THE NUMBER OF MULTINOMIAL COEFFICIENTS DIVISIBLE BY A FIXED POWER OF A PRIME

F. T. Howard

In this paper some results of L. Carlitz and the writer concerning the number of binomial coefficients divisible by p^j but not by p^{j+1} are generalized to multinomial coefficients. In particular $\theta_j(k; n)$ is defined to be the number of multinomial coefficients $n!/n_1!, \dots, n_k!$ divisible by exactly p^j , and formulas are found for $\theta_j(k; n)$ for certain values of j and n. Also the generating function technique used by Carlitz for binomial coefficients is generalized to multinomial coefficients.

1. Introduction. Let p be a fixed prime and let n and j be nonnegative integers. L. Carlitz [2], [3] has defined $\theta_j(n)$ as the number of binomial coefficients

$$\binom{n}{r}$$
 $(r = 0, 1, \dots, n)$

divisible by exactly p^{j} and he has found formulas for $\theta_{j}(n)$ for certain values of j and n. In particular, if we write

$$(1.1) n = a_0 + a_1 p + \cdots + a_s p^s (0 \leq a_i < p)$$

then

$$egin{aligned} & heta_{\scriptscriptstyle 0}(n) = (a_{\scriptscriptstyle 0}+1)(a_{\scriptscriptstyle 1}+1)\,\cdots\,(a_{\scriptscriptstyle s}+1) \ & heta_{\scriptscriptstyle 1}(n) = \sum\limits_{i=0}^{s-1}{(a_{\scriptscriptstyle 0}+1)}\,\cdots\,(a_{i-1}+1)(p-a_i-1)a_{i+1}(a_{i+2}+1)\,\cdots\,(a_s+1)\;. \end{aligned}$$

The writer [5], [6] has also considered the problem of evaluating $\theta_j(n)$.

The purpose of this paper is to consider the analogous problem for multinomial coefficients and to generalize some of the formulas developed by Carlitz and the writer. Thus we define $\theta_j(k; n)$ as the number of multinomial coefficients

$$(n_1, \dots, n_k) = \frac{n!}{n_1! \cdots n_k!} (n_1 + \dots + n_k = n)$$

divisible by exactly p^{j} . In this definition the order of the terms n_{1}, \dots, n_{k} is important. We are distinguishing, for example, between (1, 2, 3) and (2, 1, 3). Clearly $\theta_{j}(2; n) = \theta_{j}(n)$.

In this paper we find formulas for $\theta_0(k; n)$, $\theta_1(k; n)$, and $\theta_2(k; n)$. We also show how the generating function method used by Carlitz can be generalized to multinomial coefficients, and we evaluate $\theta_j(k; n)$ for special values of j and n.

Throughout this paper we assume p is a fixed prime number and k is a fixed positive integer, k > 1.

2. Preliminaries. Let $E(n_1, \dots, n_k)$ denote the largest value of w such that p^w divides (n_1, \dots, n_k) . To determine $E(n_1, \dots, n_k)$ we shall make use of an analogue [4] of Kummer's famous theorem for binomial coefficients:

LEMMA 2.1. Let n have expansion (1.1), let $n = n_1 + \cdots + n_k$ and let

$$(2.1) n_i = a_{i,0} + a_{i,1}p + \dots + 2_{i,s}p^s (0 \le a_{i,r} < p)$$

for $i = 1, \dots, k$. If

 $a_{1,0}+\cdots+a_{k,0}=arepsilon_0p+a_0$ $arepsilon_0+a_{1,1}+\cdots+a_{k,1}=arepsilon_1p+a_1$ $\cdots\cdots$ $arepsilon_{s-1}+a_{1,s}+\cdots+a_{k,s}=a_s$

where each $\varepsilon_i = 0, 1, \cdots$, or k - 1, then

$$E(n_{\scriptscriptstyle 1},\,\cdots,\,n_{\scriptscriptstyle k})=arepsilon_{\scriptscriptstyle 0}+arepsilon_{\scriptscriptstyle 1}+\,\cdots\,+\,arepsilon_{\scriptscriptstyle s-1}$$
 .

If n has expansion (1.1) and if $\nu(n)$ is the largest value of w such that p^{w} divides n!, then it is familiar [1, p. 55] that

$$\nu(n) = \frac{n - S(n)}{p - 1}$$

where $S(n) = a_0 + a_1 + \cdots + a_s$. Thus we have

LEMMA 2.2. If $n = n_1 + \cdots + n_k$ then

$$E(n_{\scriptscriptstyle 1},\,\cdots,\,n_{\scriptscriptstyle k}) = rac{S(n_{\scriptscriptstyle 1})+\,\cdots\,+\,S(n_{\scriptscriptstyle k})\,-\,S(n)}{p-1} \;.$$

Furthermore, if $E_t(n_1, \dots, n_k)$ is the largest value of w such that p^w divides

$$(n+t)\cdots(n+1)$$
 (n_1,\cdots,n_k) ,

then

$$E_t(n_1, \, \cdots, \, n_k) = rac{S(n_1) + \, \cdots \, + \, S(n_k) - \, S(n + t) \, + \, t}{p - 1}$$

100

Compositions, or ordered partitions, are important in evaluating $\theta_j(k; n)$. We define a composition of a nonnegative integer u into r parts to be an ordered sequence of r nonnegative integers whose sum is u. This is more general than the usual definition of composition in that we allow 0 to be one or more of the parts. See [7, pp. 124-125] for example.

Throughout this paper we shall let C(u) denote the number of compositions of u into exactly k parts, with no part larger than p-1. We define C(u) = 0 if u < 0.

LEMMA 2.3. C(u) is the coefficient of x^u in the expansion of

$$(1+x+x^2+\cdots+x^{p-1})^k = igg[\sum_{i=0}^\infty \binom{k+i-1}{i} x^i igg] (1-x^p)^k \; .$$

It is clear from Lemma 2.3 that if $0 \leq a < p$ and if $0 \leq b$, then

(2.2)
$$C(a+bp) = \sum_{i=0}^{b} (-1)^{i} \binom{k}{i} \binom{k-1+a+(b-i)p}{k-1}.$$

In particular, for $0 \leq a < p$,

$$C(a) = inom{k-1+a}{k-1}, \ C(a+p) = inom{k-1+a+p}{k-1} - kinom{k-1+a}{k-1}, \ C(a+2p) = inom{k-1+a+2p}{k-1} - kinom{k-1+a+p}{k-1} + inom{k}{2}inom{k-1+a}{k-1}.$$

3. Evaluation of $\theta_0(k; n)$, $\theta_1(k; n)$, $\theta_2(k; n)$.

THEOREM 3.1. If n has expansion (1.1) then

$$heta_{\scriptscriptstyle 0}(k;n) = C(a_{\scriptscriptstyle 0})C(a_{\scriptscriptstyle 1}) \cdots C(a_{\scriptscriptstyle s})$$
 .

Proof. We use Lemma 2.1. If $E(n_1, \dots, n_k) = 0$ then we must have

$$\sum_{i=1}^k a_{i,r} = a_r \qquad (r = 0, \cdots, s) \ .$$

For a given r, the total number of ways we can have this equality is equal to $C(a_r)$.

Note that by Lemma 2.3 we have

$$C(a_r) = {a_r + k - 1 \choose k - 1}$$
 $(r = 0, \dots, s)$.

F. T. HOWARD

THEOREM 3.2. If n has expansion (1.1) then

$$heta_{\scriptscriptstyle 1}(k;\,n) = \sum_{i=0}^{s-1} C(a_{\scriptscriptstyle 0})\,\cdots\, C(a_{i-1})C(a_i+\,p)C(a_{i+1}-\,1)C(a_{i+2})\,\cdots\, C(a_s)$$

Proof. Using Lemma 2.1, we see that if $E(n_1, \dots, n_k) = 1$ then we must have exactly one $\varepsilon_i = 1, 0 \leq i < s$. So for some *i* we have

Clearly the total number of ways we can have these equalities is

$$C(a_0) \cdots C(a_{i-1})C(a_i + p)C(a_{i+1} - 1)C(a_{i+2}) \cdots C(a_s)$$

To simplify the formula for $\theta_2(k; n)$ we introduce the following notation. Let

$$egin{aligned} A_i &= \left[\prod_{t=0}^s C(a_t)
ight] \!\! \left/ \!\! \left[C(a_i)C(a_{i+1})C(a_{i+2})
ight] , \ B_i &= \left[\prod_{t=0}^s C(a_t)
ight] \!\! \left/ \!\! \left[C(a_i)C(a_{i+1})
ight] , \ H_{i,r} &= \left[\prod_{t=0}^s C(a_t)
ight] \! \left/ \!\! \left[C(a_i)C(a_{i+1})C(a_r)C(a_{r+1})
ight] . \end{aligned} \end{aligned}$$

THEOREM 3.3. If n has expansion (1.1) then

$$egin{aligned} heta_2(k;n) &= \sum\limits_{i=0}^{s-2} C(p\,+\,a_i) C(p\,+\,a_{i+1}\,-\,1) C(a_{i+2}\,-\,1) A_i \ &+ \sum\limits_{i=0}^{s-1} C(2p\,+\,a_i) C(a_{i+1}\,-\,2) B_i \ &+ \sum\limits_{r=i+2}^{s-1} \sum\limits_{i=0}^{s-3} C(p\,+\,a_i) C(a_{i+1}\,-\,1) C(p\,+\,a_r) C(a_{r+1}\,-\,1) H_{i,r} \end{aligned}$$

Proof. The proof is similar to the proof of Theorem 3.2. We determine the number of ways we can have exactly two of the ε 's equal to 1 or exactly one ε equal to 2, and all other ε 's equal to 0.

For example, let p = 5, k = 3, and $n = 278 = 3 + 5^2 + 2 \cdot 5^3$. We have

$$egin{aligned} & heta_{\scriptscriptstyle 0}(3;\,278)\,=\,C(3)\,C(0)\,C(1)\,C(2)\,=\,180;\ & heta_{\scriptscriptstyle 1}(3;\,278)\,=\,C(3)\,C(5)\,C(0)\,C(2)\,+\,C(3)\,C(0)\,C(6)\,C(1)\,=\,1650$$
 , $& heta_{\scriptscriptstyle 2}(3;\,278)\,=\,C(8)\,C(4)\,C(0)\,C(2)\,+\,C(3)\,C(5)\,C(5)\,C(1)\ &+\,C(3)\,C(0)\,C(11)\,C(0)\,=\,11,\,100$.

In each example we have used (2.2) to evaluate C(u).

4. Generating functions for $\theta_{j}(k; n)$. Let $\psi_{t,j}(k; n)$ denote the

102

number of products $(n + t) \cdots (n + 1)(n_1, \dots, n_k)$, $n_1 + \dots + n_k = n$, divisible by exactly p^j . Clearly

(4.1)
$$\psi_{t,j}(k;n) = \theta_{j-r}(k;n)$$

if p^r is the highest power of p dividing $(n + t) \cdots (n + 1)$. Also

$$\psi_{t,j}(k;n)=0$$

if p^{j+1} divides $(n + t) \cdots (n + 1)$. We introduce the following generating functions:

$$egin{aligned} F_{\scriptscriptstyle 0}(x,\ y) &= \sum\limits_{n=0}^{\infty}\sum\limits_{j=0}^{\infty} heta_{j}(k;\ n)x^{n}y^{j} \ , \ &F_{\scriptscriptstyle t}(x,\ y) &= \sum\limits_{n=0}^{\infty}\sum\limits_{j=0}^{\infty}\psi_{\scriptscriptstyle t,\,j}(k;\ n)x^{n}y^{j} \ &(t>0) \ . \end{aligned}$$

Using an argument analogous to that of Carlitz [3], we obtain

(4.2)
$$F_0(x, y) = \sum_{t=0}^m y^t f_t(x) F_t(x^p, y)$$

where m is the integer such that

(4.3)
$$mp \leq k(p-1) < (m+1)p$$

and

$$f_t(x) = \sum_{a=tp}^{tp+p-1} C(a) x^a$$
 $(0 \le t < m)$,
 $f_m(x) = \sum_{a=mp}^{kp-k} C(a) x^a$.

Comparing coefficients of $x^n y^j$ on both sides of (4.2), we have, for $0 \leq a < p$,

(4.4)
$$\theta_j(k; a + bp) = C(a)\theta_j(k; b) + \sum_{t=1}^m C(a + tp)\psi_{t,j-t}(k; b - t)$$
.

In (4.4) it is understood that $\psi_{t,j}(k; u) = 0$ if u < 0 and $\psi_{t,-1}(k; u) = 0$. Also, for t < p,

$$F_{t}(x, y) = \sum_{r=1}^{h} y^{r} g_{r}(x) F_{r}(x^{p}, y)$$

where h is the integer such that

(4.5)
$$hp - t \leq k(p-1) < (h+1)p - t$$
,

and

$$egin{aligned} g_0(x) &= \sum\limits_{a=0}^{p-t-1} C(a) x^a \ , \ g_r(x) &= \sum\limits_{a=rp-t}^{(r+1)p-t-1} C(a) x^a \ (r=1,\,\cdots,\,h-1) \ , \ g_h(x) &= \sum\limits_{a=hp-t}^{kp-k} C(a) x^a \ . \end{aligned}$$

Thus for $0 \leq a , <math>hp + a \leq kp - k$, we have

(4.6)
$$\psi_{t,j}(k; a + bp) = C(a)\theta_j(k; b) + \sum_{r=1}^{h} C(a + rp)\psi_{r,j-r}(k; b - r)$$
.

For $0 \leq a , <math>hp + a > kp - k$, we have

(4.7)
$$\psi_{t,j}(k; a + bp) = C(a)\theta_j(k; b) + \sum_{r=1}^{k-1} C(a + rp)\psi_{r,j-r}(k; b - r)$$
.

For $p - t \leq a < p$, we have

(4.8)
$$\psi_{t,j}(k; a + bp) = \sum_{r=1}^{n} C(a + (r-1)p)\psi_{r,j-r}(k; a - r + 1)$$
.

Here again it is understood that $\psi_{r,i}(k; u) = 0$ if u < 0. We remark that in all of these formulas specific values for C(u) can be found from formula (2.2).

Using (4.4) we can compute $\theta_i(k; n)$ for special values of n. By (4.4) and (4.1) we have, for $0 \leq a < p, 0 \leq b < p$,

$$egin{array}{ll} heta_j(k;\,a\,+\,bp) &=\, C(a\,+\,jp) heta_0(k;\,b\,-\,j) \ &=\, C(a\,+\,jp) \;\; C(b\,-\,j) \;\;\; ext{if} \;\;\; j\,\leq\,m \;, \ &=\, 0 \;\;\; ext{if} \;\;\; j\,>\,m \end{array}$$

where m is defined by (4.3).

Also, if $0 \leq a < p$,

$$egin{array}{ll} heta_j(k;\,a\,+\,p^{
m 2})\,=\,C(a)C(1) & {
m if} & j\,=\,0 \;, \ &=\,C(a\,+\,(j\,-\,1)p)C(p\,-\,j\,+\,1) & {
m if} & 1\,\leq\,j\,\leq\,m\,+\,1 \;, \ &=\,0 & {
m if} & j\,>\,m\,+\,1 \;. \end{array}$$

 $egin{array}{lll} ext{If} & 0 &\leq a < p, \, p > 2, \ heta_j(k; \, a + 2p^2) \ &= C(a + (j-2)p) heta_1(k; \, 2p - j + 2) \ &+ C(a + (j-1)p) heta_0(k; \, 2p - j + 1) & (1 < j \leq p + 1, \, j \leq m + 1) \,, \ &= C(a + (j-2)p) heta_1(k; \, 2p - j + 2) & (j = m + 2 \leq p + 1) \,, \ &= C(a + (j-2)p) heta_1(k; \, p) & (j = p + 2 \leq m + 2) \,, \ &= C(a + (j-2)p) heta_0(k; \, p - r + 2) & (j = p + r \leq m + 2, \, 2 < r \leq p + 2) \,, \ &= 0 & ext{if} \quad j > m + 2 \,. \end{array}$

104

Some of the results in [2] can also be generalized. We use the symbols $E(n_1, \dots, n_k)$ and $E_t(n_1, \dots, n_k)$ as they are used in Lemma 2.2.

Let

$$egin{aligned} &F_{j}(n;x_{1},\,\cdots,\,x_{k})=\sum\limits_{\substack{a_{1}+\cdots+a_{k}=n\ E\{(a_{1},\cdots,a_{k})=j}}x_{1}^{a_{1}}\cdots x_{k}^{a_{k}}\ ,\ &G_{t,j}(n;x_{1},\,\cdots,\,x_{k})=\sum\limits_{\substack{a_{1}+\cdots+a_{k}=n\ E_{t}(a_{1},\cdots,a_{n})=j}}x_{1}^{a_{1}}\cdots x_{k}^{a_{k}}\ &(t>0)\ ,\ &G_{0,j}(n;x_{1},\,\cdots,\,x_{k})=F_{j}(n;x_{1},\,\cdots,\,x_{k})\ . \end{aligned}$$

Note that

$$egin{aligned} &F_j(n;\,x,\,\cdots,\,x)=x^n heta_j(k;\,n)\ ,\ &G_{t,j}(n;\,x,\,\cdots,\,x)=x^n\psi_{t,j}(k;\,n)\ . \end{aligned}$$

By generalizing Carlitz's work in [2] in the natural way, we obtain

(4.9)
$$F_{j}(a + bp; x_{1}, \dots, x_{k}) = \sum_{s=0}^{m} c_{sp+a}(x_{1}, \dots, x_{k}) G_{s,j-s}(b - s; x_{1}^{p}, \dots, x_{k}^{p})$$

where $0 \leq a < p$, m is defined by (4.3), and

$$c_r(x_1, \cdots, x_k) = \sum_{s_1+\cdots+s_k=r} x_1^{s_1}\cdots x_k^{s_k}$$
.

Also, if h is defined by (4.5),

$$(4.10) \begin{array}{l} G_{t,j}(a+bp;\,x_{1},\,\cdots,\,x_{k}) \\ &=\sum\limits_{s=0}^{h}c_{sp+a}(x_{1},\,\cdots,\,x_{k})G_{s,j-s}(b-s;\,x_{1}^{p},\,\cdots,\,x_{k}^{p}) \\ &\quad (hp+a\leq kp-k,\,0\leq a< p-t) \ , \\ &=\sum\limits_{s=0}^{h-1}c_{sp+a}(x_{1},\,\cdots,\,x_{k})G_{s,j-s}(b-s;\,x_{1}^{p},\,\cdots,\,x_{k}^{p}) \\ &\quad (hp+a>kp-k,\,0\leq a< p-t) \ , \\ &=\sum\limits_{s=1}^{h}c_{(s-1)p+a}(x_{1},\,\cdots,\,x_{k})G_{s,j-s}(a-s+1;\,x_{1}^{p},\,\cdots,\,x_{k}^{p}) \\ &\quad (p-t\leq a< p-1) \ . \end{array}$$

5. Some special evaluations. If $j > \nu(n)$, where $\nu(n)$ is the exponent of the highest power of p that divides n!, then it is clear that $\theta_j(k; n) = 0$. For example, if $0 \leq a < p$, $0 \leq b < p$ then

$$\theta_j(k; a + bp) = 0 \qquad (j > b) .$$

Let n have expansion (1.1). By Lemma 2.1 it is clear that $\theta_j(k; n) = 0$ for j > M, where

$$egin{array}{ll} M=s(k-1) & ext{if} & k \leq a_s+1 \ =(s-1)(k-1)+a_s & ext{if} & k>a_s+1 \ . \end{array}$$

Also,

$$egin{aligned} & heta_{\mathtt{M}}(k;\,n)\ &=C(a_{_0}+(k-1)p)C(a_{_s}-k+1)\prod\limits_{i=1}^{s-1}C(a_i-k+1+(k-1)p)\ &(k\leq a_s+1)\ ,\ &=C(a_{_0}+(k-1)p)C(a_{_{s-1}}-k+1+a_sp)\prod\limits_{i=1}^{s-2}C(a_i-k+1+(k-1)p)\ &(k>a_s+1,\,s>1)\ ,\ &=C(a_{_0}+a_1p)\ &(k>a_s+1,\,s=1)\ . \end{aligned}$$

For example, if k = 2 and $a_s \neq 0$ then M = s. This is the case for ordinary binomial coefficients. We have in this case

$$heta_s(2;n) = (p-a_0-1)(p-a_1)\cdots(p-a_{s-1})a_s$$
.

For p = 2 we can generalize the method used in [6]. Let

(5.1) $n = 2^{e_1} + \cdots + 2^{e_r}, \quad 0 \leq e_1 < \cdots < e_r,$

$$(5.2) n_i = 2^{e_{i,1}} + \cdots + 2^{e_{i,S(i)}}, 0 \leq e_{i,1} < \cdots < e_{i,S(i)}.$$

Consider all the different compositions $n = n_1 + \cdots + n_k$ such that (5.1) and (5.2) hold, such that

$$S(n_1) + \cdots + S(n_k) = r + j$$
 ,

and such that there are a total of $r + j - t \ e_{i,w}$'s having the property that $e_{i,w} \neq e_{x,y}$ for all x, y (except for the one case i = x, w = y). Let $b_{j,t}$ be the sum over all these compositions of the number of different ways of distributing the remaining $t \ e_{i,w}$'s into k distinct cells with no two identical objects in the same cell. Then for p = 2, j > 0,

(5.3)
$$\theta_{j}(k; n) = b_{j,2}k^{m+j-2} + b_{j,3}k^{m+j-3} + \cdots + b_{j,m+j}.$$

Using the convention that $e_1 - e_0 = t$ means $e_1 = t - 1$ and that $e_1 - e_0 > t$ means $e_1 > t - 1$, let

$$egin{aligned} e_i - e_{i-1} &> 1 & ext{for} & q_1 ext{ terms } e_i \ , \ &> 2 & ext{for} & q_2 ext{ terms } e_i \ , \ &= 1, \ e_{i-1} - e_{i-2} &= 1 & ext{for} & q_3 ext{ terms } e_i \ &= 1, \ e_{i-1} - e_{i-2} &> 1 & ext{for} & q_4 ext{ terms } e_i \ , \ &= 2 & ext{for} & q_5 ext{ terms } e_i \ &= 1 & ext{for} & q_6 ext{ terms } e_i \ &(i
eq 1) \ , \ &= 1 & ext{for} & q_6 ext{ terms } e_i \ &(i
eq 1) \ . \end{aligned}$$

Then, by (5.3), for p = 2,

$$egin{aligned} & heta_{\scriptscriptstyle 0}(k;\,n)=k^{r}\;,\ & heta_{\scriptscriptstyle 1}(k;\,n)=q_{\scriptscriptstyle 1}inom{k}{2}k^{r-1}+q_{\scriptscriptstyle 6}inom{k}{3}k^{r-2}\;,\ & heta_{\scriptscriptstyle 2}(k;\,n)=q_{\scriptscriptstyle 2}inom{k}{2}k^{r}+q_{\scriptscriptstyle 5}inom{k}{3}k^{r-1}\ &+\left[inom{q_{\scriptscriptstyle 1}}{2}inom{k}{2}+q_{\scriptscriptstyle 4}
ight]inom{k}{2}^{2}k^{r-2}\ &+\left[q_{\scriptscriptstyle 4}(q_{\scriptscriptstyle 1}-1)+q_{\scriptscriptstyle 3}
ight]inom{k}{3}inom{k}{2}k^{r-3}\ &+\left[inom{q_{\scriptscriptstyle 4}}{2}inom{k}{3}-1inom{k}{2}k^{r-4}\,. \end{aligned}$$

For example, let $n = 2^4 + 2^5 + 2^{20} + 2^{28} + 2^{28}$. Then $q_1 = 4$, $q_2 = 3$, $q_3 = 0$, $q_4 = 1$, $q_5 = 1$ and $q_6 = 1$. Thus

$$egin{aligned} & heta_0(k;\,n)\,=\,k^5\ & heta_1(k;\,n)\,=\,4inom{k}{2}inom{k}{2}k^4\,+\,inom{k}{3}inom{k}{3}\,,\ & heta_2(k;\,n)\,=\,3inom{k}{2}inom{k}{2}k^5\,+\,inom{k}{3}inom{k}{2}k^4\,+\,7inom{k}{2}inom{k}{2}^2k^3\,+\,3inom{k}{3}inom{k}{2}inom{k}{2}inom{k}{2}inom{k}{2}\,. \end{aligned}$$

References

1. P. Bachmann, Niedere Zahlentheorie, vol. 1, Leipzig, 1902.

2. L. Carlitz, Distribution of binomial coefficients, Riv. Mat. Univ. Parma, (2) 11 (1970), 45-64.

3. ____, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo, (2) 16 (1967), 299-320.

4. Robert D. Fray, Congruence properties of ordinary and q-binomial coefficients, Duke Math. J., **34** (1967), 467-480.

5. F. T. Howard, Formulas for the number of binomial coefficients divisible by a fixed power of a prime, Proc. Amer. Math. Soc., **37** (1973), 358-362.

<u>26.</u> F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proc. Amer. Math. Soc., **29** (1971), 236-242.

7. J. Riordan, An Introduction to Combinatorial Analysis, New York, 1958.

Received September 11, 1972.

WAKE FOREST UNIVERSITY