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RADICAL PROPERTIES INVOLVING ONE-SIDED IDEALS

R. F. ROSSA

A radical P is called strongly right hereditary (srh) if
P(I) = /n P(R) for every right ideal /of each (not necessarily
associative) ring R in a suitable universal class W. This is
a one-sided version of the concept of a strongly hereditary
radical class investigated by W.G. Leavitt and R.L. Tangeman.
A discussion parallel to theirs is obtained including a construc-
tion of the minimal srh radical class in W containing a given
class. Srh radicals are related to a new radical construction
obtained by modifying the lower radical construction of
Tangeman and D. Kreiling.

1* Introduction* A class M of not necessarily associative rings
is called right hereditary if every right ideal of each ring in M is
also in M. Subring hereditary classes are defined in a corresponding
way. A universal class is a homomorphically closed, subring heredi-
tary class of rings. A radical P of some universal class W is strongly
hereditary if for all Re W we have P(I) = If] P(R) for all ideals
I of R, and strongly right hereditary (srh) if we have the same
property for all right ideals / of R. Strongly hereditary radicals
have been studied by W. G. Leavitt [4] and R. L. Tangeman [6]
using the following property (a) which may be satisfied by a class
M of rings in a universal class W:

(a) If J e M is an ideal of an ideal / of some R e W, then the
ideal J' of R generated by / is also in M. In § 2, we obtain a paral-
lel discussion of srh radicals using the following modification of (a):

(p) If / e M is an ideal of a right ideal I of R e W, then the
ideal J' of R generated by J is also in M.

In a universal class W, the lower radical determined by a class
M will be denoted by LM. In § 3, we introduce a new radical con-
struction obtained by altering the construction of LM given by
Tangeman and Kreiling [3] at the limit ordinal step. A brief sum-
mary of their construction may be found in [5], whose notation we
will continue to use. Our construction is related to property (p) by
Theorem 3.2.

For a class M S W, the minimal right hereditary subclass of
W containing M will be denoted by GM. Write GγM = M and, for
n^2, GnM = {Re W: R is a right ideal of some ring in Gn^M}.
Then GM = \JGnM, as in [5]. If M = {R} consists of a single ring,
we will omit braces and write, for example, GnM = GnR.

2. Srh radicals* The results of [4] and [6] all have one-sided
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versions. In particular, following [4, Theorem 1], we have.

THEOREM 2.1. A right hereditary radical class P £ W is srh if
and only if it has property (p).

Next we show that property (p) is inherited by the lower radical.
Our proof is an adaptation of an unpublished proof by Tangeman of
[6, Theorem 2.4].

THEOREM 2.2. Suppose J l ίg W is homomorphically closed and
has property (p). Then LM also satisfies (p).

Proof. We will use the construction of LM due to Tangeman and
Kreiling and the notation of [5]. By hypothesis Mx — M has property
(p). Let β > 1 be an ordinal number and let J be an ideal of a right
ideal J of a ring R e W such that J e Mβ. Let Jr denote the ideal of
R generated by /. Suppose the classes Ma satisfy (p) for all a < β.

First suppose β is a limit ordinal. Then J — \JJr, where {Jr} is
a chain of ideals of J contained in \Ja<β Ma. For each index 7, let
Kr be the ideal of I generated by Jr. Then J ~ \JKr. By property
(p)9 each Kr e \Ja<β Ma. Now let K'r be the ideal of R generated by Kγ.
By (P) again, each K[ e \Ja<β Ma. Since Jr 3 Kr for each 7 and Jr is
an ideal of R, Jτ 3 \JKr

r On the other hand, since \JK'Ί is an ideal of
R containing \JKr = J, we have \JKr

r 3 J'. Hence J ' = U^r e Λ^
If /9 is not a limit ordinal, then / has an ideal K with K,

Mβ-i Now if P^J is the ideal of / generated by K, then
β-j. by property (/θ). Moreover, J/PeMβ^ because J/P is a

homomorphic image of J/iΓ and Mβ^ is homomorphically closed [3,
Lemma 2]. Now P generates an ideal Q of R with Q e Mβ^ by the
inductive hypothesis. The ideal of R/Q generated by J + Q/Q is J'/Q.
Since P g / f l β , / + Q/Q — /// ΠQ is a homomorphic image of J/P.
Hence J + Q/Q e Mβ and so, using (p) again, Jr/Q e Mβ^. Since Q,
J'/Q s M^!, we have J' e ikf̂ . The theorem follows by transfinite
induction.

Let EM = {/': J is an ideal of a right ideal of a ring jβ € W,
JeM, and J' is the ideal of R generated by J}. The homomorphic
closure of M will be denoted by HM. We have the following one-
sided version of [6, Corollary to Theorem 2.5].

THEOREM 2.3. If W is a universal class and M £ W, then there
exists a unique minimal radical class in W containing M and satisfy-
ing property (p).

Proof. Let Mf = EHM and, inductively, Ml = EHM*^ for all
integers n>l. Then M* = UM* is a homomorphically closed class satis-
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fying (p), so that LM* satisfies (p) by Theorem 2.2. On the other hand,
any radical class which satisfies property (p) and contains M may be
seen by induction to contain M* and hence LM*.

EXAMPLE 2.1. The class LM* need not be hereditary when M is

hereditary. For let K = GF(2) and let R = U* jj): *, b e κ} W e

identify isomorphic rings; thus if ~ i ί^ Hjiαeifi is a right ideal of

R with K' = R. R has the ideal 1= {(J jj): 6eir}. Let W =

{22, if, /, 0}, M = {JSΓ, 0}. Then ikf is hereditary, while LM* = Λf* =
{22, if, 0} is not.

As in [6, Corollary (c)] and [8, Corollary 2.7], we also have

THEOREM 2.4. // W is a universal class and M <ϋ W, then there
is a unique minimal srh radical class in W containing M.

Proof. Define Mx = EGHM and, for all n > 1, Mn = EGHMn_x.
Then ikf = UMΛ is the minimal subclass of W which contains M, satis-
fies property (p) and is right hereditary and homomorphically closed.
Then LM is the desired srh radical class, for by Theorem 2.2 LM has
property (p) and by [5, Theorem 2], LM is right hereditary. Thus by
Theorem 2.1, LM is srh; it is again easy to see that LM is minimal.

We turn to a consideration of two properties similar to property(p).

THEOREM 2.5. Let M be a class of rings satisfying property (p).
For all Re W, if IeM is in GR, then the ideal Γ of R generated
by I is also in M.

Proof. The theorem is trivially satisfied when Ie M Π G^. Thus
for induction assume for all Re W and all IeMf] GnR that Γ eM,
where /' is the ideal of R generated by I. Let KeMf] Gn+ι R so
that KeMf) GJ for some right ideal J of R. By induction K* eM
where K* is the ideal of J generated by K. But then (p) implies
K' = K*' e M.

COROLLARY. Property (p) is equivalent to the following property
(P'Y

(pf) If J eM is a right ideal of a right ideal I of Re W, then
the ideal Jf of R generated by J is also in M.

Consider the following property (σ): If / 6 ikf is a right ideal of
R, then the ideal of J7 of R generated by / is also in M. In general
this property is not inherited by LM as may be seen from the follow-
ing example (for which we thank the referee).
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EXAMPLE 2.2. Let K be generated over GF(2) by x, y, z where
x2 z= y2 = 0, xy = yx = a?, yz = xz — zy — y, and zx = z2 = z. Then 7 =

{0, #} is an ideal of iϋ = {0, x, y, x + y} and i? is the only proper right
ideal of K. Also K is simple so that Rf — K. For the universal
class W consisting of K and all its subrings, the class M = {0, 7} has
property (σ). However, LM does not have the property since R e LM
whereas R' = K<£ LM.

For semisimple classes, we have the following one-sided version of
[1, Theorem 4.1] and [6, Theorem 3.1], which we state without proof.

THEOREM 2.6. Q is a semisimple class for a radical class P
with property (p) if and only if Q has properties (b), (c), and (d) of
[1, Theorem 4.1] and is right hereditary.

In general it cannot be expected that semisimple subideals will
generate semisimple ideals, as in property (a). Indeed, if the radical
class is not hereditary, a semisimple subideal may even generate a
radical ideal. We give two examples using well-known radicals in the
universal class of associative rings.

EXAMPLE 2.3. Let A be a ring isomorphic to the ring of even
integers with generator a. Let B = {0, x), C = {0, y) be zero rings of
order two. Let J = i φ β , and form R by adjoining C to 7 in such
a way that the additive group of R is 7 + C (direct sum), (na)y =
y(na) = nx for all integers n, and xy — yx = 0. Then / is an ideal of R
and A is a nil-semisimple ideal of 7, but Ar = I has the nil ideal B.

EXAMPLE 2.4. Let A be the zero ring whose additive group is
Zp(oo) and let B be the ring of polynomials of degree *> 1 over GF
(2). Define the commutative ring R as follows. The additive group
of R is the direct sum A + B; the multiplication within A and B is
as usual, and we define (a/pn)xi = a/pn+i, extending this multiplication
to R in the natural way.

Let 7 be the subring of A of order p. Thus 7 is an ideal of A,
and the ideal 7 generates in R is A. In the upper radical of the
class of all simple rings (see [2, page 14]), 7 is semisimple and A is
radical.

3* Radical constructions involving one-sided ideals* Let M
be any class contained in a universal class W. We will construct
a class AM (depending of course on the universal class W) by modify-
ing the radical construction of [3]. Briefly, let z/iikf be the homomor-
phic closure of M. We proceed inductively to define a class AβM for
each ordinal number β. If β — 1 exists, let AβM — {R e W: R has an
ideal J such that J, R/JeAβ^M}. If β is a limit ordinal, define Re
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AβM if and only if R is the union of a chain {Ir} of right ideals of R
such that each Iγ e \Ja<β AaM. Finally, let AM = JJ^ Δ^ML.

By modifying suitably the proof of [3, Theorem 2] we have

THEOREM 3.1. ΔM is a radical class.

The corresponding construction using left ideals yields a radical
class we will call ΛM.

THEOREM 3.2. If M is homomorphically closed and has property
(p), then LM = ΔM.

Proof. Since MQΔM and AM is radical, LM ^ AM. Thus as-
sume for induction that, for β a given ordinal, A^M^LM for all
oc < β. If R e Mβ is a nonlimit ordinal then /, R/I e Aβ^M £ LAf,
so that j? G LM. If β is a limit ordinal then R = Ir for some chain
{Ir} of right ideals contained in \Jα<β A^M £ LM. But by Theorem
2.2, Zvilf has property (/>). Thus if Γγ is the ideal of R generated by
Jr, then Γr e Likf and so R = \J Γr e LM. Thus AβM £ LΛf and so

This is not a necessary condition, for let M be the nil radical
class in the universal class of associative rings. Then M = LM = AM,
but M does not have property (p) by Theorem 2.6 because the nil-
semisimple rings do not form a right hereditary class.

Even in the associative case, AM and ΛM may be unequal.

EXAMPLE 3.1. Let R be the associative algebra over the field
GF(2) generated by a countable number of symbols {x^ i = 1, 2, •}
subject to the relations Xi%3 = x3- for all i, j . For each n, let In be
the left ideal generated by {xί9 , xn). Then M = {In: n = 1, 2, •}
is a chain of left ideals of R and R = In, so that R e ΛM. Since JB
has no proper right ideals and R& M1 = ΔγM, R cannot be in AM.
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