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SIERPINSKI CURVES IN FINITE 2-COMPLEXES

GAIL H. ATNEOSEN

In this note certain one-dimensional continua are defined
for finite 2-complexes. These continua, called S-curves, are
a generalization of the Sierpinski plane universal curve. By
a 2-complex is meant a finite connected 2-dimensional euclidean
polyhedron which has a triangulation such that every 1-sim-
plex is the face of at least one 2-simplex. It is shown that
any two ^-curves in a 2-complex are homeomorphic. In addi-
tion, it is established that two 2-complexes (with the property
that every 1-simplex in a triangulation is the face of two or
more 2-simplexes) are homeomorphic if and only if the corres-
ponding S-curves are homeomorphic.

In 1916 Sierpinski [4] described a one-dimensional continuum that
is known as the Sierpinski plane universal curve. In 1958 Whyburn
[7] defined the notion of an £-curve in a 2-sphere and established
that an £-curve in a 2-sphere is homeomorphic to the Sierpinski plane
universal curve. In 1966 Borsuk [1] defined an S-curve in a surface.
He established that any two S-curves in a given surface are homeo-
morphic and that two surfaces are homeomorphic if and only if the
corresponding S-curves are homeomorphic. In this paper the same
type of theorems are established for certain 2-complexes.

In order to define an S-curve in a 2-complex, it is necessary to
introduce some terminology from Whittlesey [5] or [6]. A point x in
a 2-complex if is a regular point if it has a neighborhood in K homeo-
morphic to the plane (euclidean 2-dimensional space). The regular part
of K is the collection of all regular points in K. The points of K
which are not regular are called singular) the collection of all singular
points in K constitute the singular graph of K. Let Du D2, be a
sequence of mutually disjoint closed discs contained in the regular
part of K. Then A(K) = K — (JΓ=i Int A (Int = interior in the sense
of manifolds) is said to be an S-curve in K provided that \JT=i Di is
dense in K and the diameters of the Dt converge to zero. Note that
if the 2-complex is also a surface, then this definition is precisely
that of Borsuk [1, pp. 81-82].

LEMMA 1. Let K be a 2-complex and Σ an upper semi-continuous
decomposition of K with the property that every nondegenerate element
of Σ is contained in the regular part of K and each nondegenerate
element has arbitrarily small neighborhoods {in K) homeomorphic with
the plane. Then the decomposition space KΣ is homeomorphic to K.
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Proof. It follows from results of Whittlesey [5, p. 843] that
there exists a finite collection of bounded surfaces (compact, connected
2-manifolds with nonempty boundary) Ml9 •••, Mj such that K is an
identification space of their topological sum Mγ + + M5. The
identification takes place on the boundaries of the surfaces. More
precisely, if / : Mx + + Λf, —• if is the identification map, then /
restricted to the manifold interiors of the surfaces is a homeomorphism.

Consider the following diagram:

M, + + M3 -ί->K

4 lq

MΣω + + MΣ{5) > KΣ .

The upper semi-continuous decomposition Σ of K induces an upper
semi-continuous decomposition Σ(i) of Mi9 i — 1, •••,,?. Σ(i) has as
nondegenerate elements those sets B such that B = f~ι{b) where b is
a nondegenerate element of Σ. Let pt be the identification map of
Mi onto the decomposition space MΣ{i), i — 1, •••,:?. Let p denote the
identification map induced by the identification maps pi9 i = 1, * , i ,
and let g denote the identification map for the decomposition Σ of K.
The map / is a relation-preserving continuous map that is an identifica-
tion. Hence, the induced map/* is continuous and is also an identifica-
tion [2, Theorem 4.3, p. 126].

It follows from results of Borsuk [1, Theorem 3.1, pβ 76] that Mt

is homeomorphic to MΣii). For each i, i = 1, , j , the map pt re-
stricted to Bd Mi (Bd = boundary in the sense of manifolds) is a
homeomorphism onto Bd MΣ{i). Furthermore, all the orientations of
the boundaries are preserved by pi9 and so by [5, Lemma, p. 843] p{

restricted to Bd Mi can be extended to a homeomorphism h{ mapping
Mi onto MΣ{i).

Next consider the diagram:

Mλ + ... + Ms — K

MΣ{1) + + MΣ{j) —-> KΣ .

The homeomorphism h is induced by the homeomorphisms hi9 i =
1, , j . As above, there exists a continuous mapping h* of K onto
KΣ. Furthermore, h* is one-to-one. Since K is compact and Hausdorff
and Σ is an upper semi-continuous decomposition, it follows from
[3, Theorem 3-33, p. 133] that KΣ is Hausdorff. Thus h* is a one-to-
one continuous mapping of a compact space onto a Hausdorff space
and hence is a homeomorphism.
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The proof of the next result closely parallels that of Borsuk
[1, pp. 82-83] but is included for completeness.

THEOREM 1. Any two S-curves in a given 2-complex are homeo-
morphic.

Proof. Let A ~ K — (JΓ=i Int A be an S-curve in a 2-complex
K. Consider the upper semi-continuous decomposition Σ of K whose
nondegenerate elements are the discs A K is homeomorphic to KΣ

by Lemma 1. The subset of the decomposition space KΣ consisting
of points di corresponding to the discs JO* is countable and is contained
in the regular part of KΣ. If K has triangulation To, there exists
a "curved" triangulation T of KΣ isomorphic to To such that no point
dif i = 1, 2, •• , belongs to the 1-dimensional skeleton Z of T. The
skeleton Z may be considered as lying in the set K — (JΓ=i A Thus
a triangulation T of K is obtained that is isomorphic to To with the
property that every disc JD< lies in the interior of a 2-simplex of K.

Similarly, if A! = K — (JT=ι Int D[ is another S-curve in K, it
follows from the above argument that there exists another triangula-
tion T of K isomorphic to T such that every disc Dt lies in the
interior of a 2-simplex of T. Let Z( denote the 1-skeleton.

Since T and T' are isomorphic, there is a homeomorphism h map-
ping K onto K such that each 2-simplex E of T is mapped by h onto
a 2-simplex E' of T. Then E f] A and Ef Π A! may be viewed as
S-curves in a 2-sphere, and h as a homeomorphism mapping the outer
boundary of E Π A onto the outer boundary of E' Π A!. Thus by a
result of Why burn [7, p. 322], h restricted to Bd E can be extended
to a homeomorphism hE mapping E f) A onto E' ΓΊ A!. The mapping
& can then be extended to a homeomorphism mapping A onto Af by
defining /&(#) = hE{x) for a e i and α? contained in the 2-simplex E of T.

Next it is established that certain 2-complexes are completely
characterized by their S-curves. Let K be the union of all the proper
faces of a 3-simplex and let K' be a 2-simplex. Then A{K) is homeo-
morphic to A{K') but K is not homeomorphic to K'. This example
shows that extra conditions are needed on the 2-complexes for such
a characterization. The sufficient conditions are stated in Theorem 2.

First, some terminology from Borsuk [1, p. 84] must be introduced.
Let A{K) — K — UΓ=i Int A be an S-curve associated with a 2-complex
K. The set Bd A{K) = JJΓ=i Bd Dt is said to be the boundary of A(K).
The set Int A(K) = A(iQ - Bd A(UT) is said to be the interior of
A(K). Singular interior points of A(K) are those interior points
contained in the singular graph of K.

Let S be a Sierpinski plane universal curve and / an arc (a space
homeomorphic to the closed interval [0, 1]). Let Y denote the space
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obtained by identifying an endpoint of / with an interior point x of S.
Observe that every interior point of S is interior to arbitrarily small
rectangular plane neighborhoods whose boundaries lie in S. Hence Y
is not embeddable in the plane. This fact will be used in the proof
of the following lemma.

LEMMA 2. Let K be a 2-complex such that every 1-simplex is the
face of two or more 2-simplexes, and let A(K) be the associated S-curve.
A point x in A(K) is a singular interior point if and only if no
neighborhood of x in A(K) is embeddable in the plane.

Proof. It is clear that if x does not have a neighborhood in A{K)
embeddable in the plane, then x does not have such a neighborhood
in K. Thus x belongs to the singular graph of K and is a singular
interior point of A(K).

Conversely, suppose x is a singular interior point. Then x is an
element of the singular graph of K. To show that no neighborhood
of x in A(K) is embeddable in the plane it suffices to establish that
every neighborhood of x in A(K) contains a subset homeomorphic to
Y (as defined above). Whittlesey has classified the singular points of
a 2-complex. His definitions [5, p. 842] are used to consider the
various cases.

Case 1. x is a line singularity. Then x has arbitrarily small
neighborhoods in K homeomorphic to the space obtained by identify-
ing the #-axes of n (n ^ 3 by the hypothesis of the lemma) copies of
the closed euclidean half-plane y ^ 0. It follows that every neighbor-
hood of x in A(K) contains a subset homeomorphic to Y.

Case 2. a; is a conical point. Then x has arbitrarily small
neighborhoods in K homeomorphic to the set which is obtained if n
copies (n ^ 2) of the plane are identified at the origin. Again every
neighborhood of x in A(K) contains a copy of Y.

Case 3. x is a node. A node is necessarily a vertex in any
triangulation of K. Let T be a triangulation of K. Then the regular
part of the Star of x falls into components each of which is a cone
with x at the vertex or is, topologically, an open triangle with x as
a vertex and with two singular edges, both edges having x as a
vertex, and the edges may be distinct or coincide. Since by hypothesis
every 1-simplex is the face of two or more 2-simplexes, every neighbor-
hood in A{K) of a node will contain a copy of Y.

All possible singular interior points have been considered and the
proof is completed.
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THEOREM 2. Let K and Kf be 2-complexes such that every 1-sim-
lex in a triangulation of K or K' is the face of two or more 2-sim-
plexes. Let A(K) and A{K') be the S-curves associated with K and Kf

respectively. Then A(K) is homeomorphic to A(Kf) if and only if K
is homeomorphic to K'.

Proof. Let h mapping A(K) onto A{K') be a homeomorphism.
Let Int Di be an open disc in K — A{K) with Bd Dt = C which is
contained in A(K). Consider h(C) = C. Then C is a simple closed
curve in A{K'). Next it is established that C" = Bd Ό\ where A{Kf) =

If x e C, then there exists a neighborhood of x in A(K) embed-
dable in the plane. By Lemma 2, h(x) is not a singular interior point
of A{Kr). Furthermore, if xeC then x is contained in the interior
of an arc in C that does not locally decompose A(K). It follows
from [1, p. 84] that C is contained in Bd A{K'). Hence O = Bd Ώ\
for some i. For each i the map h restricted to the Bd Di can be
extended to a homeomorphism hi mapping the disc Di onto the disc
DI. Since the diameters of the sets h(Bd Di) converge to zero, the
diameters of the discs DI converge to zero. Extend h to a mapping
hr of K onto a subset of Kr by defining h'(x) = h(x) for x in A{K)
and hf(x) — hi(x) for x in Int A Then k' is a mapping of K onto a
subset of Kf. But since fe(A(iΓ)) = A{K'), hf is also onto K'\ and iΓ
is homeomorphic to Kr.

The converse follows from Theorem 1.

The reader will able to make the necessary modifications to extend
these results by himself to arbitrary finite 2-complexes.
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