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THE NUMBER OF MULTINOMIAL COEFFICIENTS
DIVISIBLE BY A FIXED POWER OF A PRIME

F. T. Howard

In this paper some results of L. Carlitz and the writer
concerning the number of binomial coefficients divisible by pj

but not by pj+1 are generalized to multinomial coefficients.
In particular Θ3(k; n) is defined to be the number of multi-
nomial coefficients nl/n^., , nkl divisible by exactly p3', and
formulas are found for Θ3(k\ n) for certain values of j and n.
Also the generating function technique used by Carlitz for
binomial coefficients is generalized to multinomial coefficients.

1* Introduction* Let p be a fixed prime and let n and j be

nonnegative integers. L. Carlitz [2], [3] has defined Θ3(n) as the

number of binomial coefficients

divisible by exactly pj and he has found formulas for Θ3(n) for certain

values of j and n. In particular, if we write

(1.1) n = α0 + aλp + + asp
s (0 ^ a{ < p)

then

Un) - (do + l)(α, + l) . . . (α. + 1)

θi(n) = Σ (Oo + 1) (βί-i + 1)(P - α* ~ l)θi+1(α i+2 + 1) - (α. + 1) .

The writer [5], [6] has also considered the problem of evaluating

θj{n).

The purpose of this paper is to consider the analogous problem

for multinomial coefficients and to generalize some of the formulas

developed by Carlitz and the writer. Thus we define θά(k) n) as the

number of multinomial coefficients

n\
(nly ., nk) - — • — : -{nx + + nk = n)

nj nkl

divisible by exactly pj. In this definition the order of the terms

nly , nk is important. We are distinguishing, for example, between

(1, 2, 3) and (2, 1, 3). Clearly Θ3{2; n) - Θ3{n).

In this paper we find formulas for θQ(k; ri), θ^k; n), and Θ2(k; n).

We also show how the generating function method used by Carlitz
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can be generalized to multinomial coefficients, and we evaluate θό(k\ n)
for special values of j and n.

Throughout this paper we assume p is a fixed prime number and
& is a fixed positive integer, k > 1.

2* Preliminaries. Let E(nl9 , nk) denote the largest value of
w such that pw divides (nl9 •••,%). To determine E(nl9 — ,nk) we
shall make use of an analogue [4] of Rummer's famous theorem for
binomial coefficients:

LEMMA 2.1. Let n have expansion (1.1), let n — nγ + + nk

and let

(2.1) n, = ai)Q + aiΛp + + 2ifSp
s (0 ̂  aiyr < p)

for i = l, ---,k. If

+ altl + + akΛ = ε,p + a,

s8-i + du. + + akt8 = as

where each ε4 = 0, 1, , or k — 1, then

E(nl9 , nk) = ε0 + εx + + es^ .

If n has expansion (1.1) and if v(n) is the largest value of w
such that pw divides n\, then it is familiar [1, p. 55] that

p - l

where S(n) = a0 + a,. + • • + αs. Thus we have

LEMMA 2.2. If n = nx + + nk then

E(nlf .- . ,*>) = S ^ + ' "
p - l

Furthermore, if Et(nl9 , wA) is ίfeβ largest value of w such that pw

divides

( n + t) ••• ( n + 1) ( ^ , ••-, O ,

= S(nι)+.. +S(nk)-S(n
2 ? - 1
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Compositions, or ordered partitions, are important in evaluating
θj(k; n). We define a composition of a nonnegative integer u into r
parts to be an ordered sequence of r nonnegative integers whose sum
is u. This is more general than the usual definition of composition
in that we allow 0 to be one or more of the parts. See [7, pp. 124-
125] for example.

Throughout this paper we shall let C(u) denote the number of
compositions of u into exactly k parts, with no part larger than p — 1.
We define C(u) = 0 if u < 0.

LEMMA 2.3. C(u) is the coefficient of xu in the expansion of

(k + i -
(1 + x + x2 + + x^Y = I Σ

It is clear from Lemma 2.3 that if 0 ^ a < p and if 0 ^ 6, then

(2.2) C(α + δp) = Σ ( - l
\ j \ k —

In particular, for 0 g α < p,

/ft - 1 + a
C{) [

A? - 1 + a + p \ ( k - l

~ 1 + a + 2p\ J k - l + a + p\ (k\(k-l

| f e _ 1 ) * ( ) + ( ) (

3* Evaluation of θo(k; ri), θλ{k\ n), Θ2(k; n).

THEOREM 3.1. If n has expansion (1.1) then

θQ(k; n) - C(ao)C(aJ C(as) .

Proof. We use Lemma 2.1. If E(nί9 , nk) — 0 then we must
have

k

Σ « i , r = <*r ( r = 0, •••, S) .
i=ί

For a given r, the total number of ways we can have this equality
is equal to C(ar).

Note that by Lemma 2.3 we have

C(ar) = h +

k

k_ Λ (r = 0 , . . f β ) .
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THEOREM 3.2. If n has expansion (1.1) then

0i(fc; n) = Σ C(aQ) Cia^Cia, + p)C(α<+1 - l)C(α<+ί) - - C(α.) .

Proof. Using Lemma 2.1, we see that if E(nl9 , %) = 1 then
we must have exactly one ε* = 1, 0 fg i < s. So for some i we have

&l,r + + CLk,r — ®r (r Φ %, % + V) .

Clearly the total number of ways we can have these equalities is

C(a0) - Cia^Cia, + p)^,, - l)C(αί+a) C(as) .

To simplify the formula for Θ2(k; n) we introduce the following
notation. Let

A, = Γή C(at

Lt=o

Π C{at)
ί = 0 J

HifT =

THEOREM 3.3. If n has expansion (1.1) then

Θ2(k; n) = Σ C(p + a^Cip + ai+1 - l)C(ai+2 -
i=0

+ Σ2ΣC(p + α Λ r

Proof. The proof is similar to the proof of Theorem 3.2. We
determine the number of ways we can have exactly two of the ε's
equal to 1 or exactly one ε equal to 2, and all other ε's equal to 0.

For example, let p = 5, fc = 3, and n = 278 = 3 + 52 + 2 53. We
have

#0(3; 278) - C(3)C(0)C(l)C(2) - 180;

^(3; 278) = C(3)C(5)C(0)C(2) + C(3)C(0)C(6)C(l) = 1650 ,

#2(3; 278) = C(8)C(4)C(0)C(2) + C(3)C(5)C(5)C(1)

+ C(3)C(0)C(ll)C(0) = 11, 100 .

In each example we have used (2.2) to evaluate C(u).

4. Generating functions for Θ3(k; ri). Let ψt,j(kl n) denote the
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number of products (n + t) (n + l){nu , nk), nL + + nk = n,
divisible by exactly p3'. Clearly

(4.1) ψttj(k; n) = θ^r(k; n)

if pr is the highest power of p dividing (n + t) (n + 1).
Also

ψt,i(k; n) = 0

if pί+1 divides (n + t) (n + 1). We introduce the following generat-
ing functions:

Fo(x, 2 / ) = Σ Σ θj(k; n)xnyd ,

Ft(x, y) = Σ Σ t..ί(ft; »)*V (ί > 0) .

Using an argument analogous to that of Carlitz [3], we obtain

(4.2) F0(x, y) = Σ y%(x)Ft(x*, y)
ί = 0

where m is the integer such that

(4.3) mp ̂  &(p - 1) < (m + l)ί>

and

tp+p-l

ft(x) = Σ C(α)xα (0 ̂  ί < m) ,
a=tp

Comparing coefficients of xnyj on both sides of (4.2), we have, for
0 ^ a < p,

In (4.4) it is understood that ψt,j(k', v) = 0 if u < 0 and ψtt-i(k; u) = 0.
Also, for t < p,

Ft(%, y) = ΣiΓf f r ί^ ί 7 ^, 2/)

where fc is the integer such that

(4.5) hp — t ^ fc(p — ϊ) < (h + ΐ)p — t ,
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and

a=rp—t

kφ~k

Σ C(a)x" .

Thus for 0 ^ α < p — t, hp + a <ί kp — k, we have

(4.6) ψ t>ί(fc; a + bp) = C(α)0/(&; 6) + Σ C(α + rp)^,^; b - r) .
r = i

For 0 <: a < p - t, hp + a > kp — k, we have

(4.7) ψ^.(fc; α + bp) - C(α)θy(fc; 6) + Σ C(α + τp)ψr>j^r(k) b - r) .
r=l

For p — ί ^ a < p, we have

(4.8) ψt,j(k; a + bp) = Σ C(a + (r - l)p)i/rr)i_r(A:; α - r + 1) .

Here again it is understood that ψrJ{k; u) = 0 if w < 0. We remark
that in all of these formulas specific values for C(u) can be found
from formula (2.2).

Using (4.4) we can compute θd(k; n) for special values of n. By
(4.4) and (4.1) we have, for 0 ^ a < p, 0 ^ b < p,

θj(k; a+bp) = C(α

= C(a + ip) C(6 - j) if i ^ m ,

= 0 if j > m

where m is defined by (4.3).
Also, if 0 ^ α < p,

θj(k; a + p2) - C(α)C(l) if i = 0 ,

- C(a + (j - l)p)C(p - j + 1) if 1 ^ j ^ m + 1 ,

= 0 if j > m + 1 .

If 0 ^ α < j>, p > 2,

^(fc; α + 2p2)

- C(α + (j - 2)p)θ1(k; 2p - j + 2)

+ C(a + (i - l)p)θo(k; 2p - j + 1) (1 < j^p + 1, i ^ m + 1) ,

- C(α + (i - 2)p)θ1(k; 2p - j + 2) ( j ^ m + 2 ^ + 1),

= C(α + (i - 2)p)^(ft; p) (j = p + 2^m + 2 ) ,

= C(a+ (j - 2)p)θo(k; p - r + 2) 0" = P + ̂ ™ + 2 , 2 < r ^ p + 2) ,

= 0 if j > m + 2 .
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If 0 ^ a < p, 0 ^ δ < p,

θj(k;a + bp + p2)

= C(a + (j - l)p)θί{k) p + b-j + 1)

+ C(a + jp)θo(k; p + b - j) (b^j;m + l> j)

= C(a + (j - ΐ)p)θo(k; p + b- j + 1) (δ < j ^ p + δ, m + 1 > j) ,

= C(α + mp)θι(k] p + δ — m) {j = m + 1, δ ^ m) ,

= C(α + mp)θo(k; p + b — m) (j — m + 1, δ < m) ,

= 0 if i > m + 1 .

Some of the results in [2] can also be generalized. We use the
symbols E(nl9 , nk) and Et(nu - - , nk) as they are used in Lemma
2.2.

Let

Fά(n;xlf . - - , x k ) = Σ ^ ^* ,
ί?(α1, ,α^) = i

G«,i(»; «ι, , «») = Σ ^ aξ» (ί > 0) ,

G0,i(w; a?i, , xk) = Fj(n;xl9 -, α?Λ) .

Note that

^•(w; a?, , α?) = a;Λ^ (ft; ti) ,

Gtyj(n; x, - , x) = xn<ttfJ(k; n) .

By generalizing Carlitz's work in [2] in the natural way, we
obtain

Fj(a + bp;xlf •••,%)
(4.9)

= Σ c s p + a ( x l y , x k ) G . , s - 9 ( b - s; x*9 • • - , » £ )
s = 0

where 0 ^ a < p, m is defined by (4.3), and

cr(xl9 •••, xk) = Σ ^ ί 1 •••»;*

Also, if Λ, is defined by (4.5),

ft

= Σ c . p + a ( x l f , xk)G,9J-.9(b - s ; a?f, •••,»?)
s=0

( 4 . 1 0 ) = * | J c ^ , ^ , , ^ ) G β , y _ s ( δ - β; α?f, • • - , » £ )
8 = 0

(hp + a > kp — k9 0 ^ a < p — ί) ,

= Σ C(.-i,,+β(ffi, , xk)G,9i-Λ{a - s + 1; a?f, , αg)
(
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5. Some special evaluations* If j > v(ri), where v(n) is the
exponent of the highest power of p that divides nl, then it is clear
that θj(k; n) = 0. For example, if 0 <^ a < p, 0 <; 6 < p then

θj{k) a + bp) = 0 (J > b) .

Let n have expansion (1.1). By Lemma 2.1 it is clear that
Θ3(k; n) = 0 for i > ikf, where

M = s(ft - 1) if ft ^ α8 + 1

= (s - l)(ft - 1) + αs if ft > a8 + 1 .

Also,

s—1

= C(α0 + (ft — l)p)C(a8 — ft + 1) Π C(a,i — ft + 1 + (ft —

jf
(fc ^ α8 + 1) ,

= C(a0 + (k - l)p)C(α.^ - & + 1 + αsp) j f C{a, - k + 1 + (k - l)p)

(k > a8 + 1, s > 1) ,

= C(α0 + α^) (ft > as + 1, s = 1) .

For example, if k = 2 and αs ^ 0 then M = s. This is the case
for ordinary binomial coefficients. We have in this case

θs(2; n) = (p - α0 - 1) (p - αL) • (p - α^O^s

For p — 2 we can generalize the method used in [6]. Let

(5.1) n = 2*i + + 2er , 0 ^ ex < < er ,

(5.2) Λ4 - 2°i>i + + 2e^n) , 0 ^ e i f l < < β<>5(<) .

Consider all the different compositions n = nt + + nk such that
(5.1) and (5.2) hold, such that

Sin,) + • • + S(nk) = r + j ,

and such that there are a total of r + j — t eilW

9s having the property
that ei>w Φ ex,y for all x, y (except for the one case i = x, w = y).
Let δ^ί be the sum over all these compositions of the number of dif-
ferent ways of distributing the remaining t eifW's into k distinct cells
with no two identical objects in the same cell. Then for p = 2, j > 0,

(5.3) 0y(fc; n) - bjt2k™^2 + b/9Jc^+^ + • + 6y,m+y .

Using the convention that ex — e0 = t means eι = ί — 1 and that
#i — 0o > t means eι > t — 1, let
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ef — e<_! > 1 for qt terms e{,

> 2 for & terms e{ ,

= 1, e<_i - et _2 = 1 for q3 terms

= 1, ei_ι - e<_2 > 1 for qt terms

= 2 for & terms e{

= 1 for qe terms e4

Then, by (5.3), for p = 2,

(i ^ 1) .
(i ^ 1) .

-, n) - +

For example, let Λ = 24 + 25 + 220 + 226 + 228.
0, qt - 1, qt = l and q6 = 1. Thus

ΘJίk; n) = A;5

A;

k

3

Then q, = 4, q2 = 3,
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