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SLENDER RINGS AND MODULES

E. L. LADY

An abelian group B is called slender if every homo-
morphism from Π Γ ^ * n t o B * s continuous for the discrete
topology on B and the topology that JJf Z has as a cartesian
product if Z (the additive group of integers) is considered
discrete. It can be seen that if B is slender, then every
homomorphism from ΠΓ ^ * n t o & * s continuous for the
same topologies, where A< are arbitrary abelian groups.
Slender groups were completely characterized by Nunke, and
it follows from his characterization that all countable reduced
torsion free groups are slender. Nunke's results depend on
the fact that Z is slender (proved by Specker) and the use
of some homological machinery. In this paper, slender
modules are studied over an arbitrary ring. A ring R will
be called slender if R is a slender i?-module. In Theorem 1, a
generalization of the Baire Category Theorem is used to show
that a countable module over an arbitrary ring is slender if
Π vxB = 0, where m ranges over the set of ideals in R which
are not zero divisors for B. It follows that countable torsion
free reduced modules over any (countable) integral domain
are slender. In Theorem 2, it is shown that a commutative
ring R is slender if there exists an infinite set of maximal
ideals with the property that the intersection of any infinite
subset is 0.

In § 2, reflexive modules over a slender ring are studied,
and it is shown that a projective module is reflexive if it is
generated by a set with cardinality smaller than the first
measurable cardinal. In § 3, Nunke's characterization is
extended to modules over a slender Dedekind domain having
only countably many ideals. The general approach in § 3
follows Nunke's, but all homological machinery is avoided by
the use of topological techniques.

R will always be a ring with identity. The word ideal will
mean a two sided ideal, the word module will mean a unitary left
module.

If B is an iϋ-module and m an ideal in R, we say that m is a
zero divisor for B if mx — 0 for some nonzero xeB. We say that
B is torsion free if no nonzero ideal is a zero divisor for B. If ^€
is a family of ideals in R, then by the ^^-adic topology on B we
mean the linear topology induced by the family of submodules mB
where m is a finite intersection of ideals in ^f. The word complete
will only be used in reference to Hausdorff topologies.
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1* Slender modules* Let {Ai \ie 1} be a family of R modules.
By the product topology on Π/ A{ we mean the topology this module
has as a Cartesian product if each A{ is considered discrete. In the
product topology, Π/ -A* is a complete topological module. If a e Πi Ai9

we will write a(i) to denote the ith coordinate of a. If J g /, we
will consider Π J A* as a submodule of Πi A% i*1 the usual way.

If J*€" is a family of ideals in R, we will also be interested in
the topology on Π/ A% which is the supremum of the product topology
and the ^^-adic topology. We will refer to this as the strong (or
^"-strong) topology. It is a complete topology, and is metrizable if
both ^ and / are countable. If a e Π/ Aif then the sets of the
form a + mϊlitj A{ form a basis for the neighborhood system at a
in the strong topology, where J is a finite subset of I and m is a
finite intersection of ideals in ^€. Since these neighborhoods are
closed in the product topology, the following generalization of the
Baire Category Theorem is applicable.

LEMMA 1. Let X be a complete metric space. Let J7~ be a topology
on X which is finer than the metric topology and such that J7~ has
a basis consisting of sets which are closed in the metric topology.
Then X is not a countable union of sets which are nowhere dense
with respect to

Proof. Let Gu G2, be a countable family of sets which, with
respect to jf~y are dense and open. Then we can inductively find a
sequence of points xn and ^^neighborhoods Un of xn such that, for
each n, Un+1 S Un Π Gx Π Π Gn+ί9 and such that the Un are closed
in the metric topology and have diameter less than 1/n. It follows
that {xn} is a Cauchy sequence in the metric topology and hence
converges metrically to a point x. Since the Un are metrically closed,
it follows that x e Π Gn. Thus any countable intersection of dense
open sets is nonempty, and this is equivalent to the assertion of the
lemma.

COROLLARY 1. If ^J€ is a family of ideals, then ΠΓ Ai is not
a countable union of sets which are nowhere dense for the strong
topology.

We are now able to prove the two main theorems.

DEFINITION. If B is an ϋϊ-module, we say that B is (left) slender
if for every countable family of jβ-modules {A{} and every homo-
morphism φ from ΠΓ Ai into J5, there is a natural number n such
that Φ(ΐli^n A{) = 0. This amounts to saying that φ is continuous
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for the product topology on ΠΓ^i and the discrete topology on B.
We say that R is a (left) slender ring if R is a slender .β-module.
(The concept of right slenderness can, of course, be similarly
defined.)

THEOREM 1. Let B be a countable R-module and ^/S be the set
of all ideals which are not zero divisors for B. If the ^ίf-adic
topology on B is Hausdorff, then B is slender.

Proof. Let φ be a homomorphism from ΠΓ Aζ into B. Then
ΠΓ^ΐ is a countable union of sets Φ~~ι{x), for xeB. Because φ is
necessarily continuous in the ^f-adic topology, each φ~\x) is closed
in the ^^-adic topology, and hence in the strong topology. By
Corollary 1, some φ~ι{x) must have an interior in the strong topology.
Thus there is a natural number n and an ideal m e ^/£ such that
φ(a + m JJi^n A*) = {x} for some aeJl Ai9 This is only possible if
0(m ILsn At) = 0. Since m is not a zero divisor for B, this gives

EXAMPLE 1. Let R be a countable commutative integral domain
which is not a field. The R is a slender ring, and every countable
reduced torsion free JS-module B is slender. (Reduced means that
no submodule is divisible.) In fact, in both cases ^f is the set of
all nontrivial ideals in R. If me ^ and 0 Φ x e R, then x g mx and
mx e Λ0r, so R is ^^Γ-adically Hausdorff. If B is torsion free, then
it is easily seen that Γ\mmB is divisible and hence equal to 0 if B
is reduced.

EXAMPLE 2. If R is a countable Dedekind domain, then the
hypotheses of Theorem 1 hold if and only if B is countable torsion
free and reduced. In fact, clearly it is necessary that B be reduced.
Now if B is not torsion free, then there is a submodule A of B
with α = Ann (A) Φ 0. Now every ideal in R is a product of maximal
ideals. If m is maximal and α £ m> them m is an associated prime
for A, so m i ^y/ί. On the other hand, if m does not contain α, then
tπ + α = R so that m i = A. Hence we have A — f)m mA £ f}m mB.

EXAMPLE 3. In general, B need not be torsion free in order to
satisfy the hypothesis for Theorem 1. For instance, let R = Z[x]
and B = R/2R. Then B is not a torsion free iϋ-module, but the
hypothesis of Theorem 1 is easily seen to hold.

We cannot hope that Theorem 1 will remain valid if we simply
require that B be countably generated. For instance, if R is a
complete local ring, then R fails to be slender, as can be seen from
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the proof of Theorem 6. However, there is some hope for certain
uncountable rings, as is shown in Theorem 2.

THEOREM 2. Let R be a commutative ring having an infinite
set of maximal ideals with the property that the intersection of any
infinite subset of ^/fί is 0. Then R is a slender ring.

Proof. R must be an integral domain, since if xy = 0, then
either x or y must belong to infinitely many ideals in ^ (since these
are prime). There is no loss of generality in assuming that ^ is
countable, so we may enumerate Λ€ as {ttιi:i\ί,j = 1,2, •••}. Now
let Cmn = \Ji=ι(R\mmi) for every pair of natural numbers m, n. Let
Co = {0} and for n^l let Cn = Γ)m Cmn. Then Cn is ^-adical ly
closed and if 0 Φ x e R, then since x can belong to only finitely
many mih x e \Jn Cn. Now if α is a nonzero ideal in R, then there
are only finitely many irtίy with α £ m ίy. Thus for some m, none of
the ideals mmj contain a. Thus for any fixed b e R and every n, we
can find x ~ b (mod α) with x e mmi, i = 1, , n by the Chinese
remainder theorem. Hence b -I- α is not contained in Cmn for any n,
and so is not contained in any Cn.

Now let φ be a homomorphism from ΠΓ -A* into R. It now
follows by Corollary 1 that some φ^iC*) has an interior in the strong
topology. This means that φ(a + m IL^m ^ ) g C M where aeJJAif m
is a natural number, and m is a finite intersection of ideals in ^/έ.
Since φ(m IL^m ^ ) is an ideal in R, it follows from what we have
said about the Cn that this can only happen if τtιφ(JJi^m A{) — 0, and
hence Φ(Y[i^m Ai) =• 0, since R is an integral domain.

EXAMPLE 4. R is a Dedekind domain with infinitely many prime
ideals.

EXAMPLE 5. R = K[xl9 •• , xs] where if is a field and the xt

are indeterminates. Let F be the algebraic closure of K and F —
F (x) JB, regarded as an .F-vector space. Let Vn be the subspace of
V generated by those polynomials of degree at most n, let r(n) =
dimVn, and let VI be the kernel of the restriction map F * —>F^,
where F * = Hom(F, F ) . Each point aeFs induces a linear func-
tional Φ(a) e F * by Φ(a)(f) =/(α) . Furthermore, suppose TF1? •••, TFr

are proper subspaces of F * containing F^. Choose / f e F% for each
1 ^ i ^ r such that fi is annihilated by W{. Now there is a point
ae Fs such that fι ••• fr does not vanish at α, hence we see that
φ(Fs) §£ TFi U U T̂ r This enables us to inductively choose a
sequence of points {an} as follows: choose an such that for all i <£ u
and all I g {α1? ? αn_J, if <F/, ̂ (X)> Φ V*, then ^(αj ί (VI, φ(X)).
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It can now be seen that no nonzero polynomial of degree n vanishes
at any r(n) + n of these points. Now for each an, we have the maximal
ideal in R consisting of all polynomials vanishing at an. Let ^ be
this set of maximal ideals.

EXAMPLE 6. A similar technique will work for R — K[xly •••,
xs]/p9 where p is a nonmaximal prime ideal.

The following theorem gives some properties of slender modules
which are well known in abelian group theory [3, Theorems 47.2
and 47.4].

THEOREM 3. (1) Submodules of slender modules are slender.
(2) A direct sum of slender modules is slender.
(3) B is slender if and only if every homomorphism φ from

ΠΓ R into B is continuous for the product topology and discrete
topology respectively.

(4) If B is slender and I is a set whose cardinality is smaller
than the first measurable cardinal, then every homomorphism from
Πz A{ to B is continuous for the product topology on Πi A{ topology
on B.

Proof. (1) Obvious.
( 2) Let φ: ΠΓ A{ —> ΣK Bk where each Bk is slendero Let φk be

the composition of φ with the projection onto Bk. Since Bk is
slender, each φk is continuous for the product and discrete topologies.
We must show that if {an} is a sequence of elements in Π -4* which
converges to 0 in the product topology, then φ(an) is eventually 0.
Since there are in any case only countably many k for which φk{an) Φ
0 for some n, we may suppose that we are dealing with ^ Γ Bk.
Now for any n, Φ~ι(Σn Bk) = C\k>n Φlι{ϋ) which is closed in the
product topology by the continuity of each φk. Since Π Ai —
\}~=ιΦ~\Y2Bk), the Baire Category Theorem implies ΦiTίi^A^S
Σ? Bk for some m and n. Since ΣΓ Bk is clearly slender, the result
follows.

( 3) Let φ: ΠΓ -A* —• B, and let {an} be a sequence of elements in
ΠΓ^-ί converging to 0 in the product topology. For every natural
n, let en e ΠΓ R be defined by en(ί) — 1 if i = n, en(ϊ) = 0 otherwise.
We can define a homomorphism /: ΠΓ R —• ΠΓ Aκ such that f(en) =
an. Now if the composition φf: ΠΓ R —• B is continuous, then φ(an) —
Φf{en) is eventually 0.

(4) (Due to Los). Let φ:]~[IAi--+B where / has nonmeasura-
ble cardinality and B is slender. It is clear that if there are
infinitely many Aι with φ(Ai) Φ 0, then we get a contradiction to
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the fact that B is slender by taking a countably infinite subset of
these and considering the appropriate restriction of φ. Hence we
see that it suffices to show that if φ(Σi Ά*) = 0, then ^(Π/ A4) = 0.
Suppose this is not the case, and choose α e Π / ^ i with φ(a) Φ 0.
Now for each subset X of /, let ax e Π/ A* be defined by ax{i) =
α(i) if i e X, αx(ΐ) = 0 otherwise. We see that the family of sets X
for which φ{ax) = 0 is a (7-algebra £ which contains all the finite
subsets of I. It also follows from the fact that B is slender that
if we have a family of disjoint subsets X{ of /, we can have φ(ax.) Φ
0 for at most finitely many Xim From this we see that the quotient
algebra P/S is finite, where P is the σ-algebra of all subsets of /.
By choosing an atom of P/S, we can define a nontrivial measure on
P which is countably additive and takes only 0 and 1 as values,
and is 0 on all finite sets. This contradicts the fact that I has
nonmeasurable cardinality.

REMARKS. (1) The first measurable cardinal is at least as
large as the first inaccessible cardinal [7].

(2) The nonmeasurability of \I\ is necessary, as is shown by
the following example. Let / b e a measurable cardinal and consider
Πz Z. Let there be given a 0, 1-valued measure on I which is 0 on
finite sets. For each ae^Z, there is exactly one integer n such
that the set {iel\ a(i) — n} has measure 1. Define φ(a) = n. Then
it is easily seen that φ is a homomorphism from Π/ Z to Z which
is not continuous for the product and discrete topologies.

COROLLARY 2. R is slender if and only if every protective
R-module is slender. In particular, the slenderness of R can be
regarded as a property of the category of R modules.

COROLLARY 3. If R is a subring of S such that S is a slender
R-module, then S is a slender ring. In particular, this is true if
R is a slender ring and S a protective R-module.

Proof. This follows because any homomorphism of S-modules
can be regarded as a homomorphism of iϋ-modules.

COROLLARY 4. If R is a slender ring, then so is the polynomial
ring R[x], the ring of n dimensional matrices over R, and the group
ring R[G], for any group G. In addition, if R is an algebra over
a field K and F is an extension field of K, then F ®κ R is slender.

Proof. In each case, the larger ring is a free iϋ-module, so this
follows from Corollary 3.
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2 Reflexive modules* If A is an A-module, we write A* =
Horn (A, R). (A* is a right iϋ-module.) We say that A is reflexive
if the natural map ψ\A-+A** given by ψ{a){f) = f{a) is an
isomorphism.

THEOREM 4. Lβ£ R be a ring and {Mi \ie 1} a family of R-
modules, with \ I\ nonmeasurable. If R is slender, then (TLi Mt)* f*
Σ/ Mt. If the Mi are reflexive, then Π/ Mi is reflexive if R is slender,
and Σ J Mi is reflexive if R is right slender.

Proof. The fact that (Π/ Mt)* f&ΣiM* when R is slender follows
from Theorem 3,4. Since we have (Σn M^* ^ JJn M* in any case,
the other assertions follow immediately.

COROLLARY 5. // R is a right slender ring, then every projec-
tive module generated by a set with nonmeasurable cardinality is
reflexive.

Proof. Since summands of reflexive modules are reflexive, it
suffices to prove the corollary for free modules, but this is immediate
from the theorem and the fact that R is reflexive as an i2-module.

COROLLARY 6. Let R be a slender ring such that every non-
finitely generated protective right R-module is free. Let \I\ be
nonmeasurable and Π/ E — A φ B. Then either A is a finitely
generated protective module or A & Ϊ[KR with K £ /.

Proof. Since summands of reflexive modules are reflexive,
A * * ^ A by Theorem 4. We have ( Π / ί ) * ^ A * 0 ^ , so A* is
protective since (TJn E)* is free. If A* is finitely generated, then
A** is a finitely generated protective module. Otherwise, A* ^
ΣKR* and A * * ^ Π * - # .

3* Dedekind domains. In this section, R will be a Dedekind
domain and ̂ £ will always be the set of nonzero ideals in R. When
R is slender and ^ is countable, we will be able to completely
characterize slender i?-modules, as was done by Nunke [5] and [6], for
the case R = Z. We will use some topological observations to avoid
the homological machinery involved in Nunke's proof.

Throughout this section, we will write P — ΠΓ R» with R{ = R.
We will write Un = Π^ % Ri (considered as a submodule of P), so
that the Un form a neighborhood basis at 0 for the product topology
on P. The supremum of the ^Γ-adic and product topologies on P
will again be called the strong topology. We recall that P is com-
plete in the strong topology.
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THEOREM 5. Let R be a Dedekind domain and P = ΠΓ Rn Ri =
R. If A is a submodule of P which is closed in the product topology,
then A P& Π AΓ*» where each iV* is a projective module. In particular,
if rank A is finite, then A is projective. If R is slender and A has
infinite rank, then A F& P.

Proof. For each n, we let Vn — A Π Un and we let πn be the
projection of P onto Rn. Then the restriction of πn to Vn has kernel
Vn+1 and πn(Vn) is projective (as a submodule of Rn). Hence we
have Vn = Nn@Vn+1 where Λ7,, is projective, i.e., we get A = A\ 0
N2 0 0 Nn 0 Vn+1. It is readily seen that this gives us an iso-
morphism from A to Π NΊ. Now if there are only finitely many
nonzero Ni9 then A is finite rank projective. Otherwise, if R is
slender, we have A ™ (Π -ZV*)** ̂  (Σ -WO* & (Σ R)* ^ Π #> because
nonfinitely generated projective modules are free.

COROLLARY 7. If R is slender and A is a countably generated
module, then A* is reflexive and A** is projective.

Proof. A* is submodule of ΠA R which is closed in the product
topology, where K is a set of generators for A. The result now
follows from Theorems 4 and 5.

We now proceed tα a sequence of lemmas leading directly to
the characterization of slender modules.

LEMMA 2. Let A be an R-module with a metrizable topology.
If A is complete and B a closed submodule, then the quotient
topology on A/B is complete.

Proof. [2, §3, Prop. 4].

COROLLARY 8. // ^€ is countable and {At\ i — 1, 2, •••} is any
countable family of R modules, then the reduced part of Π ̂ ί / Σ ^i
is ^fέ-adically complete.

Proof. Π A% is complete in the strong topology. The
closure K of Σ ^ i n A-% consists of those x such that, for every
m e ̂ //f, x(i) e mAt for sufficiently large i. It is evident that this is
also the closure of Σ A* i n the strong topology and that i£/Σ ̂  is
divisible. Hence Π AJK is the reduced part of Π -4.</Σ A{. Also,
because K is dense in Π Ά* i n the product topology, the topology
induced on Π AJK by the strong topology on Π A{ is the same as
the ^"-adic topology on this module. Hence the result follows from
Lemma 2.
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LEMMA 3. If ^ is countable and A is a submodule of P such
that P/A is torsion free and (P/A)* = 0, then the reduced part of
P/A is ^/f-adically complete.

Proof. Because P/A is torsion free, the reduced part of P/A is
isomorphic to P/K, where K is the ^/C-adic closure of A in P. So
without loss of generality, we may assume that A is ^vf-adically
closed. Now P/(A + Un) is a finitely generated quotient of P/A.
If this is not a torsion module, then it has a projective summand
and it follows that (P/A)* Φ 0. Hence for each n there is a nonzero
ideal mn such that mnP £Ξ A + Un. This means that the ^/Γ-adic
topology on P/A is also the quotient topology that P/A inherits when
P is given the strong topology. Thus the result follows from
Lemma 2.

REMARK. Corollary 8 and Lemma 3 fail if ^/f is uncountable.
In fact, let A be the ^f-adic closure in P of XΓ R- If i2 is slender,
then clearly (P/A)* = 0. Now choose a e P\A, and let m0 be a maximal
ideal. For each set of ideals mj°, , mln, where ιnu'",τnn are
maximal ideals distinct from m0, consider the set of x such that
x = a (modmj0) and a ein S i = 1, •••,%. These sets form a ̂ ^~
adically Cauchy filter in P/A, and hence, if P/A is complete, converge
to a point a; such that x Φ 0, and *τ 6 m for every maximal ideal m
distinct from m0. Then if 2/ is a representative in P for cc, we have
yί A, and every maximal ideal m Φ m0, almost all the coordinates of
y belong to m. If ^/f is uncountable, this implies that almost all the
coordinates of y must be 0, which is a contradiction.

LEMMA 4. Let R be slender and A S P, α%<2 Zeί A" 5e ί/zβ seί
0/ xeP such that f(x) — 0 for every feP* for which f(A) — 0.
Then A!' is a summand of P and (A"/A)* = 0.

Proof. We follow Nunke?s proof. The fact that (A"/A)* = 0
follows easily once we know that A" is a summand. Let B be the
image of the natural map P* —* A*. By Theorem 4, P* is countably
generated, hence B is countably generated. Now β £ i * g ΠΛ •#•
Just as for abelian groups [3, Theorem 47.1], it is readily shown
that these facts imply that B is projective. Thus the sequence

0 > (P/A)* > P* > B > 0

is split exact. Dualizing, we get a split exact sequence

0 > B* > P > (P/A)** > 0 .

But it is easily seen t h a t the image of B* in P is exactly A".
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LEMMA 5. Let R be slender and ^ countable. If a torsion
free module B is a homomorphic image of P, then the reduced part
of B is the direct sum of a ^-adically complete module and a module
which is either finite rank protective or isomorphic to P.

Proof. Let A be the kernel of φ: P -»B. We have P = A" φ C
(Lemma 4) where C is either finite rank projective or isomorphic
to P (Corollary 6). Hence BP*(A"/A) 0 C. Since (A"/A)* = 0, the
result follows from Lemma 3.

THEOREM 6. Let B be a slender Dedekind domain such that the
set ^ of nonzero ideals in R is countable. Then an R-module B is
slender if and only if B is reduced, torsion free, and contains no
subgroup which is isomorphic to P or ^^-adically complete.

Proof. Sufficiency. By Theorem 3, it suffices to show that if
φ: P—+ B, then φ is continuous for the product and discrete topologies.
From Lemma 5 and the hypothesis, the image of φ must be finite
rank projective and hence, by Corollary 2, slender, so the result
follows immediately.

Necessity. If B is not torsion free, then we have a submodule
of the form R/m with m maximal, and if B is not reduced, then it
contains a submodule isomorphic to the quotient field Q of R, and
neither of these is slender. Clearly B is not slender if it contains
a submodule isomorphic to P. Finally, suppose B has an .^-adically
complete submodule, and let {bn} be a sequence of elements in this
submodule which ^^-adically converges to 0. Then we define φ: P-+B
by φ(x) = XΓ %(i)bi, and φ fails to be continuous.

I would like to express my thanks to my adviser, F. Richman,
for his many helpful suggestions and for having helped to put all
this into presentable form.
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