THE NUMBER OF MULTINOMIAL COEFFICIENTS DIVISIBLE BY A FIXED POWER OF A PRIME

F. T. Howard

In this paper some results of L. Carlitz and the writer concerning the number of binomial coefficients divisible by p^{j} but not by p^{j+1} are generalized to multinomial coefficients. In particular $\theta_{j}(k ; n)$ is defined to be the number of multinomial coefficients $n!/ n_{1}!, \cdots, n_{k}$! divisible by exactly p^{i}, and formulas are found for $\theta_{j}(k ; n)$ for certain values of j and n. Also the generating function technique used by Carlitz for binomial coefficients is generalized to multinomial coefficients.

1. Introduction. Let p be a fixed prime and let n and j be nonnegative integers. L. Carlitz [2], [3] has defined $\theta_{j}(n)$ as the number of binomial coefficients

$$
\binom{n}{r} \quad(r=0,1, \cdots, n)
$$

divisible by exactly p^{j} and he has found formulas for $\theta_{j}(n)$ for certain values of j and n. In particular, if we write

$$
\begin{equation*}
n=a_{0}+a_{1} p+\cdots+a_{\mathrm{s}} p^{s} \quad\left(0 \leqq a_{i}<p\right) \tag{1.1}
\end{equation*}
$$

then

$$
\begin{aligned}
& \theta_{0}(n)=\left(a_{0}+1\right)\left(a_{1}+1\right) \cdots\left(a_{s}+1\right) \\
& \theta_{1}(n)=\sum_{i=0}^{s-1}\left(a_{0}+1\right) \cdots\left(a_{i-1}+1\right)\left(p-a_{i}-1\right) a_{i+1}\left(a_{i+2}+1\right) \cdots\left(a_{s}+1\right) .
\end{aligned}
$$

The writer [5], [6] has also considered the problem of evaluating $\theta_{j}(n)$.

The purpose of this paper is to consider the analogous problem for multinomial coefficients and to generalize some of the formulas developed by Carlitz and the writer. Thus we define $\theta_{j}(k ; n)$ as the number of multinomial coefficients

$$
\left(n_{1}, \cdots, n_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!}\left(n_{1}+\cdots+n_{k}=n\right)
$$

divisible by exactly p^{j}. In this definition the order of the terms n_{1}, \cdots, n_{k} is important. We are distinguishing, for example, between $(1,2,3)$ and $(2,1,3)$. Clearly $\theta_{j}(2 ; n)=\theta_{j}(n)$.

In this paper we find formulas for $\theta_{0}(k ; n), \theta_{1}(k ; n)$, and $\theta_{2}(k ; n)$. We also show how the generating function method used by Carlitz
can be generalized to multinomial coefficients, and we evaluate $\theta_{j}(k ; n)$ for special values of j and n.

Throughout this paper we assume p is a fixed prime number and k is a fixed positive integer, $k>1$.
2. Preliminaries. Let $E\left(n_{1}, \cdots, n_{k}\right)$ denote the largest value of w such that p^{w} divides $\left(n_{1}, \cdots, n_{k}\right)$. To determine $E\left(n_{1}, \cdots, n_{k}\right)$ we shall make use of an analogue [4] of Kummer's famous theorem for binomial coefficients:

Lemma 2.1. Let n have expansion (1.1), let $n=n_{1}+\cdots+n_{k}$ and let

$$
\begin{equation*}
n_{i}=a_{i, 0}+a_{i, 1} p+\cdots+2_{i, s} p^{s} \quad\left(0 \leqq \alpha_{i, r}<p\right) \tag{2.1}
\end{equation*}
$$

for $i=1, \cdots, k . \quad I f$

$$
\begin{aligned}
a_{1,0}+\cdots+a_{k, 0}=\varepsilon_{0} p+a_{0} \\
\varepsilon_{0}+a_{1,1}+\cdots+a_{k, 1}=\varepsilon_{1} p+a_{1} \\
\cdots+ \\
\varepsilon_{s-1}+a_{1, s}+\cdots+a_{k, s}=a_{s}
\end{aligned}
$$

where each $\varepsilon_{i}=0,1, \cdots$, or $k-1$, then

$$
E\left(n_{1}, \cdots, n_{k}\right)=\varepsilon_{0}+\varepsilon_{1}+\cdots+\varepsilon_{s-1} .
$$

If n has expansion (1.1) and if $\nu(n)$ is the largest value of w such that p^{w} divides n !, then it is familiar [1, p. 55] that

$$
\nu(n)=\frac{n-S(n)}{p-1}
$$

where $S(n)=a_{0}+a_{1}+\cdots+a_{s}$. Thus we have
Lemma 2.2. If $n=n_{1}+\cdots+n_{k}$ then

$$
E\left(n_{1}, \cdots, n_{k}\right)=\frac{S\left(n_{1}\right)+\cdots+S\left(n_{k}\right)-S(n)}{p-1}
$$

Furthermore, if $E_{t}\left(n_{1}, \cdots, n_{k}\right)$ is the largest value of w such that p^{w} divides

$$
(n+t) \cdots(n+1) \quad\left(n_{1}, \cdots, n_{k}\right)
$$

then

$$
E_{t}\left(n_{1}, \cdots, n_{k}\right)=\frac{S\left(n_{1}\right)+\cdots+S\left(n_{k}\right)-S(n+t)+t}{p-1}
$$

Compositions, or ordered partitions, are important in evaluating $\theta_{j}(k ; n)$. We define a composition of a nonnegative integer u into r parts to be an ordered sequence of r nonnegative integers whose sum is u. This is more general than the usual definition of composition in that we allow 0 to be one or more of the parts. See [7, pp. 124125] for example.

Throughout this paper we shall let $C(u)$ denote the number of compositions of u into exactly k parts, with no part larger than $p-1$. We define $C(u)=0$ if $u<0$.

Lemma 2.3. $C(u)$ is the coefficient of x^{u} in the expansion of

$$
\left(1+x+x^{2}+\cdots+x^{p-1}\right)^{k}=\left[\sum_{i=0}^{\infty}\binom{k+i-1}{i} x^{i}\right]\left(1-x^{p}\right)^{k}
$$

It is clear from Lemma 2.3 that if $0 \leqq a<p$ and if $0 \leqq b$, then

$$
\begin{equation*}
C(a+b p)=\sum_{i=0}^{b}(-1)^{i}\binom{k}{i}\binom{k-1+a+(b-i) p}{k-1} \tag{2.2}
\end{equation*}
$$

In particular, for $0 \leqq \alpha<p$,

$$
\begin{aligned}
C(a) & =\binom{k-1+a}{k-1} \\
C(a+p) & =\binom{k-1+a+p}{k-1}-k\binom{k-1+a}{k-1} \\
C(a+2 p) & =\binom{k-1+a+2 p}{k-1}-k\binom{k-1+a+p}{k-1}+\binom{k}{2}\binom{k-1+a}{k-1} .
\end{aligned}
$$

3. Evaluation of $\theta_{0}(k ; n), \theta_{1}(k ; n), \theta_{2}(k ; n)$.

Theorem 3.1. If n has expansion (1.1) then

$$
\theta_{0}(k ; n)=C\left(a_{0}\right) C\left(a_{1}\right) \cdots C\left(a_{s}\right)
$$

Proof. We use Lemma 2.1. If $E\left(n_{1}, \cdots, n_{k}\right)=0$ then we must have

$$
\sum_{i=1}^{k} a_{i, r}=a_{r} \quad(r=0, \cdots, s)
$$

For a given r, the total number of ways we can have this equality is equal to $C\left(a_{r}\right)$.

Note that by Lemma 2.3 we have

$$
C\left(a_{r}\right)=\binom{a_{r}+k-1}{k-1} \quad(r=0, \cdots, s)
$$

Theorem 3.2. If n has expansion (1.1) then
$\theta_{1}(k ; n)=\sum_{i=0}^{s-1} C\left(a_{0}\right) \cdots C\left(a_{i-1}\right) C\left(a_{i}+p\right) C\left(a_{i+1}-1\right) C\left(a_{i+2}\right) \cdots C\left(a_{s}\right)$.
Proof. Using Lemma 2.1, we see that if $E\left(n_{1}, \cdots, n_{k}\right)=1$ then we must have exactly one $\varepsilon_{i}=1,0 \leqq i<s$. So for some i we have

$$
\begin{aligned}
a_{1, i} & +\cdots+a_{k, i}=a_{i}+p, \\
a_{1, i+1} & +\cdots+a_{k, i+1}=a_{i+1}-1, \\
a_{1, r} & +\cdots+a_{k, r}=a_{r} \quad(r \neq i, i+1) .
\end{aligned}
$$

Clearly the total number of ways we can have these equalities is

$$
C\left(a_{0}\right) \cdots C\left(\alpha_{i-1}\right) C\left(a_{i}+p\right) C\left(\alpha_{i+1}-1\right) C\left(a_{i+2}\right) \cdots C\left(a_{s}\right) .
$$

To simplify the formula for $\theta_{2}(k ; n)$ we introduce the following notation. Let

$$
\begin{aligned}
A_{i} & =\left[\prod_{t=0}^{s} C\left(\alpha_{t}\right)\right] /\left[C\left(a_{i}\right) C\left(a_{i+1}\right) C\left(a_{i+2}\right)\right] \\
B_{i} & =\left[\prod_{t=0}^{s} C\left(a_{t}\right)\right] /\left[C\left(a_{i}\right) C\left(a_{i+1}\right)\right] \\
H_{i, r} & =\left[\prod_{t=0}^{s} C\left(a_{t}\right)\right] /\left[C\left(a_{i}\right) C\left(\alpha_{i+1}\right) C\left(a_{r}\right) C\left(a_{r+1}\right)\right] .
\end{aligned}
$$

Theorem 3.3. If n has expansion (1.1) then

$$
\begin{aligned}
\theta_{2}(k ; n)= & \sum_{i=0}^{s-2} C\left(p+a_{i}\right) C\left(p+a_{i+1}-1\right) C\left(a_{i+2}-1\right) A_{i} \\
& +\sum_{i=0}^{s-1} C\left(2 p+a_{i}\right) C\left(a_{i+1}-2\right) B_{i} \\
& +\sum_{r=i+2}^{s-1} \sum_{i=0}^{s-3} C\left(p+a_{i}\right) C\left(a_{i+1}-1\right) C\left(p+a_{r}\right) C\left(a_{r+1}-1\right) H_{i, r}
\end{aligned}
$$

Proof. The proof is similar to the proof of Theorem 3.2. We determine the number of ways we can have exactly two of the ε 's equal to 1 or exactly one ε equal to 2 , and all other ε 's equal to 0 .

For example, let $p=5, k=3$, and $n=278=3+5^{2}+2 \cdot 5^{3}$. We have

$$
\begin{aligned}
\theta_{0}(3 ; 278)= & C(3) C(0) C(1) C(2)=180 ; \\
\theta_{1}(3 ; 278)= & C(3) C(5) C(0) C(2)+C(3) C(0) C(6) C(1)=1650, \\
\theta_{2}(3 ; 278)= & C(8) C(4) C(0) C(2)+C(3) C(5) C(5) C(1) \\
& +C(3) C(0) C(11) C(0)=11,100 .
\end{aligned}
$$

In each example we have used (2.2) to evaluate $C(u)$.
4. Generating functions for $\theta_{\jmath}(k ; n)$. Let $\psi_{t, j}(k ; n)$ denote the
number of products $(n+t) \cdots(n+1)\left(n_{1}, \cdots, n_{k}\right), n_{1}+\cdots+n_{k}=n$, divisible by exactly p^{j}. Clearly

$$
\begin{equation*}
\psi_{t, j}(k ; n)=\theta_{j-r}(k ; n) \tag{4.1}
\end{equation*}
$$

if p^{r} is the highest power of p dividing $(n+t) \cdots(n+1)$.
Also

$$
\psi_{t, j}(k ; n)=0
$$

if p^{i+1} divides $(n+t) \cdots(n+1)$. We introduce the following generating functions:

$$
\begin{align*}
& F_{0}(x, y)=\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \theta_{j}(k ; n) x^{n} y^{j} \\
& F_{t}(x, y)=\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \psi_{t, j}(k ; n) x^{n} y^{j} \tag{t>0}
\end{align*}
$$

Using an argument analogous to that of Carlitz [3], we obtain

$$
\begin{equation*}
F_{0}(x, y)=\sum_{t=0}^{m} y^{t} f_{t}(x) F_{t}\left(x^{p}, y\right) \tag{4.2}
\end{equation*}
$$

where m is the integer such that

$$
\begin{equation*}
m p \leqq k(p-1)<(m+1) p \tag{4.3}
\end{equation*}
$$

and

$$
\begin{aligned}
& f_{t}(x)=\sum_{a=t p}^{t p+p-1} C(a) x^{a}(0 \leqq t<m) \\
& f_{m}(x)=\sum_{a=m p}^{k p-k} C(a) x^{a}
\end{aligned}
$$

Comparing coefficients of $x^{n} y^{j}$ on both sides of (4.2), we have, for $0 \leqq a<p$,

$$
\begin{equation*}
\theta_{j}(k ; a+b p)=C(a) \theta_{j}(k ; b)+\sum_{t=1}^{m} C(a+t p) \psi_{t, j-t}(k ; b-t) \tag{4.4}
\end{equation*}
$$

In (4.4) it is understood that $\psi_{t, j}(k ; u)=0$ if $u<0$ and $\psi_{t,-1}(k ; u)=0$.
Also, for $\mathrm{t}<p$,

$$
F_{t}(x, y)=\sum_{r=1}^{h} y^{r} g_{r}(x) F_{r}\left(x^{p}, y\right)
$$

where h is the integer such that

$$
\begin{equation*}
h p-t \leqq k(p-1)<(h+1) p-t \tag{4.5}
\end{equation*}
$$

and

$$
\begin{aligned}
& g_{0}(x)=\sum_{a=0}^{p-t-1} C(a) x^{a} \\
& g_{r}(x)=\sum_{a=r p-t}^{(r+1) p-t-1} C(a) x^{a} \quad(r=1, \cdots, h-1), \\
& g_{h}(x)=\sum_{a=h p-t}^{k p-k} C(a) x^{a}
\end{aligned}
$$

Thus for $0 \leqq \alpha<p-t, h p+\alpha \leqq k p-k$, we have
(4.6) $\quad \psi_{t, j}(k ; a+b p)=C(a) \theta_{j}(k ; b)+\sum_{r=1}^{h} C(a+r p) \psi_{r, j-r}(k ; b-r)$.

For $0 \leqq a<p-t, h p+a>k p-k$, we have
(4.7) $\quad \dot{\psi}_{t, j}(k ; a+b p)=C(a) \theta_{j}(k ; b)+\sum_{r=1}^{h-1} C(a+r p) \psi_{r, j-r}(k ; b-r)$.

For $p-t \leqq a<p$, we have
(4.8) $\quad \psi_{t, j}(k ; a+b p)=\sum_{r=1}^{h} C(a+(r-1) p) \psi_{r, j-r}(k ; a-r+1)$.

Here again it is understood that $\psi_{r, j}(k ; u)=0$ if $u<0$. We remark that in all of these formulas specific values for $C(u)$ can be found from formula (2.2).

Using (4.4) we can compute $\theta_{j}(k ; n)$ for special values of n. By (4.4) and (4.1) we have, for $0 \leqq a<p, 0 \leqq b<p$,

$$
\begin{aligned}
\theta_{j}(k ; a+b p) & =C(a+j p) \theta_{0}(k ; b-j) \\
& =C(a+j p) C(b-j) \quad \text { if } \quad j \leqq m \\
& =0 \quad \text { if } \quad j>m
\end{aligned}
$$

where m is defined by (4.3).
Also, if $0 \leqq \alpha<p$,

$$
\begin{aligned}
\theta_{j}\left(k ; a+p^{2}\right) & =C(a) C(1) \quad \text { if } j=0, \\
& =C(a+(j-1) p) C(p-j+1) \quad \text { if } \quad 1 \leqq j \leqq m+1 \\
& =0 \quad \text { if } \quad j>m+1
\end{aligned}
$$

If $0 \leqq a<p, p>2$,

$$
\begin{array}{rlr}
\theta_{j}(k ; & \left.a+2 p^{2}\right) & \\
= & C(a+(j-2) p) \theta_{1}(k ; 2 p-j+2) & \\
& +C(a+(j-1) p) \theta_{0}(k ; 2 p-j+1) & (1<j \leqq p+1, j \leqq m+1), \\
= & C(a+(j-2) p) \theta_{1}(k ; 2 p-j+2) & (j=m+2 \leqq p+1), \\
= & C(a+(j-2) p) \theta_{1}(k ; p) & (j=p+2 \leqq m+2), \\
= & C(a+(j-2) p) \theta_{0}(k ; p-r+2) & (j=p+r \leqq m+2,2<r \leqq p+2), \\
= & 0 \text { if } j>m+2 . &
\end{array}
$$

If $0 \leqq a<p, 0 \leqq b<p$,

$$
\begin{array}{rlr}
\theta_{j}\left(k ; a+b p+p^{2}\right) & \\
\quad=C(a+(j-1) p) \theta_{1}(k ; p+b-j+1) & \\
& +C(a+j p) \theta_{0}(k ; p+b-j) & (b \geqq j ; m+1>j) \\
= & C(a+(j-1) p) \theta_{0}(k ; p+b-j+1) & (b<j \leqq p+b, m+1>j), \\
=C(a+m p) \theta_{1}(k ; p+b-m) & (j=m+1, b \geqq m), \\
=C(a+m p) \theta_{0}(k ; p+b-m) & (j=m+1, b<m), \\
=0 \text { if } j>m+1 . &
\end{array}
$$

Some of the results in [2] can also be generalized. We use the symbols $E\left(n_{1}, \cdots, n_{k}\right)$ and $E_{t}\left(n_{1}, \cdots, n_{k}\right)$ as they are used in Lemma 2.2.

Let

$$
\begin{aligned}
F_{j}\left(n ; x_{1}, \cdots, x_{k}\right) & =\sum_{\substack{a_{1}+\cdots+a_{k}=n \\
E\left(a_{1}, \cdots, a_{k}\right)=j}} x_{1}^{a_{1}} \cdots x_{k}^{a_{k}}, \\
G_{t, j}\left(n ; x_{1}, \cdots, x_{k}\right) & =\sum_{\substack{a_{1}+\cdots,+a_{k}=n \\
E t\left(a_{1}, \cdots, a_{n}\right)=j}} x_{1}^{a_{1}} \cdots x_{k}^{a_{k}} \quad(t>0), \\
G_{0, j}\left(n ; x_{1}, \cdots, x_{k}\right) & =F_{j}\left(n ; x_{1}, \cdots, x_{k}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
F_{j}(n ; x, \cdots, x) & =x^{n} \theta_{j}(k ; n) \\
G_{t, j}(n ; x, \cdots, x) & =x^{n} \psi_{t, j}(k ; n)
\end{aligned}
$$

By generalizing Carlitz's work in [2] in the natural way, we obtain

$$
\begin{align*}
& F_{j}\left(a+b p ; x_{1}, \cdots, x_{k}\right) \\
& \quad=\sum_{s=0}^{m} c_{s p+a}\left(x_{1}, \cdots, x_{k}\right) G_{s, j-s}\left(b-s ; x_{1}^{p}, \cdots, x_{k}^{p}\right) \tag{4.9}
\end{align*}
$$

where $0 \leqq a<p, m$ is defined by (4.3), and

$$
c_{r}\left(x_{1}, \cdots, x_{k}\right)=\sum_{s_{1}+\cdots+s_{k}=r} x_{1}^{s_{1}} \cdots x_{k}^{s_{k}}
$$

Also, if h is defined by (4.5),

$$
\begin{align*}
& G_{t, j}\left(a+b p ; x_{1}, \cdots, x_{k}\right) \\
& \quad=\sum_{s=0}^{n} c_{s p+a}\left(x_{1}, \cdots, x_{k}\right) G_{s, j-s}\left(b-s ; x_{1}^{p}, \cdots, x_{k}^{p}\right) \\
& \quad(h p+a \leqq k p-k, 0 \leqq a<p-t) \\
& =\sum_{s=0}^{h-1} c_{s p+a}\left(x_{1}, \cdots, x_{k}\right) G_{s, j-s}\left(b-s ; x_{1}^{p}, \cdots, x_{k}^{p}\right) \tag{4.10}\\
& \quad(h p+a>k p-k, 0 \leqq a<p-t) \\
& = \\
& \sum_{s=1}^{n} c_{(s-1) p+a}\left(x_{1}, \cdots, x_{k}\right) G_{s, j-s}\left(a-s+1 ; x_{1}^{p}, \cdots, x_{k}^{p}\right) \\
& \\
& \quad(p-t \leqq a<p-1)
\end{align*}
$$

5. Some special evaluations. If $j>\nu(n)$, where $\nu(n)$ is the exponent of the highest power of p that divides $n!$, then it is clear that $\theta_{j}(k ; n)=0$. For example, if $0 \leqq a<p, 0 \leqq b<p$ then

$$
\theta_{j}(k ; a+b p)=0 \quad(j>b)
$$

Let n have expansion (1.1). By Lemma 2.1 it is clear that $\theta_{j}(k ; n)=0$ for $j>M$, where

$$
\begin{aligned}
M & =s(k-1) \quad \text { if } k \leqq a_{s}+1 \\
& =(s-1)(k-1)+a_{s} \quad \text { if } k>a_{s}+1
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \theta_{M}(k ; n) \\
& =C\left(a_{0}+(k-1) p\right) C\left(a_{s}-k+1\right) \prod_{i=1}^{s-1} C\left(a_{i}-k+1+(k-1) p\right) \\
& \left(k \leqq a_{s}+1\right), \\
& =C\left(a_{0}+(k-1) p\right) C\left(a_{s-1}-k+1+a_{s} p\right) \prod_{i=1}^{s-2} C\left(a_{i}-k+1+(k-1) p\right) \\
& \left(k>a_{s}+1, s>1\right), \\
& =C\left(a_{0}+a_{1} p\right) \\
& \left(k>a_{s}+1, s=1\right) .
\end{aligned}
$$

For example, if $k=2$ and $a_{s} \neq 0$ then $M=s$. This is the case for ordinary binomial coefficients. We have in this case

$$
\theta_{s}(2 ; n)=\left(p-a_{0}-1\right)\left(p-a_{1}\right) \cdots\left(p-a_{s-1}\right) a_{s}
$$

For $p=2$ we can generalize the method used in [6]. Let

$$
\begin{align*}
& n=2^{e_{1}}+\cdots+2^{e_{r}}, \quad 0 \leqq e_{1}<\cdots<e_{r} \tag{5.1}\\
& n_{i}=2^{e_{i, 1}}+\cdots+2^{e_{i, S(i)}}, \quad 0 \leqq e_{i, 1}<\cdots<e_{i, S(i)} \tag{5.2}
\end{align*}
$$

Consider all the different compositions $n=n_{1}+\cdots+n_{k}$ such that (5.1) and (5.2) hold, such that

$$
S\left(n_{1}\right)+\cdots+S\left(n_{k}\right)=r+j
$$

and such that there are a total of $r+j-t e_{i, w}$'s having the property that $e_{i, w} \neq e_{x, y}$ for all x, y (except for the one case $i=x, w=y$). Let $b_{j, t}$ be the sum over all these compositions of the number of different ways of distributing the remaining $t e_{i, w}$'s into k distinct cells with no two identical objects in the same cell. Then for $p=2, j>0$,

$$
\begin{equation*}
\theta_{j}(k ; n)=b_{j, 2} k^{m+j-2}+b_{j, 3} k^{m+j-3}+\cdots+b_{j, m+j} \tag{5.3}
\end{equation*}
$$

Using the convention that $e_{1}-e_{0}=t$ means $e_{1}=t-1$ and that $e_{1}-e_{0}>t$ means $e_{1}>t-1$, let

$$
\begin{array}{rlrl}
e_{i}-e_{i-1} & >1 \text { for } q_{1} \text { terms } e_{i}, & \\
& >2 \text { for } q_{2} \text { terms } e_{i}, & \\
& =1, e_{i-1}-e_{i-2}=1 \text { for } q_{3} \text { terms } e_{i} & (i \neq 2), \\
& =1, e_{i-1}-e_{i-2}>1 \text { for } q_{4} \text { terms } e_{i}, & \\
& =2 \text { for } q_{5} \text { terms } e_{i} & & (i \neq 1), \\
& =1 \text { for } q_{6} \text { terms } e_{i} & & (i \neq 1) .
\end{array}
$$

Then, by (5.3), for $p=2$,

$$
\begin{aligned}
& \theta_{0}(k ; n)=k^{r}, \\
& \theta_{1}(k ; n)= q_{1}\binom{k}{2} k^{r-1}+q_{6}\binom{k}{3} k^{r-2}, \\
& \theta_{2}(k ; n)= q_{2}\binom{k}{2} k^{r}+q_{5}\binom{k}{3} k^{r-1} \\
&+\left[\binom{q_{1}}{2}+q_{4}\right]\binom{k}{2}^{2} k^{r-2} \\
&+\left[\begin{array}{c}
\left.q_{4}\left(q_{1}-1\right)+q_{3}\right]\binom{k}{3}\binom{k}{2} k^{r-3} \\
\\
\end{array}+\left[\binom{q_{4}}{2}+q_{3}\left(q_{3}-1\right)+q_{4} q_{3}\right]\binom{k}{3}^{2} k^{r-4} .\right.
\end{aligned}
$$

For example, let $n=2^{4}+2^{5}+2^{20}+2^{26}+2^{28}$. Then $q_{1}=4, q_{2}=3$, $q_{3}=0, q_{4}=1, q_{5}=1$ and $q_{6}=1$. Thus

$$
\begin{aligned}
& \theta_{0}(k ; n)=k^{5} \\
& \theta_{1}(k ; n)=4\binom{k}{2} k^{4}+\binom{k}{3} k^{3}, \\
& \theta_{2}(k ; n)=3\binom{k}{2} k^{5}+\binom{k}{3} k^{4}+7\binom{k}{2}^{2} k^{3}+3\binom{k}{3}\binom{k}{2} k^{2} .
\end{aligned}
$$

References

1. P. Bachmann, Niedere Zahlentheorie, vol. 1, Leipzig, 1902.
2. L. Carlitz, Distribution of binomial coefficients, Riv. Mat. Univ. Parma, (2) 11 (1970), 45-64.
3. The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo, (2) 16 (1967), 299-320.
4. Robert D. Fray, Congruence properties of ordinary and q-binomial coefficients, Duke Math. J., 34 (1967), 467-480.
5. F. T. Howard, Formulas for the number of binomial coefficients divisible by a fixed power of a prime, Proc. Amer. Math. Soc., 37 (1973), 358-362.
6. F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2 , Proc. Amer. Math. Soc., 29 (1971), 236-242.
7. J. Riordan, An Introduction to Combinatorial Analysis, New York, 1958.

Received September 11, 1972.
WAKEforest University

