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ALMOST ISOMETRIES OF BANACH SPACES
AND MODULI OF PLANAR DOMAINS

RICHARD ROCHBERG

Let C(X) and C(Y) be the supremum normed Banach spaces
of continuous complex valued functions on the compact HausdorfiP
spaces X and Y respectively. Let A and B be closed subspaces
of C{X) and C(Y) respectively. A map from A to B will mean
a continuous invertible linear map of A to B. The set of all
such maps will be denoted by L(A, B). For T in L(A, B) define
c(Γ) = 1/(|| T\\ || ΓMI). A generalization of the Banach-Stone
theorem is proved which shows that there is a constant d < 1
such that if A and B satisfy certain additional technical restric-
tions and there is a T in L(A, B) with c(T) > d then X and Y
are homeomorphic. Furthermore, T is, roughly, composition
with this homeomorphism.

For S a connected subset of C bounded by a finite number
of disjoint Jordan curves, denote by A(S) the Banach space of
functions in C(S) which are analytic on the interior of S. For
two such domains, S and S', set d(S, S') = inf {—logc(Γ); T a
linear map of A(S) onto A(S')}. By analyzing maps T for which
c(T) is nearly one, it is shown that d( , •) is a metric on the
space of moduli of such domain (considered as Riemann surfaces)
and that this metric induces the classical moduli topology.

If T in L(A9 B) preserves norms, i.e., if || Tf\\ = | | / | | for all /

in A, T is called an isometry. If there is an isometry between A

and B then A and B are called isometric. If T is of norm one then

c(T) is the largest constant such that c(T) \\f\\ ^ || Tf\\ ^ | | / | | . It

is immediate that 0 < c(T) ^ 1 for all T in L(A, B) and that T/\\T\\

is an isometry if and only if c(T) = 1. Maps, T, for which c(T) is

nearly one will be called almost isometries.

Using this notation, the Banach-Stone theorem can be stated as

follows.

THEOREM. If there is a T in L(C{X)\ C{Y)) with c(T) = 1 then

X and Y are homeomorphic. Furthermore, any such T is of the

form Tf = g-f°h where h is a homeomorphism from Y to X and g

is a continuous function on Y of constant modulus.

More recently, Cambern ([2], [3]) has extended this result to

THEOREM. If there is a T in L(C(X), C(Y)) with c{T) > 1/2 then

X and Y are homeomorphic.

In § 2 we show that if A and B are closed subspaces {not neces-

sarily subalgebras) of C(X) and C( Y) respectively which satisfy certain
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additional technical restrictions then the following is true.

THEOREM A. There is a constant d <1 so that if A and B are
allowable subspaces of C(X) and C(Y) respectively and if there is a
T in L(A, B) with c(T) > d, then X and Y are homeomorphic. Fur-
thermore, there is a function ε(x) which decreases continuously to zero
as x increases to one so that given such a T there is a homeomorphism
h of Y to X and a function g of constant modulus so that for all f
in A, \\Tf-g.foh\\^s(c(T))\\f\\.

If A and B are any two Banach spaces then the quantity
D(A, B) = inf {—logc(T); T in L(A, B)} is a measure of how close A
and B are to being isometric. Define D(A, B) = oo when L(A, B) is
empty. This function was first studied by Banach and Mazur ([1])
who observed that it is symmetric, positive semi-definite and satisfies
the triangle inequality. Furthermore, if A and B are isometric then
D(A, B) = 0.

This function, applied to certain algebras of analytic functions on
planar Riemann surfaces, will be shown to define a metric on the
moduli space of those surfaces. Specifically, we denote by £f the set
of conformal equivalence classes of Riemann surfaces realizable as
connected subsets of the complex plane bounded by two or more (but
a finite number of) disjoint Jordan curves. For n *> 2 denote by S^
the class of surfaces in S* with n boundary contours. For any S in
Sf we define A(S) to be the subalgebra of C(S) consisting of all func-
tions in C(S) which are analytic on the interior of S. It is known
that this definition is independent of the particular realization of S.
For S and S' in SI define d(S, S') = D(A(S), A(S')).

In § 3 we introduce a particular set of classical moduli for the
sets S%

In § 4 we introduce a set of conformal invariants for Riemann
surface in S* and study the relationship between these invariants
and the function d( , •).

Sections 5 and 6 contain the major parts of the proof of the
following.

THEOREM B. For any integer n ^ 2, d( , •) is a metric on the
space S^n. This metric induces the same topology as the classical
moduli topology.

A significant portion of the arguments use specific realizations of
the Riemann surfaces in question as subsets of the complex plane.
It is not clear to what extent these result can be extended to non-
planar surfaces or to surfaces of infinite connectivity. (Some results
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for nonplanar surfaces are presented in [7].)
These results are new, however, results very similar in spirit

have been obtained by Nakai ([5]) using different methods. He shows
that for a certain class of Riemann surfaces, the extent to which the
Royden algebras of two surfaces are almost isometric is directly re-
lated to the minimal dilitation of quasiconformal maps between the
two surfaces.

In addition to the notation previously introduced and that intro-
duced in the individual sections we will use the following notation.

If a is an element of C(X) and K is a subset of X, we set
\\a\\κ = swp{\f(x)\;x in K). We will use this notation even though
\\ \\κ may not be a norm.

Let D be the unit disk of the complex plane. For z and zf in D
we define δ(z, zr) = \ (z — z')/(l — zz') |. If £ is a Riemann surface
which is conformally equivalent to D and w and wr are any two points
of S, we set ds(w, wf) — δ(t(w), t(w')) where t is a conformal map of S
onto D. It is well known that this last definition is independent of
the choice of t.

2* Properties of almost isometries of Banach spaces* When
working with an invertible linear map, T, between the Banach spaces
we will often use the following notational convention. The spaces
will be denoted by two capital Latin letters. Elements of the spaces
will be denoted by the corresponding lower case letters. Finally, ele-
ments of the spaces will be individuated so that elements with cor-
responding individuation marks will be elements that correspond under
T. For example, given T in L(A, B), without further mention our
convention guarantees that α, α', and α3 are in A; b, &', and b" are in
B; and T(a) = 6, T(a3) = 63, etc.

Given an element a in the Banach space C(X) and a point x in
X we will say that a peaks at x if a attains its maximum modulus
a t x, i.e., \a(x) \ — \\a\\. We will say t h a t a peaks only at x if x is

the only point of X a t which a peaks, i.e., | a{xf) | < \\a\\ for all xf in

X, x' Φ x. We will say t h a t a sequence of functions aly α2, in

C{X) is a fundamental sequence at x if
(a) all of the a{ are of norm one and peak only at x, and
(b) for any y in X,yΦx, the sequence of numbers 1^(^)1,

I a2(y) I, converges monotonically to zero.
It follows from this definition that if α1? α2, is a fundamental
sequence at x then the an converge uniformly to zero off every open
neighborhood of x and that for any k between zero and one the set
on which | an{y) | > k shrinks to x as n becomes infinite. Let A be
a closed subspace of C(X). We will call A an allowable subspace if
for every x in X, one can find in A a fundamental sequence at x.
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We have not required that an allowable subspace be a subalgebra.
It follows from the definition that a closed subalgebra of C(X) is an
allowable subspace of C(X) if and only if for any x in X there is an
a in A which peaks only at x (i.e., every point of X is a peak point
for A). If S is a finite bordered Riemann surface and A(S) is the
algebra of functions continuous on the bordered surface and analytic
on the interior of S, then A(S), regarded as a subalgebra of C(dS),
satisfies this condition and hence is an allowable subspace of C(dS).

For the remainder of this section we will be considering the fol-
lowing situation. X and Y will be compact Hausdorff spaces and A
and B will be allowable subspaces of C(X) and C(Y) respectively.
T will be an element of L{A, B) of norm one. We set c = c(T) =
|| Γ"1!!"1. Our goal will be to develop properties of T which follows
from the assumption that c is sufficiently near one.

If c = 1 then some of the proofs in this section are not valid.
However, in that case, the results remain valid and are simply known
results and their direct corollaries.

2.1. We begin by showing that if c is large enough then, given
x in X, there is a y in Γ s o that if a in A peaks at x then b — Ta
"almost" peaks at y.

THEOREM. There is a c0 < 1 such that if c > c0 then given x0 in
X there is a unique y0 in Y so that if a peaks at x0, then \ b(y0) | ^
(2c - 1)|| a ||, and hence | b(y0) | ^ (2c - 1)|| b | |.

Proof. We begin with a lemma.

LEMMA. Given a1} a2 in A, if \ a^x) \ ̂  | a2(x) | for all x in X and
if b2 peaks at y, then \ b^y) \ ̂  c\\ a21| — ((1 — c)/c)\\ αx | |.

Proof of lemma. The result is immediate if δx peaks at y. As-
sume this is not the case. Given e positive, pick U an open neigh-
borhood of y so that | bλ(w) — b^y) \ < ε for all w in U. Pick δ3 so
that || 63II = II &i II - I b^y) |, arg (bs(y)) = arg (b2(y))9 b3 peaks only at y,
and I δ31 < ε off U. Hence, for appropriate θ, since b2 peaks at y,

c(\\h II + II 63II) = o ( | | h + b3 II) ^ c(\\ at + a31|)
^e( | |β«α 1 + α, | | )^ | | e < »δ 1 + δ , | | .

But, by the construction of δ3,

| | e % + δ, | | ^ Hδxll + e
hence

ell h II ^ II 6, II + ε - c|| 63II ^ II h || + ε - c(|| b, || - | bM |) .
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Since ε was arbitrary we have

16i(v) i ̂  H6.li - ( ^ - ^ I I M I ^ c\\^w -

Proof of theorem. For any b in B we define Pb = {y in Y: \ b(y) | ^
(4c — 3)|| & ||}. Pick al9 , an, a fundamental sequence at x0. We
can assume an(x0) = 1. Let ζL = Π~=i -Pft. Q~ is the required point
2/0. We prove this by verifying a series of claims.

Claim A. Q^ is not empty. The Pκ are closed subsets of the
compact set Y. Hence it suffices to show that they have the finite
intersection property. Given N, we must show that QN = Π?=i Pbn

is not empty. Pick y in Y so that bN peaks at y. Since α^ is of
norm one, | bN{y) | ^ c. By construction 7/ is in P6iVΓ. Since the αn

form a fundamental sequence, the previous lemma can be applied.
For k < N, I 6,0/) ( ̂  c|[ aN || - ((1 - c)/c)(| α* || = c + 1 — 1/c. Hence, if
c is greater than 1/3 we have | bk(y) \ ̂  Ac — 3. So ?/ is in P6jfc. Hence
?/ is in QN, and thus Q^ Φ 0 .

Claim B. ζL is a single point. Suppose ζL contains two distinct
points y' and τ/" Choose a small positive ε. Choose V and 6" from
fundamental sequences at y* and #" so that sup# || 6' + eiθb" || ^ 1 + ε.
Since V peaks in ζL, for each n we can find a θ so that 4c — 2 ^
|| bn + ew&' ||. Hence 4c - 2 ^ || an + β^α; | |. Let α' be any point at
which I an(x') + e^a'ty) | ^ 4c - 2. We must have | a'{x') | ^ 4c - 3
and I an{xf) \ ̂  4c - 2 - | a'{xr) | ^ 4c - 2 - 1/c. Pick c so large that
for some positive ε' we have

(2.1) 4c - 2 - 1/c ^ ε' > 0 .

Hence α' takes a value of modulus greater than or equal to 4c — 3
at a point %' where the modulus of an is greater than ε'. The an are
a fundamental sequence at x0. Letting n go to infinity, the set on
which an is of modulus greater than ε' shrinks to the point x0 and
thus the points x' which were chosen depending on n converge to x0.
By continuity of α', | a'(x0) \ ̂  4c — 3. Similarly, | a"(x0) | ^ 4c — 3.
So, for some θ

|| α' + e«a" \\ ^ | a'(x0) \ + \ a"(x0) \ ̂  2(4c - 3) - 8c - 6 .

So

8c-6^ sup || α' + eiθa" \\ ̂  - ί sup || &' + eiθb" | | < —(1 + ε) .
c c

Since ε was arbitrary we must have 1/c ^ 8c — 6. This is impossible
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if c > .89. This contradiction shows that ζL is a single point. Denote
the point by y0.

Claim C. If j bN{y) | > 2c - 1 then | bk(y) | > 4c - 3 for all k less
than N. Assume | bN(w) | > 2c — 1 and | bk(w) | < 4c — 3 for some w
and some k less than N. Pick V peaking at w, \ bf(w) \ — c, arg b'(w) —
arg bN(w), and modulus of b' less than some preassigned ε on Pbjc.
(The assumption implies that w is not in Pbje.) Hence || bN + bf || ^ 2c,
and suptf || bk + eiθV \\ ^ 4c — 2. So, 2c ^ || aN + α' | | . Let x be a point
at which 2c <: | aN(x) | + | α'(a?) |. So

4c — 2 ^ sup || ft* + eίί?δ' || ^ c sup || ak + e^α' ||

+ \a'(x)\).

The an are a fundamental sequence, hence | aN(x) | <; | ak(x) |. So, 4c —
2 ^ c(| αΛr(ίc) I + I a'(x) |) ^ c 2c which is impossible if c Φ 1.

Claim D. Given an open set Ϊ7 in F with τ/0 in E7, then for all
but finitely many n, \\bn \\γ_u < 2c — 1. If not, then there are integers
n{ increasing to infinity and points yζ m Y — U with | bn.(y{) I ̂  2c — 1.
Let yf be an accumulation point of the yi9 By Claim C7 | bn{y^) \ ^
4c — 3 for n <^ n^ Hence, for each n, by the continuity of bn,
I bn{y') I ̂  4c - 3. Thus y' is in Q^ S U. But yr is not in U. This
contradiction establishes the claim.

Claim E. If α' is in A and || a' \\ = α'(O = 1 then |
2c — 1. If not, then there is an open set U in Y containing y0 with
I V I ̂  2c — 1 — e on Z7. Claim D shows that if we take n large
enough we can insure that | bn(y) \ < 2c — 1 — ε for y not in U. We
know that || an + α; || = 2. Hence 2c ^ || bn + 6; || ^ max (|| δw + 6r 1̂ ,
\\K + V ||r_£r) ^ 2c - ε. This contradiction establishes Claim E.

Claim E combined with Claim B shows that the point y0 is unique
and independent of the original choices of the function a and the
fundamental sequence. The theorem is proved.

DEFINITION. For any x0 in X let t(x0) be the point y0 in Y such
that the previous theorem is satisfied.

During the proof a number of restrictions were placed on c. The
most severe of these was (2.1). This inequality will be satisfied if
c > c0 where c0 = (3 + l/Ϊ7)/8 = .8904. There is no reason to assume
that this is the best value for which the theorem is true. The results
of Cambern referred to earlier are valid if c > 1/2. It may be that
c0 = 1/2 is also adequate for Theorem A.

COROLLARY 2.2. If c > c0 then, given x in X, there is a number
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θ(x) such that if\\a\\ = a(x) = 1 then cos (arg (b(t(x)) — θ{x))) ;> 2c — 1.

Proof. Let S = {b(t(x)); b = Ta, \\a\\ = a(x) = 1}. Let θ{x) =

l/2(sup{arg (z); z in S} + inf {arg(2);2 in S}). If z1 and 22 are in S
then I ^ I <; 1, ί — 1, 2 and by the previous theorem | zt + z2 | ^ 4c — 2
Hence, by an elementary geometric argument, for any z in S,
cos (arg (s) - θ(x)) ^ 2c - 1.

THEOREM 2,3. If c> c0 then t is a homeomorphism of X and Y.

Proof, t is continuous. Since Y is compact it suffices to show
that if xn9 n = 1, 2, converge to xQ and yn = ί(a?n) converge to ?/',
then y' = yQ = t(x0). For % = 0, 1, let αΛfl, αΛ>2, be a fundamen-
tal sequence at xn. Choose V of norm one peaking only at yr. Choose
ε positive. By the previous theorem, for n sufficiently large and for
all k, sup# || bn,k + eiθb' || ^ 2c — ε. Hence, for the same n and k
sup# || an>k + eiθa! \\ >̂ 2c — ε. Fixing n sufficiently large and letting k
become infinite we conclude | a'(xn) | ^ 2c — 1 — ε. Taking the limit as
n becomes infinite and noting that ε was arbitrary we find | a'(x0) | ^
2c — 1. Pick a of norm one, peaking only at xQ and with arg a(xQ) =
arg α'(α?0). So, || α + α' | | ^ 2c Hence || 6 + δ ' | | ^ 2c2. Since V could
be any element of a fundamental sequence at yf, this implies | b{yr) \ ^
2c2 — 1 ^ 4c — 3. Thus, for any a peaking only at x0, yf is in Pτ{a) =
{yeY;\ Ta(y) | ^ 4c — 3}. y0 is the intersection of all such Pτ{a). Thus
y' = y0. This argument also holds, mutatis mutandis, for convergence
over nets.

t is one-to-one. Suppose t(xr) — t(x"). Let α', a'2i be a fun-
damental sequence at x' and let α", α", be a fundamental sequence
a x". Estimating sup || α'n + eί(?α^ || and sup || 6» + e*̂ 6« || for large n
shows xf = x".

t is onto. If not, since t(X) is closed, we can find U a nonempty
open set in Y disjoint from t{X). Pick y in U, b in B of norm one
peaking only at y and | b \ < 2c — 1 off U. Let a; be a point of X at
which a peaks. By Theorem 2.1 | b(t(x)) | ^ (2c - 1)|| 6 || = 2c - 1.
Thus t(x) is in U: a contradiction.

COROLLARY. If there is a T in L(A, B) with c(T) ^ c0 then X
and Y are homeomorphic.

Using the homeomorphism t to identify X and Y, the function
θ( ) of Corollary 2.2 can be regarded as a function on X or on Y.
For a? in X, let 0(a?) be the number produced in the proof of this
corollary. For y in Y, set θ(y) — θ(frγ(x)).
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THEOREM 2.4. If c > c0 then for all a in A, for all x in X,

\\b(t(x))\- | φ ; ) | | ^ 2 ( l - c ) | | α | | .

Proof. I t suffices to consider the case | | α | | = 1, a(x) real and
positive. Let y = t(x). Pick at, α2, a fundamental sequence for x
with a,i(x) = 1 for all i. Set r = 1 — a(x). Pick ε positive. Let xn

be the point at which a + (1 + e)r an peaks. Let yn = t(xn). By
Theorem 2.1 | b(yn) + (1 + ε)r bn(yn) | ^ (2c - 1)|| a + (1 + e)r an\\ >
2c - 1. Hence | b(yn) ( ̂  2c - 1 - (1 + ε)r = 2c - 2 + | a{x) | - e(l -
α(a?)). Letting w go to infinity, #„ approaches α? and hence yn ap-
proaches # so I b(y) I ̂  2c — 2 + I a(x) \ — 2ε. Since ε was arbitrary

(2.2) I b(y) I ̂  2c - 2 + I a(x) \ .

Also,

1 + I a(x) I = lim sup || α + eiθan \\

^ ϊϊm sup || b + eiebn \\ ^ ίϊήϊ (| b(y) | + | bn(y) |) .

So

(2.3) 1 + I a(x) I ̂  I &d/) ( + 2c - 1 .

The last inequality by Theorem 2.1. Inequalities (2.2) and (2.3) imply
the desired conclusion.

THEOREM 2.5. Let c > c0. Given K, 0 < K <: 1, and ε > 0,
is a d < 1 which depends only on K and ε such that if c > d, then
given a of norm one and given x in X with \ a(x) \ ̂  K and
arg (a(x)) = 0, then |arg (b(t(x)) - θ(x)) \ < ε.

Proof. We may assume a(x) positive. Let y = t(x). Choose a! Φ a
peaking only at x with a'{x) = 1. Set a" — (a — a(x)a')/(\\ a — a{x)ar | |).
α" is a function of unit norm and a"(x) = 0. Applying the previous
theorem to α" at the point x we find | b"{y) | ^ 2(1 — c). So | b{y) —
a{x)V{y) I ̂  2(1 - c)|| a - a(x)af || ^ 4(1 - c). So | b(y)/a(x) - V(y) \ ^
4(1 — c)/a(x) ^ 4(1 — c)/Z" = εx. Also, by applying Theorem 2.1 and
Corollary 2.2 to α' at x we find | b'(y) — exp {iθ(y)) \ ̂  ε2 where ε1 and
ε2 depend only on c and if and can be chosen to be arbitrarily small
if c is close enough to one. Combining the last two inequalities we
find I b(y)/a(x) — exp (iθ(y)) \ < ε3 where ε3 can be made arbitrarily small
if c is close enough to one. Since | a(x) \ < 1 this implies | b(y) —
exp (iθ(y))a(x) \ < ε3. But a(x) is a positive real number greater than
K. By elementary geometry the previous inequality implies that the
quantity | arg (b(y)) — θ(x) \ can be made arbitrarily small by requiring
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that ε3 be sufficiently small. This is accomplished by requiring that
c be larger than some constant d; and the theorem is proved.

2.6. Proof of Theorem A. If suffices to prove the theorem for T
of norm one. Let g(y) = exp(iθ(y)) and h(y) = t~~\y). Theorem 2.3
shows that h is a homeomorphism. The previous two theorems com-
bine to show that g and h satisfy the requisite inequality.

2.7. If the allowable subspaces A and B are also algebras and
if Γ(l) is a real positive constant, then, for c(T) large enough, T is
almost an algebra isomorphism.

THEOREM A'. There is a function ε(x) which decreases continuous-
ly to zero as x increases to one and a constant d < 1 so that if A
and B are algebras and T(T) is a positive constant and c(T) > d then
there is an isometric algebra isomorphism R of C{X) onto C(Y) so
that, as linear maps on A, || T — R\\ ̂  s(c(T)).

Proof. Define Rf(y) = f(t~ι(y)). The theorem follows from the
following lemma.

LEMMA. // 1 is in A then given e positive there is a d < 1 which
depends only on e so that c > d implies that for all a in A, for all
x in X

I b(t(x)) - exp (ΐarg (Tl)(t(x)))a(x) \ ̂  e\\ a \\ .

Proof. We may assume \\a\\ = 1. Note that Theorem 2.1 implies
that Γl is bounded away from zero and hence has a well defined
argument. Choose d large enough so that the desired result follows
immediately from Theorem 2.4 whenever | a(x) \ < ε/3. Now, by in-
creasing d and applying Theorem 2.5 with K = ε/3 and Theorem 2.4
we can insure | b(t(x)) — exp (i θ(x))a(x) | < ε/3. Hence it suffices to
show that I θ(x) — arg (T(l)(t(x))) \ can be made small for all x. This,
however, follows from Corollary 2.2.

COROLLARY 2.7.1. Given ε > 0 there is a d < 1 so that if c > d,
A and B are algebras, and T(l) is a positive constant, then for all
a, af in A, \\ (Tα)(7V) - T(αα') || rg ε|| a \\ \\ ar \\.

Proof. Let R be given by the previous theorem. T = R +
(T — R). R is multiplicative and (T — R) is small. The result follows
from a direct estimate using these facts.

COROLLARY 2.7.2. Given K > 0, there is a d < 1 so that if c >
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d, A and B are algebras, and Γ(l) is a positive constant, then, if a
is invertible in A and || a || || cΓ11| <̂  K, then b is invertible in B.

Proof. We may assume a is of norm 1. By applying the previ-
ous corollary to the functions a and a~ι with ε = 1/(2K) we find
|| {Ta){Ta~ι) - Tl || ^ 1/2. But 2Ί is a positive constant greater than
c. By requiring that c be greater than one-half, we conclude
|| (Ta)(Ta~1) — 1|| < 1. By a standard Banach algebra result we con-
clude that (Ta){Ta~ι), and hence also Ta, are invertible.

2.8. The following theorem allows us to use the results of 2.7
to study the implications of D(A, B) — 0 for function algebras.

THEOREM. If A and B are algebras and D(A, B) = 0, then there
is a sequence Tu T2, of elements in L(A, B) such that TJ1) — 1
for all n and lim c(Tn) — 1.

Proof. Since D(A, B) = 0 there is a sequence Sly S2, in L(A, B)
with lim c(Sn) — 1. We can assume that | | S n | | = 1 for all n. By
removing a finite number of terms from the sequence we can assume
that for all n, c(Sn) is so large that all of the previous results hold.
Let an = S»\ΐ). Applying the lemma of Theorem A' three times to
the map Sn and the functions 1, αn, and α; produces three inequalities
which combine to show \\Sn(l)Sn(al) — (Sn(an))2\\ <, s' where ε' can be
made arbitrarily small if the ε of the lemma sufficiently small. Hence
we conclude that \\Sn(l)Sn(al) — 11| < 1. Hence Sn(l) is invertible in
B. Define Tn by Tn{a) - {Sn{l))~ιSn{a)o It is clear that Tn is in
L(A, B) and that TJX) = 1. Theorem 2.1 allows us to conclude that
|| T* || ^ V(2c(Sn) - 1). It is a direct estimate that || T'1 \\ ^ l/c(Sn).
The desired conclusion follows.

3. Moduli* We will use a specific set of moduli for surfaces
in Jyζ For any S in S^ we will say that S is in standard position
if it is realized as a subset of the complex plane bounded by n circles,
CΊ, C2, •••, Cn with Cx the unit circle, C2 concentric with and outside
of the unit circle, and C'3 (if there is one) with center on the x axis.
Let Ci have center xi + iiji and radius r ίβ

For S in standard position, we define the modulus of S, m(S), to
be the vector (xSy , xn, y4, , yn, r2, , rn). When necessary, we
denote the dependence of these quantities on S by writing xd(S), etc.
For S in ^ with n greater than 2, m{S) is a (3% — 6) — tuple.

It is known that, given S in S^, there is at least one and at most
finitely many Riemann surfaces Sr which are conformally equivalent
to S and are in standard position. (E.g. [9] 424ff.)
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We define the m-topology (moduli topology) on 3/* as follows,
A sequence Sl9 S2, converges to S in the m-topology if and only
if there is a sequence S[, Sϊ, such that S4 is conformally equivalent
to SI for each i and the vectors m(S-) approach m(S) in the Euclidean
topology as i becomes infinite.

4* Conformal invariants and almost isometries* In this section
we introduce a set of conformal invariants for the Riemann surfaces
in St, develop some of the elementary properties of these invariants
and relate these invariants to d( , •)•

DEFINITIONS 4.1. For a function algebra A we define eA =
exp (A) — {g in A; g = eh for some h in A}, A"1 = {g in A; g~ι is in A}.
eA and A"1 are commutative groups with respect to multiplication and
eΛ is a subgroup of A~ι. For a in A~\ we will denote by (a) the
element of the quotient group A"1/exp (A) which contains α. For any
a i n A " 1 w e d e f i n e p((a)) — i n f {\\g\\ Wg^Wig i n (a)}. O f c o u r s e , w e
will often write p(a) for p((a))

For n larger than one, let S be a surface in Sζ Pick a num-
bering of the boundary contours of S. For i and i between one and
n,iΦ j , let τiS be the element of A(S) which maps S conformally
onto the surface Tia(S), a surface in standard position, so that the ith
boundary contour of £ is mapped to the unit circle and the jth to
the circle concentric with the unit circle. The function p( ) is defined
on A(S). Set Pa(S) = pi3 — p{{τi3)). The numbers pid are the con-
formal invariants we shall consider. Note that piS — pji9 thus for S
in £sn w e have (at most) n(n — l)/2 distinct pid. If S and S' are con-
formally equivalent, then after some renumbering of the boundary
contours of S'9 Pij(S) = fti(S') for all i and j . (Results relating to
the converse of this observation are presented in [8].)

Given S in S? and C a boundary contour of S and / in A(S) we
denote by w(C,f) the winding number of the curve f(C) about the
origin. That is, w(C, f) is the winding number of / on C.

4.2. Elementary properties. Let H be the free commutative
group generated by the symbols cl9 c2, , cn. Let G be the subgroup
of H which consists of those elements Σ*=i ai°i f° r which X ^ = 0.
Let S be an element of £f with boundary contours Cu C2, •••, C».

THEOREM. The map k from A(S)~7exp (A(S)) to G defined by
— Σ?=i ^(Cί? /)cί is a group isomorphism.

NOTE. ^ If A is a function algebra then A~7exp (A) e* H\M{A), Z) =
the first Cech cohomology group of M(A) with integer coefficients
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([6]) This theorem is just an explicit form of the isomorphism for
the case of interest.

Proof. It is clear that k is well defined. k{(τi3)) — c3 — c< and
elements of the form c5 — c{ generate G, hence k is onto. It remains
to show that &((/)) = 0 implies that/ i s in exp (A(S)), or equivalently,
log (/) is in A(S). f is invertible, hence by the monodromy theorem
it suffices to show that im (log (/)) is single valued. Any smooth
curve C in S is homologous to Σ?= 1 n{Ci for some choice of n{. By
direct computation the change in l/2τr im (log (/)) on traversing C is
ΣniW(Ci,f). Since w(Chf) — 0 for all i, this quantity is zero and
the proof is complete.

4.3o The following reinterpretation of p( ) helps elucidate the
elementary properties of p( ) and the relation between the invariants
Pij and the conformal structure of S. Let CR(dS) be the Banach space
of real valued continuous functions on the boundary of S. Let Re A
be the subspace of CB(dS) consisting of real parts of functions in Ay

and let Re A be the closure in CR(dS) of Re A. Let D be the Banach
space CR(dS)/Re A and denote by ||λ||z> the norm in D of the coset
of the element h in CR(dS).

PROPOSITION. For f in A(S)~\ log (ρ(f)) = 2|| log | / | \\D.

Proof. The mapping which sends / to log \f\ sends A(S)-1 into
CB(dS) and expA(S) into Re A. The equality follows directly from
the definitions.

By Theorem 4.2 the mapping Φ of A(£ΓΓ7exp A(S) to L, the
set of points in Rn~λ with integer coordinates defined by Φ((f)) =
(w{Cl9f), ,w(Cn-l9f)) is a group isomorphism. Let p be the
function p regarded via this isomorphism as a function on L, i.e.,

PROPOSITION, p is the restriction to L of a norm on Rn~ι.

Proof. The mapping of L into D which sends I to log | Φ~ι(l) |
extends to a linear map R of Rn~ι into D. Define p on Rn~~ι by
p(l) = 2||i2(ϊ) \\D. The proposition will be established if we show that
R has kernel zero. To do this it suffices to show that h = Σ?=iα<
log \rnΛ I in ReA implies α̂  = 0, i — 1, , n — 1. The period of *h9

the harmonic conjugate of h about ft, a curve interior to S and
homotopic to Ci9 is 2πa,i. However h is in ReA. Hence by a standard
approximation argument this period must be zero. Thus all the α<
are zero. The proposition is proved.

4.4. Continuity of the piS. We now show that the pi3- are con-
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tinuous functions on £/% with respect to the topology induced by the
metric d( , •)•

THEOREM. Given S in £^n and ε > 0 there is a d so that if S'
is in S^ and d(S, Sf) < δ then there is a renumbering of the bound-
ary contours of S' after which \ Pij(S) — fty(S') | ^ ε, 1 ^ i, j ^ n.

Proof. An argument similar to that in the proof of Theorem 2.8
shows that for δ small enough, d(S, S') < δ implies that there is a T
in L(A(S), A(S')) with c(T) > 1 - δ\ and Γ(l) - 1, where δ' depends
on δ and can be made arbitrarily small if δ is made sufficiently small.
By choosing δ to be perhaps smaller still we can also insure that such
a T determines a homeomorphism of dS and dS' in the manner de-
scribed in Theorems 2.1 and 2.2. Given S' with d(S, S') less than this
new δ, renumber the boundary components so as to be compatible
with this homeomorphism. Denote the boundary contours of S> and
S' by Cl9 •••, Cn and C[, •••, C; respectively.

Let K = 3 max {Pij(S); 1 g i, j ^ n). Since winding numbers are
integers, by choosing δ to be perhaps smaller still, Theorem 2.5 allows
us to conclude that if / is in A(S)'1 with | | / | | H/"11| < K then
W(Ciff) = W(C'i9 Tf) for ί = 1, . . , n.

Given i and j between 1 and n, choose / in the coset of
A(S)-γexp (A(S)) which determines ρiS so that | | / | | ^ || ΓIΓ1 and
11/"1 \\ ^ Pij + εf < K for some small preassigned positive ε\ The re-
marks of the previous paragraph imply that Tf is in the coset of
A(S')~7exp (A(S')> which determines ft (S'). Thus

But by Theorem 2.4

= inf

IIV

{| Tf(z)

ίl/(«) 1;
-lip +

z m
z in d

2(c(T)

dS'}
S} +

- i )

2(c(Γ) - i )

ε' was arbitrary so p^S') ^ (piΛS)"1 + 2(c(Γ) - I))"1. Hence ftΛS') ^
ft^S) + 2(1 - c(T))ρi5 ^ ft,- + K(ί - c(T)). Hence, if δ' is small enough,
then the fty(S') are bounded by the same i£. In this case the role of
S and S' in the previous argument can be interchanged and pi3 (S) ^
Pij(S') + K(l — c{T)). The previous two inequalities imply the desired
result.

5. Construction of elements of L(A(S), A(S')). Let S be an
element on £^ in standard position. The following Banach space
direct sum decomposition of A(S) will be called a standard decomposi-
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tion.

A(S) = C0ΛΘ-04

where A2 = {/ in A(S), f is the restriction to S of a function analytic
interior to C2 and vanishing at 0}. For i Φ 2, A{ — {/ in A(S), / is
the restriction to S of a function analytic exterior to d and vanish-
ing at °o}.

Given / in A(S), set /«*(«;) - l/2ττij f(z)(z - w)~ιdz. Set /, =
ft -ft{Pi) where P2 = 0 and P< = oo for i ^ 2 . Since/< is in A4 and / =
(Έift(Pi)) + A + + /»> the sum is all of A. Any element in A* Π
Ay for i ^ j would be analytic on the Riemann sphere and vanish at
oo and thus would be the zero function.

For / in A(S), define n(f) = | ΣΛ*CP<) I + Σ ||/< ll w( ) is a norm
on A(S) and by the closed graph theorem the map from A(S) into
A(S) normed by n( ) is bicontinuous. The projection P(f)=f. is
clearly continuous with respect to this new norm, hence it is continu-
ous with respect to the original norm and the sum is a Banach space
direct sum.

For n = 2, the standard decomposition decomposes an element /
in A(S) into the sum of the terms of the Laurant series of F involving
positive powers of the variable, those involving the negative powers
of the variable, and the constant term.

THEOREM 5.1. If Sh ί = 0, 1, are in S^n and the Si approach
So in m-topology as i becomes infinite, then lim^^ d(Si, So) = 0.

Proof. We will show that for any compact subset W of S^n there
is a continuous function λ(ί) which approaches zero as t goes to zero
such that if S and S' are in W then d(S, S') ^ λ(||m(S) - m{S') | | J .

Let S and Sr be any two elements of £fn. We will construct a
T in L(A(S), A(S')). Let A = A(S), Ar = A(S'). Without loss of gen-
erality we can assume that S and Sf are in standard position. Thus
dS and dS' are each a union of n disjoint circles, Cl9 •••, Cn and
C;, , C; respectively. Let A = A, 0 . 0 An © C and A! = A[ 0
• 0 Ar

n 0 C be the standard decompositions of A and A' respectively.
Let t±(z) = «, and ίa(j?) = ( r ^ ) « (rί and r2 are the radii of Q and C2

respectively). For k — 3, 4, , n, let ίfc be the Mobius transformation
which takes the exterior of Ck to the exterior of C'k fixes oo and
moves Ck as little as possible, i.e., subject to the two previous con-
ditions minimize sup {\z — tk(z) |: z in Ck).

For / in A we have / = c + Σ/< with c a constant and /< in A*.
Let (Tf)(w) = c + Σfi{tjι{w)). Note that for each i, Γ restricted to
Af is a subjective isometry of A; onto A{ and that the projection of
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A onto Ai is continuous. Hence T is in L(A, Af).
For each k we have Tk mapping A(Sk) to A(S0) constructed accord-

ing to the prescription just given with S = Sk and S' = So. It suffices
to show ϊ ϊ m ^ log || Tn\\ \\ T~ι || = 0. Notice that T~ι is the map that
we would have constructed according to the above prescription had
we interchanged S and S' before starting. We will show that
ίim || Tn !| = 1. Since Γn(l) = 1 we know that || Tn || ^ 1 for all n.
The same estimates with the requisite changes in subscripts would
also show that lim |( T^"11| = 1. We will not provide the details for
this second claim.

We may limit consideration to those Sk for which m(Sk) lies in
W, some preassigned compact neighborhood of m(SQ). This having
been done, the constants R, K, and M of the next three lemmas may
be chosen as universal constants, that is depending on W but inde-
pendent of the choice of S in ^ , (This uniformity follows from the
fact that the constant R in the proof of Lemma 1 can be bounded away
from 1 for all S with m(S) in W.)

LEMMA 1. There is a positive number k such that given j , 1 <̂
j <; n, and given c in C, f{ in Ai9 f — c + Σ/< with \\f3- \\ — 1 and

(i.β , f peaks on Cd), then\\c + Σ/<| | ^ k.

Proof of lemma. Assume j Φ 2 (the case j — 2 requires minor
notational changes). Assume | | / | | = | |/ | |C i ^ k. Draw a circle Γ,
"hyperbolically concentric" with Cj9 i.e., if one maps ext (Cj) conform-
ally to the unit disk and oo to 0, then the image of Γ will be con-
centric with the unit circle. We also require that the region between
the two circles be contained in S. By Schwarz's lemma we have

The constant R which is greater than 1 is determined by the relative
positions of Γ and c3 . Hence by the maximum modulus principle for
(int Γ) applied to the function / - fό we have \\f — fj\\e.<L\\f — fό ||Γ.
So,

= Il/Ho, ^ l l / i l l c , - 1 1 / - Λ ll ,
^ 1 - \\f-fό\\Γ^l-k-llR.

So k ^ (1 — l/R)/2. The same argument can be used for any j (with
the obvious modifications if j — 2). Hence taking k to be the mini-
mum of the finite number of k's that are produced by such arguments,
the lemma is proved.

LEMMA 2. There is a K such that if fι is in Ai and if for some
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3, II e + Σ / i II = II c + Σ / i lie, = 1 then \\fs \\ ^ K.

Proof of lemma. Let f{ =/ί/ | |/ 3 || for i equal one through n.

Set & = e/\\fJ\\. Apply Lemma 1 to / ' = c ' + Σ / ί So 1/||/,|| =
H/'II^A; . So \\fj\\^l/k = K.

L E M M A 3. There is an M such that, given f in A, \\f\\ = 1,

then \\fi\\ ^ M for all i.

Proof. Let / = c + Σ Λ with /,- is Aό. Assume | | / | | - | |/ | | c..
By the previous lemma, ||/« || ^ If. Let g = (/ - /^/H/ - /, ||. For
some j Φ i, \\g\\ = \\g\\e3 Denote the projection of g in A5 by gs.
By the previous lemma, || gό \\ ^ K. Hence ||/, || = | | / - fd \\ \\g3- \\ ̂
(1 + K)K. Continuing in this manner (i.e., next h = {g — g,)l\\g — gj\\)
gives a bound on all the fk. Taking the greatest of these bounds,

K)* for a l i i .

NOTE. This estimate (Lemma 3) also follows from the continuity
of the projections of A onto each of the summands A*. However, the
constant produced by that observation depends on the particular sur-
face rather than on the compact set W.

LEMMA 4. There is a function M(i, j , m(S), m(S')) such that if
f is in Ai and zQ is in cd for i Φ j , then \fi(z0) — fi{t~jι{z0)) \ ̂  \\f{ \\
M(i, j , m(S), m(S')) and M(i, j , m(S), m(<S')) approaches zero as
\\m(S) — m(S') I loo approaches zero with S and S' restricted to lie in a
preassigned compact subset W of S^n.

Proof of lemma. For simplicity we will assume that neither i
nor j is equal to two. Let Όi = (exterior of C{) U {°°}. Let f =

. By Pick's lemma,

Also

hence

We set M(i, j , m(S), m(S')) = 2 sup [δD.(z, tjι{z)): z in (c, )]. Since
M(i, j , m{S), m(S')) is continuous with respect to m(S) and m(S') the
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lemma is proved.

Proof of the theorem. Pick Sk and So Let Sk = S, So = S'.
Let T be the map of A onto A! defined above. Pick / in A with
11/11 = 1. We will estimate \\T\\ by estimating \\Tf\\. We will as-
sume that / peaks on d and will only estimate || Tf\\c>.. Similar es-
timates apply to the other || Tf\\9>. Pick z'o in d. Let / = c + Σ*Λ
with c in C and /, in A{. Let #0 = tγ'(zΌ). Thus 20 is in C{. We have
Λ«o) - c + Σ*Λ(«o). So

) - f(z0) I =

^ Σ IIΛ II M(i, j , m(S), m(S')) by Lemma 4
jφi

^ M'(m(S), m(S')) Σ 11/; il with M' defined the obvious way
;*i

^ M'(m(S), m(S')) Σ ΛΓ by Lemma 3

<̂  NM'(m(S), m(S')) for some constant iV.

So I T/(O I ̂  \f(z0) I + NM'(m(S), m(S')) ^ 1 + iVM'(m(S), m(S')) Once
the compact set W in ^ has been fixed then the constant ΛΓ in the
previous inequality can be chosen uniformly and hence absorbed into
the function M'( , •). z0 was an arbitrary point on JS'. Taking the
supremum over all such z0 we have

Taking the supremum over all / in A of norm one we find

Since M! has the required properties, the proof is complete.

6* Almost isometries and moduli of domains* In this section
we prove the results necessary to complete the proof of Theorem B.
The major remaining steps are the following two theorems.

THEOREM 6.1. Given n ^ 2, S and S' in £%, if d(S, S') = 0 then
S and /S' are conformally equivalent.

Proof. Set A = A(S), A = A(S'). By Theorem 2.8 there is a
sequence of maps Ti in L(A, Ar) such that c{Tι) approaches one and
2̂ (1) = 1. Without changing notation we normalize these Ti so that
they are all of norm one. Hence, 7̂ (1) will be a positive constant
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between c(Ti) and one. By Theorem 2.2, for sufficiently large i, each
Ti has associated with it a homeomorphism of the boundary of S with
that of S'. This homeomorphism induces a renumbering of the bound-
ary components of S\ Since there are only finitely many possible
renumbering of the boundary components of S'9 we may pass to an
infinite subsequence of the TVs with the c(Γi)'s large enough to insure
that the conclusions of Theorem 2.2 hold and with all of the assoc-
iated boundary homeomorphisms inducing the same renumbering of
the boundary components of S'. We will denote this new sequence
by {Ti} and will assume that the boundary contours have been re-
numbered so that for all j the induced homeomorphism carries the
jth boundary component of S to the jΓth boundary component of S'.

The proof now consists of constructing an analytic map from S'
into S, showing that the induced map between homology groups has
kernel zero and concluding that the map is a conformal equivalence.
Most of the previous results in this paper worked with the boundary
points of the surfaces being considered. In this proof we will only
show that int (S) and int (S") are conformally equivalent. The equiv-
alence of the two as bordered surfaces then follows from standard
results about the boundary behavior of conformal maps.

For convenience we will break the proof into a series of lemmas.

LEMMA 1. There is a subsequence {Tn.} of the T/s such that for
each y in the interior of Sf there is a point x(y) in S such that for
all f in A lim^^T7^/)(?/) = f(x(y)) Furthermore, the mapping that
sends y to x(y) is analytic.

Proof of lemma. Pick y in S'. All of the Tn are of norm one,
hence all of the Ti are of norm one. Hence, by the weak-star com-
pactness of the unit ball of A*, the set {T%(y)} has a weak-star ac-
cumulation point x(y).

We now perform two diagonalizations on the sequence {7\-}. Let
/i, Λ, be a countable dense subset of A. (Since A is a direct sum
of disk algebras with their constants identified, this is clearly possible.)
We know that {T%(y)(f)} has the point x(y)(fi) as an accumulation
point. By passing to a subsequence of the Γ/s and renumbering we
can insure that

(6.1) lim T*(y)(f) = x(y)(f)

for this particular y and for / = fx. By passing to a further subse-
quence we can insure that (6.1) holds for this y and for /2. Continu-
ing in this manner and then replacing {TJ by the diagonal subse-
quence we insure that (6.1) holds for this y and for all f{. Since the
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fi are dense we can conclude that (6.1) holds for this y and for all /
in A.

Let yί9 y2, be a countable dense subset of the interior of S\
By another diagonalization, this time with respect to the y^s, we
obtain a subsequence of the T/s such that (6.1) holds for all / in A
and for y equal to any of the yζ. For the other y in S' we let x(y)
be any weak-star accumulation point of the sequence {T%(y)} In fact
(6.1) now holds for all f in A and for all y in the interior of S'; for,
by construction, x(y)(f) is an accumulation point of the numbers
Tn(y)(f) Hence it suffices to show that this sequence has only one
accumulation point, y is an interior point of S' and, for fixed/, the
Tn{f) are uniformly bounded on Sr. Hence, in a small neighborhood
of y, this set of functions is uniformly equicontinuous. But for a
dense set of points, yi9 in this neighborhood, the sequences {T*(^)(/)}
have unique accumulation points. Hence the sequence {T£(y)(f)} can-
not have more than one accumulation point.

We now show that for any y9 x(y) is a nonzero multiplicative
linear functional on A!. x(y)(l) = lim(Ti(y)(ί)) = lim Tn(ΐ)(y) = 1.
Hence x(y) is nonzero. It remains to show that for any / in A of
norm one x(y)(f2) = (x(y)(f)Y. We know that lim (T:(y)(f)Y =
Wv){f)Y and that lim (T:(y)(f2)) = x(y)(f*). We also know that
|(T*(τ/)(/))2 - T*(y)(f*)\£ \\(Tnff- Tn(Γ)\\ and by Corollary 2.7.1
this last quantity must become arbitrarily small as n becomes infinite.
Combining these observations show that x(y)(f2) = (x(y)(f)Y Since
x(y) is a multiplicative linear functional, it can be thought of as a
point of S, the maximal ideal space of A = A(S). We will denote this
point by x(y).

We now show that this mapping from y to x(y) is analytic. Fix
y in the interior of S'. Let h be the coordinate function on S. We
know that the sequence of functions {TJι(y)} converges pointwise to
the function h(x(y)) = x(y) We also know that the sequence of func-
tions TJi is a bounded sequence of analytic functions on S'. These
two facts allow us to conclude that a subsequence of the TJi converge
uniformly on some small neighborhood of y to the limit function x.
Thus, at y, the function x(y) is the uniform limit of the analytic
functions Tnh9 and hence is analytic, y was arbitrary so the lemma
is proved.

NOTE, We have not ruled out the possibility that x(y) is a con-
stant function. Simple examples using the disk algebra show that
this is, in fact, possible if we do not require S and S' each have more
than one boundary component.

The presence of homology in S and S' prevents the map from
being trivial. We have identified the integer cohomology groups
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Hι(S) and H'iS') with A~ι/eA and A!~ι\eA' respectively. Since x maps
S' to S there is an induced map a;* of H^S) into H\S').

LEMMA 2. Ker x* = 0.

Proof. For i = 1, , w — 1 let 7< be a simple closed curve in
the interior of S which is homotopic to the ith boundary contour of
S and is similarly oriented. Define Ί\ in S' similarly. Suppose that
/ is in A"1 and (/) in A~1/eΛ is such that x*(f) — 0. We must show
that / is in eΛ. It suffices to show that W(Ίi9 /) = 0 for each i.
Choose i. Since »*(/) = 0, we know that a?*(/)(7j) = TΓ(τ{,/oaj) =
0. Since 7ί is a compact subset of the interior of S', W(Ύ'iJ°x) =
lim TΓ(7ί, Tnf). Since the winding numbers are integers this implies
that for all n sufficiently large W(Yi9 TJ) = 0. Let C< and C{ be the
ίth boundary contours of S and S' respectively. W{Ίf

h TJ) =
W(C'i, TJ). Hence for all n sufficiently large, W(C'i9 TJ) = 0.
Hence, by the lemma of Theorem A' W(Ci9f) = 0. But W(vi9f) =
W(CiJ) so the proof is complete.

Proof of theorem. Let the mapping of y to x(y) be the map of
the interior of S' into S constructed in Lemma 1. Applying Lemma 1
again in the opposite direction gives a map of the interior of S into £»'
which sends x to y(x). Let K be the map of the interior S into itself
defined by K(x) = x(y(x)). The mapping of x into y(x) is only defined on
the interior of S. However, Jthe previous lemmas show that the map
of y to x(y) is nonconstant and analytic. Hence the image of the in-
terior of S' is contained in the interior of S. Thus K is well defined.
K induces a map K* of H'(S) into itself and K* = y*x*. By Lemma
2, Ker x* = 0 and Ker y* = 0. Hence Ker K* = 0. Since fΓ(S) and
HX{S), the integer homology group of S, are both free on n — 1 gen-
erators, we may conclude that K* mapping Ht(S) to itself has trivial
kernel. Landau and Osserman [4] have shown that if S is a finite
planar domain and K is an analytic map of S into itself such that
K* has trivial kernel, then K is a conformal automorphism. Thus
K, and similarly H ~ yoχ mapping Sf to itself, are conformal auto-
morphisms. Hence x is a conformal isomorphism of S and S' and the
theorem is proved.

THEOREM 6.3. If Sk is in Sζ,, k = 0, 1, 2, . . . αwd lim d(Sk, So) =

0 ίfeeti {Sy~=0 Mes m α-̂  m-topology compact subset of 6^n.

Proof. Put So in standard position. Let SQ — e be the set of all
points in So of distance at least ε from dS0. If e is sufficiently small
then So — ε and So — 2ε are in S^. By Theorem 2.8, for k sufficiently
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large we can find Tk in L(A(Sk), A(SQ)) with Tk(l) = 1 and lim c(Tk) = 1.
For N large and ε small, Theorem A' holds and hence for all n> N,
for all x in dS0

(6.2) I Tn(τ12)(tn(x)) - Ms) I < Φ

where tn is the boundary homeomorphism induced by Tn in the man-
ner described in Theorem 2.3. If a is in SQ — ε then, by (6,2), since
winding numbers are integers 1 = W(dSQ, τ12 — a) = TF(3£%, Γ(r12) — a).
Hence Tn(τ12) map a subset of Sn univalently onto SQ — ε. Let Λn be
the inverse of this map. Thus hn maps So — ε into Sn and the com-
ponents of C—Sn are contained in the components of C— hn(S0— ε).
Since c(Tn) approach one, the functions hn are uniformly bounded
by some constant K. Hence, the set of numbers {r2(Sk)} is bounded
for,if not, then the numbers p12(Sn) ^ r2{Sn)jK would not be bounded,
an impossibility by Theorem 4.4.

For S in £f% and t a continuous function on S, define B(t, S) —
inf {\t(x) — t(y)\; x and y in different boundary components of dS).
Let B(S) be B{t, S) with t the map which puts S in standard position.

Note that if some sequence of r^SJ approach zero as n becomes
infinite and if the B(Sn) are bounded away from zero then some of
the Pij(Sn) must become arbitrarily large. Again, by Theorem 4.4,
this is impossible.

The only way in which the moduli of the Sn can fail to lie in a
compact subset are if the r2(Sn) are unbounded, or if some Ti(Sn)
become arbitrarily small, or if some B(Sn) become arbitrarily small.
We have already ruled out the first possibility and shown the second
possibility cannot happen unless some B(Sn) are arbitrarily small. We
must now show that the B(Sn) are bounded away from zero.

Suppose that, after passing to a subsequence, B(Sn) approach zero.
Since B(hn, So — ε) ^ B(Sn) we would have B{hny So — ε) approaching
zero. Similarly, letting kn be hn restricted to So — 2ε we would have
B(kn, So — 2ε) approaching zero. The hn are a uniformly bounded
family of univalent functions on So — ε; hence, after passing to a
subsequence we can find h the uniform limit on So — 3ε/2 of the hn, h
is constant or univalent. Since W(\ z \ = 1 — 2ε; hn) — 1 for all n, h
is not constant. Let k be h restricted to So — 2ε. Since k is univa-
lent on So - 2ε, B(k, So - 2ε) > 0. But B(k, So - 2ε) ^ lim B(kn, So -
2ε) = 0. This contradiction completes the proof.

6.4. Proof of Theorem B. It suffices to show the following:
(1) d( , •) is a metric on Sfn and
(2) Let So, Sl9 be elements on ^ then

(a) if the Sk approaches SQ in the m-topology then d(Sk} So)
approaches zero.
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(b) if d(Sk, So) approaches zero then Sk approaches So in the
m- topology.

For 1 the only nontrivial fact is that d(S, S') = 0 implies S and
S' are conformally equivalent. This is Theorem 6.1. 2(a) is Theorem
5.3. For 2(b) it suffices to show that the sequence Sk has an m-topology
accumulation point, then by the triangle inequality for d and part 2(a),
this point must be So. However, Theorem 6.2 guarantees that such
an accumulation point exists.

Added in proof. A result very similar to Theorem 2.3 has been
proved by B. Cengiz (Proc. Amer. Math. Soc, 40 (1973), 426-430).
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