σ-open contains a finitely generated σ-open. We
give an example, due to G. Bergman, that supplies the negative
answer. Let G be a nondiscrete ordered group in which the identity
e is not the inf of any countable set of elements greater than e (e.g.,
let G be an uncountable product of the integers ordered lexicographi-
cally). Let K be a field and let S = {g e G \ g > e}. If R = K[S], the
semigroup algebra of S over K, let / be the ideal of R generated by
all g e S. Then I is a maximal ideal and Γ — I. Hence άΓ — {/, R}
defines μ e I(R) Let Jι £ J2 £ be a countable chain of ideals with
JiΦl.R for each i. Then for each i there is g{e S with eφ g^ Ji9

Since e Φ inf giy there is g e S with eφ g ^gi for each u Then g $ \JJiy

and so U^ίά?~. Thus μ is noetherian, but / does not contain a
finitely generated //-open ideal.

In considering Property (T) we shall at times make simplifying
assumptions that entail no loss of generality. The first such is that
the ring be torsion-free for the kernel functor under investigation.

Let σeK(A), and consider {%/σ(Λ) \ St e j r ; and St 2 σ(Λ)}. It is
routine to check that this defines a kernel functor of A/σ(A), which
we denote by σ*, and that σ* is idempotent if σ is.

PROPOSITION 1.4. Let σeI(A) and let σ* e I(Λ/σ(Λ)) be defined as
above. Then a has Property(T) if and only if σ* has Property (T).

Proof. I t is immediate that if σ is noetherian, so is σ*. Using
the fact that for σ idempotent, 21 + σ{A) σ-open implies 2C is σ-open
we see that if σ* is noetherian, so is σ.

Now since σ-torsion-free ^-modules may be identified with σ*-

torsion-free /ί/σ(/ί)-modules, and since whenever we have 2C > M
with M σ-torsion-free, / factors through 21 + σ(Λ)/σ(Λ) f& SI/SI Π σ(Λ)
we see that every σ-open left ideal of A being σ-projective is equivalent
to every σ*-open left ideal of Λ/σ(A) being σ^-projective. Thus Theorems
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1.1 (v), 1.2, and 1.3 give the result.
We now consider certain classes of rings for which it is possible

to decide, using familiar concepts, when every idempotent kernel
functor has Property (T). The first such class we shall consider is
the class of rings for which every idempotent kernel functor has a
minimal open ideal.

LEMMA 1.5. Let σ e I(A) be such that ^Ό has minimal elements.
Then there is a unique idempotent two-sided ideal, Lσ, such that

Proof. Since ^ is closed under intersections, it has a unique
minimal element, a left ideal we denote by Lσ. Now the uniqueness
and minimality of Lσ guarantee that ^ = {2t § A | 2t 2 La). Further-
more, j?"o is closed under residual division, whence Lσ is two-sided,
and under products of left ideals, from which it follows that Lσ is
idempotent.

THEOREM 1.6. Let σ e I{Λ) be noetherian, and suppose that
has a unique minimal element Lσ. Then σ has Property (T) if and
only if Lσ + σ(A)jσ(Λ) is a protective Λ/σ(Λ) ideal.

Proof. Form σ* e I(Λ/σ(Λ)) as for Prop. 1.4. Then ^ * has
unique minimal element Lσ + σ(Λ)/σ(A). Hence by Prop. 1.4 we may
assume that σ(A) = 0. Suppose now that σ has Property (T). Let
F be a free module mapping onto La by p. Since σ(Λ) = 0, σ(F) =
σ(La) = 0. Thus by Theorems 1.1 (v) and 1.2 the identity map on
Lσ splits p, and Lσ is protective. Conversely, suppose that Lσ is a
protective ideal. Then clearly the condition of Theorem 1.2 (ii) holds,
and together with the noetherian hypothesis, this implies that σ has
Property (T).

REMARK. The example following Theorem 1.3 gives an example
of an idempotent noetherian kernel functor whose filter has a unique
minimal element, yet which fails to have Property (T).

COROLLARY 1.7. Let A be left artinian, and suppose that every
idempotent two-sided ideal of A is protective. Then every σ e I(A) has
Property (T).

Proof. If L is a projective ideal of A, then for any ideal I,
(L + 1)11 is a projective ideal of A/I.

COROLLARY 1.8. Let R be a commutative artinian ring. Then
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every σeΙ(R) has Property (T).

We now turn to the class of commutative noetherian rings. The
crucial fact for these rings is that Property (T) is a local property.

If R is a commutative ring and X a multiplicative subset of R,
we define μx via: if M is an .ffi-module, μx{M) — {meM\xm = 0 for
some x e X}. Then μx e I(R), an ideal A of i? is μx-open if and only
if A ί l l ^ 0 , and for any module M, Qμχ(M) = M"x(or X^M). As
the next lemma shows, we may also localize kernel functors.

LEMMA 1.9. Let R be a commutative ringy X a multiplicative
subset of R, and pe I(R). Then {Ax \ A e ̂ P\ = ά?" defines an idem-
potent kernel functor of Rx, which we denote by px.

Proof. That j ^ defines a kernel functor, px, of Rx is routine,
following from the extension and contraction properties of ideals under
localization. (See [5] p. 46, for instance.) For an ideal K of Rx let
K Π R denote the inverse image of K under the canonical map from
R to Rx. Now if K S L are ideals of Rx with L ^x-open, and L/K
^-torsion, let A — L ΓΊ R and B — K Γ\ R. Then A is /0-open, and A/B
is p-torsion. Hence by [1], Theorem 2.5, B is <o-open. But K = BX9

so K is |Ox-open. Then [1], Theorem 2.5 applies again to show that
px is idempotent.

PROPOSITION 1.10. Let R be a commutative ring, X a multiplica-
tive subset of R, and p e I(R) an idempotent kernel functor such that
every p-open ideal contains a finitely generated p-open ideal. Then
for any R-module M, [QP(M)]X = QPx{Mx).

Proof. Since an easy calculation shows that (p{M))x = px(Mx)
(the finiteness condition is needed here) we may assume that p(M) =
px(Mx) = 0. Then it is well-known that QP(M) — lim^β.^ Hom^ (A, M)9

and we may take the A's to be finitely generated. (See [3] p. 11
for instance.) But

(QP(M))X s Rx®BIΠTLAHomB(A, M) ~ \ιmA [Rx ®BΈίomB(A, M)]

s lim^ [ΆomRχ(AX) Mx)\ ~ QPx{Mx) ,

since surely this limit is the same as that taken over Ax. (We have
used here the commonly known facts that tensor product commutes
with direct limits and Horn commutes with localization when the
domain is finitely generated.)

As usual, when P is a prime ideal of J?, we shall write pP instead
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Of pB_P.

THEOREM 1.11. Let R be a commutative noetherian ring, and let
σel(R). Then σ has Property (T) if and only if for every prime
ideal P of R, σPeI(RP) has Property (T).

Proof. Suppose σ has Property (Γ), and let V be an jβP-module.
Then Qσp (RP) ®Ep V ~ [Qσ (R)]P ®Rp V ~ (Qσ (R) ®R V)P s (Qσ (V))P =
Qσp(V). Thus σP has Property (T). Conversely, suppose that for
every prime ideal P, σP has Property (T), and let M be an .β-module.
Then there is a homomorphism a: Qσ(R) ®R M-+ Qa(M) (this is just
the statement that Qσ(M) is a Qσ(i?)-module). Then for any prime
ideal P, aP: (Qσ(R) ® Λ M)P -> Qσ(M)P. But

(Qa(R) ®B M)P ~ QσP(R) ®RpMP ,

and Qσ{M)P s Qσp(MP) by Prop. 1.10. Since σP has Property (T) for
every P, aP is an isomorphism for every P, and so a is an isomorphism.

REMARK. An examination of the proof yields that a has Property
(T) if and only if σm has Property (Γ) for all maximal ideals m. Now
if P is a prime ideal of R and P g ^ σ , then 2t e ^~a implies %ξjίP,
and so every σ-open ideal meets R — P. Hence (τp = 0; i.e., jjΓa =
{jβp}. Thus σ has Property (T) if and only if σm has Property (T)
for every maximal ideal m e ^ ,

We are now prepared to investigate the condition that every σ e
I(R) has Property (T).

Recall that if R is a commutative ring, and P a prime ideal of
i2, the height of P, ft£(P), is defined to be the sup of the length of
chains of prime ideals: Po c Pι c c Pr — P. Furthermore, if / is
an ideal of R, ht{I) = inf {/ιί(P)|P is a prime ideal containing /}. It
will be convenient for our purposes to declare ht(R) = oo.

NOTE. When we are dealing with integral domains, by the term
"minimal prime ideal" we mean a prime ideal minimal among the
collection of all nonzero prime ideals. Thus for integral domains a
minimal prime ideal is the same thing as a height 1 prime ideal.

LEMMA 1.12. Let R he an integral domain, with quotient field
k, such that R = f)p Rp, where P runs through some collection of
prime ideals all with height rg some fixed integer n. If I is an ideal
of height > n, then Z"1 = R, where I"1 = {aek\al £ R}.

Proof. Let a e I"1 and let Q be any prime ideal of height ^ n.
Now α l g R, and since ht(I) > n, IςtQ. So there is x e I with xίQ.
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But ax 6 R £ RQ> &nd since x g Q, a; is a unit in i2ρ. Thus α = (αa )ar1 e
RQ, and α is in RQ for every prime ideal of height <; n. Since R is
an intersection of such rings, ae R. So I"1 £ i£. But certainly R £
7"1 and we are done.

LEMMA 1.13. Lei R be a commutative ring, n a nonnegative
integer, and J^ = {I £ R 1 λί(/) > w}. T%ew defines an idempotent
kernel functor; i.e., ίfcere is σe I(R) such that

Proof. Ht(I) > % means the same thing as I is contained in no
prime ideal of height ^ n. Thus we have:

( i ) if / e J^~, and J 3 / , then J cannot be contained in any
prime ideal of height ^ n, for then / would as well; so Je^~;

(ii) if I, Je ^ and P is a prime ideal of fcί ̂  w, then /J £ P
implies / £ P or J £Ξ P, a contradiction; thus //, and so IΠ /, 6 ̂ 1

(iii) let ί e ^ and / g i b e such that for any xe I there is a
K e ̂ ~ with i£κ S /, and suppose that / £ P for some prime ideal
P with Λ,ί(P) ^ w Now I ςt P, so there is x e I with x £ P. But
there is i ί e ̂ ^ with KxQJ^P, and so i£ £ P, contradicting Λί(JBO >
^. Thus Je^. Hence ^ defines an idempotent kernel functor.

Recall that an integral domain R is called a KruU domain if (i)
R = Γ\P Rv where P runs through the minimal prime ideals;

(ii) for each minimal prime ideal P, Rp is a discrete valuation
ring; and (iii) if a e k, the quotient field of R, a is a unit in all but
finitely many of the Rp, P a minimal prime ideal. See [2, 4] for more
about Krull domains.

In the following theorem we shall have need of the following
well-known fact (see [2] Ex. 2. p. 83 for instance): an integral domain
jβ is a Dedekind domain if and only if R is a Krull domain and every
nonzero prime ideal of R is maximal.

THEOREM 1.14. Let R be a Krull domain. Then every σ e I(R)
has Property (T) if and only if R is a Dedekind domain.

Proof. Suppose that every σeI(R) has Property (Γ), and let
μ e I(R) be defined by ^ = {I £ R \ ht(I) > 1}. Now for any integral
domain D and any ρeI(D), QP{D) = \Jj9JτpJ"^ So Qμ(R) - \Jl9JΓμ I"1.
But by Lemma 1.12, for each lejΓ^, Γ1 = R, and so Qμ(R) = R.
But μ has Property (T), and so Qμ(R)I = Qμ{R) for any I e ^ ; i.e.,
for any J e ̂ , RI = i?. Thus ^ = {R}, and the only ideal of height
> 1 is R itself. Hence every nonzero prime is of height 1; i.e., every
nonzero prime ideal of R is maximal, as so by the remark preceding
the theorem, R is Dedekind.
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Conversely, if R is Dedekind, R is an hereditary noetherian ring,
and be the discussion on page 31 of [1] every σ e I(R) has Property (T).

THEOREM 1.15. Let R be a commutative noetherian integral
domain. Then every σ e I(R) has Property (T) if and only if every
nonzero prime ideal of R is maximal; (i.e., Krull dimension of R ^ 1).

Proof. Suppose that every nonzero prime ideal of R is maximal.
Since R is noetherian, Theorem 1.11 holds, and we may assume that
R is local. If R is a field, I{R) = {0, oo}, both of which have Pro-
perty (T), and we are done. So suppose that R is not a field. Then
the set of nonzero ideals defines μ e I(R), and since μ = μx, where X
is the set of nonzero elements of R, μ has Property (T). Now let
σ e I{R), σ Φ 0, oo. Then 0 ί J ^ , and for some %φR, % e J ^ . Since
%^^£ and σ is idempotent, ^ n ^ ^ σ for any n^O. Let / be
any nonzero ideal of R. Since R is noetherian, / contains a power
of its radical which, due to a lack of other candidates, is ^ . Thus
/ 3 J " " for some n, and so Jej^Z. Hence σ = μ, and so every
σeΙ(R) has Property (T).

Conversely suppose that every σeΙ(R) has Property (T). Again
by Theorem 1.11 we may assume that R is local (with maximal
ideal ^Z), for the condition that every nonzero prime is maximal
is itself a local property. Let S be the integral closure of R in its
quotient field k. Then S is a Krull domain (p. 82 of [2]). Define
σeΙ(R) by ̂ Z = {%^R\Zl^^fn ίor some n}. Then Qσ(R) = \Jn^f~n,
where ^J?~n = {^£nYx = {aek\ a^tn £ R) (Qσ(R) is also known as
the ideal transform of ^£). Consider the set X of prime ideals of S
that contain ^ F r = ̂ S. By Theorem 33.10 of [4], X is finite, and
by Theorem 44 p. 29 of [2], X consists entirely of maximal ideal of
S. Write X = {^Y[, , ̂ 7 , Pu , Pr} where all the ideals are distinct
and the P/s are all the minimal ideals of S that contain ^d'. Since
S is Krull, each Sp. is a discrete valuation ring, and so f\k P) = 0
for each i So for each j1 = 1, , r there is % ̂  1 such that ^ ^ g
P*ί but ^^g£ P/'+ 1. Since the P/s are distinct maximal ideals,
Πί^i Pp = (Ύj=iPfj a - ^ Set A = Π ^ i ^ ' Now by Exercise 7, p. 83
of [2], if P is a minimal prime ideal in a Krull domain, PP~γ 5 P.
Hence for each j — 1, , r, P, is invertible (i.e., P^ P Γ 1 = S). So A is
invertible and AA~ι = S. Consequently ^ = S^ = (AA~γ)^£ —
A^A-1^). Let B = A~1^. Then since ^JΓ^ A, B S S, and BA =
Λ&. Furthermore since A~ι 3 S, B 2 ^ίC Let P be a height 1 prime
ideal of S and suppose that 5 g P . Then J g P % + 1 so that
P = P i o for some j09 and ̂ # " = 5 i g P;0(Π;=i •?*>') £ P;o> a contradic-
tion. Thus ht(B) > 1, and by Lemma 1.12, JS"1 = S. Similarly B~n =
S for all w ̂  1. Now PA S A, so that (SA)"1 a A"1. Let α e
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Then aBA £ S, and for any xeA, axB £ S. So aA £ ΰ " 1 = S, and
hence A""1 = (βA)~\ Thus ^ T " 1 = (PA)"1 = A~\ and similarly, for
any n^l9 ^~% = A~\ Now suppose that σ has Property (T). Then
by Theorem l l_(ii) ^tQ9(R) = Q,(R), and ŝ> for some ί,
But ^ T - ' £ ^T"*, and so 1 e . ^ T ^ - ' = ^ (A~f) Since S
and A is invertible, A* £ ^ . Consequently there are no Λ^'s in X.
Thus ^ ^ is contained only in minimal ideals of S. But then Theorem
44 p. 29 of [2] tells us that ^ # is a minimal prime ideal of R, and
the proof is complete.

The preceding theorem is the means by which we can determine
when every idempotent kernel functor has Property (T) for an arbitrary
commutative noetherian ring. The following lemma is rather inter-
esting by itself. Recall that if P is a prime ideal in a commutative
R, then μp e I(R) is given by J ^ , = {/ £ R \ I g P}, and Qμp{M) =
Afp w JBJ, ®iϊ Λf for any module M.

L E M M A 1.16. Let R be a commutative ring, and let Pl9 •••, Pn

be prime ideals of R. Then inf<^ P i = μxi where X= ΓVt=i(R — Pi)

and infα σa is defined by (infα 6rα)M = f)a σa(M) M any module, or equi-

valently ^~infoa = Π«^Za> for any {σa} £ JKΓ(JF2).

Proof. Let σ = inf< μH. If St e ^ , then 2t e ^ p . for each i =
1, •••, Tir, and so SC^P^ for each i. But then 31 g; U Pi (see Theorem
81 p. 55 of [2] for instance). So there is a 6 St such that a e Π?=i (^ ~"
Pi) thus ? l n l ^ 0 , and σ ^ ^ x . But if 35 6 ̂ ~μχ, there is 6 e 35 with
b $ Pi for each ΐ. Then certainly S3 §£ Pi for each i, so that μx ^ σ.
Hence inf* μH = ^ z .

COROLLARY 1.17. // i? is α commutative ring and Pi9 , Pn are
prime ideals, then inf̂  μp. has Property (T).

THEOREM 1.18. Let R be a commutative noetherian ring. Then
every σ e I(R) has Property (T) if and only if every nonminimal
prime ideal of R is maximal (i.e., if P is a prime ideal of R9 htP ^ 1).

Proof. Since both of the conditions are local properties we may
assume at the outset that R is local, with maximal ideal ^έf. Suppose
that every nonminimal prime ideal is maximal. Since R is noetherian,
a primary decomposition of 0 exists, from which we conclude that R
has only finitely many minimal prime ideals. Thus the set of prime
ideals of R consists of ^ f and finitely many minimal primes Pl9 , Pn.
Now μ^r = 0 (i.e., ^"μ^ = {R}), and if 0, oo ψ σeI(R), then by the
discussion on page 34 of [1], σ = inf {μPh, , μp.}, which, by Corollary
1.17, has Property (T). Since 0 and oo both have Property (T), all σ e
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I(R) have Property (T). Conversely suppose that every σ e I{R) has
Property (T) and let P Φ ̂  be a prime ideal of R. Then the ring
R/P is a local noetherian integral domain. Furthermore, it is easy
to check that: K{R)-> K(R/P), induced by R-+R/P, is onto- Then
using Theorem 1.1 (iv) one can show that every p e I(R/P) has Property
(T), and so by Theorem 1.15, ̂ t/P is the only nonzero prime ideal of
R/P. Hence P is a minimal prime ideal of R, and the proof is
complete.

Finally we give an example to show that the noetherian hypothesis
is essential in the preceding theorems. Let X be the following sem-
igroup: as a set, X = {xa\a is a positive real number}, and xa xβ =
xa+β. If if is a field, let S = K[X], the semigroup algebra of X on
K. Then ^f, the ideal generated by all the xa (i.e., the ideal consisting
of elements with no constant term), is a maximal ideal of S. Let
E = S^r. It is routine to check that the ideals of R are linearly
ordered and that Λ€R and 0 are the only prime ideals of R. Furthe-
more (^Rf = ̂ £R. Thus {^?R,R} defines some σeΙ(R). But
since ^£R is not finitely generated σ cannot have Property (T).
Thus R is an integral domain for which every nonzero prime ideal is
maximal, yet not every idempotent kernel functor has Property (T).

The author wishes to express his gratitude to Paul Eakin for his
generous expenditure of time and information.
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