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SIERPINSKI CURVES IN FINITE 2-COMPLEXES

GAIL H. ATNEOSEN

In this note certain one-dimensicnal continua are defined
for finite 2-complexes. These continua, called S-curves, are
a generalization of the Sierpinski plane universal curve. By
a 2-complex is meant a finite connected 2-dimensional euclidean
polyhedron which has a triangulation such that every 1-sim-
plex is the face of at least one 2-simplex. It is shown that
any two S-curves in a 2-complex are homeomorphic. In addi-
tion, it is established that two 2-complexes (with the property
that every l-simplex in a triangulation is the face of two or
more 2-simplexes) are homeomorphic if and only if the corres-
ponding S-curves are homeomorphic.

In 1916 Sierpinski [4] described a one-dimensional continuum that
is known as the Sierpinski plane universal curve. In 1958 Whyburn
[7] defined the notion of an S-curve in a 2-sphere and established
that an S-curve in a 2-sphere is homeomorphic to the Sierpinski plane
universal curve. In 1966 Borsuk [1] defined an S-curve in a surface.
He established that any two S-curves in a given surface are homeo-
morphic and that two surfaces are homeomorphic if and only if the
corresponding S-curves are homeomorphic. In this paper the same
type of theorems are established for certain 2-complexes.

In order to define an S-curve in a 2-complex, it is necessary to
introduce some terminology from Whittlesey [5] or [6]. A point z in
a 2-complex K is a regular point if it has a neighborhood in K homeo-
morphic to the plane (euclidean 2-dimensional space). The regular part
of K is the collection of all regular points in K. The points of K
which are not regular are called singular; the collection of all singular
points in K constitute the singular graph of K. Let D,, D,, ++- be a
sequence of mutually disjoint closed discs contained in the regular
part of K. Then A(K) = K — Uz, Int D; (Int = interior in the sense
of manifolds) is said to be an S-curve in K provided that U, D; is
dense in K and the diameters of the D, converge to zero. Note that
if the 2-complex is also a surface, then this definition is precisely
that of Borsuk [1, pp. 81-82].

LEeMMA 1. Let K be a 2-complex and X an upper semi-continuous
decomposition of K with the property that every nondegenerate element
of X is contained in the regular part of K and each mondegenerate
element has arbitrarily small neighborhoods (in K) homeomorphic with
the plane. Then the decomposition space K, is homeomorphic to K.
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Proof. It follows from results of Whittlesey [5, p. 843] that
there exists a finite collection of bounded surfaces (compact, connected
2-manifolds with nonempty boundary) M,, ---, M; such that K is an
identification space of their topological sum M, + --- + M,;. The
identification takes place on the boundaries of the surfaces. More
precisely, if f: M, + --- + M;— K is the identification map, then f
restricted to the manifold interiors of the surfaces is a homeomorphism.

Congsider the following diagram:

M o4+ M LK

| o

Msm +oeee + M:m T’ K_v .

The upper semi-continuous decomposition ¥ of K induces an upper
semi-continuous decomposition X(3) of M;, i =1, .-+ 5. 2(i) has as
nondegenerate elements those sets B such that B = f~'(b) where b is
a nondegenerate element of 3. Let p;, be the identification map of
M; onto the decomposition space M,;, 7 =1, -++,j. Let p denote the
identification map induced by the identification maps p;, ¢ =1, -+, 7,
and let ¢ denote the identification map for the decomposition Y of K.
The map f is a relation-preserving continuous map that is an identifica-
tion. Hence, the induced map f., is continuous and is also an identifica-
tion [2, Theorem 4.3, p. 126].

It follows from results of Borsuk [1, Theorem 3.1, p. 76] that M;
is homeomorphic to M,;. For each ¢,¢=1, -+ 7, the map p, re-
stricted to Bd M; (Bd = boundary in the sense of manifolds) is a
homeomorphism onto Bd M;;. Furthermore, all the orientations of
the boundaries are preserved by p;, and so by [5, Lemma, p. 843] p;
restricted to Bd M, can be extended to a homeomorphism %, mapping
M; onto M.

Next consider the diagram:

M, + --- + M; __f_,K

| :

Mzm oo + Mz(j) — K.
S

The homeomorphism % is induced by the homeomorphisms 7, 7 =
1, ---,7. As above, there exists a continuous mapping k. of K onto
K,. Furthermore, h, is one-to-one. Since K is compact and Hausdorff
and X is an upper semi-continuous decomposition, it follows from
[3, Theorem 3-33, p. 133] that K, is Hausdorff. Thus k. is a one-to-
one continuous mapping of a compact space onto a Hausdorff space
and hence is a homeomorphism.
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The proof of the next result closely parallels that of Borsuk
[1, pp. 82-83] but is included for completeness.

THEOREM 1. Any two S-curves in a given 2-complex are homeo-
morphic.

Proof. Let A=K~ U, IntD; be an S-curve in a 2-complex
K. Consider the upper semi-continuous decomposition 3 of K whose
nondegenerate elements are the dises D;. K is homeomorphic to K
by Lemma 1. The subset of the decomposition space K, consisting
of points d; corresponding to the dises D; is countable and is contained
in the regular part of K,. If K has triangulation 7,, there exists
a “curved” triangulation T of K, isomorphic to T, such that no point
d;,1=1,2, -+, belongs to the 1-dimensional skeleton Z of 7. The
skeleton Z may be considered as lying in the set K — Uz, D;. Thus
a triangulation T of K is obtained that is isomorphic to 7, with the
property that every disc D, lies in the interior of a 2-simplex of K.

Similarly, if A’ = K — Uz, Int D; is another S-curve in K, it
follows from the above argument that there exists another triangula-
tion 7" of K isomorphic to 7 such that every disc D; lies in the
interior of a 2-simplex of 7". Let Z' denote the 1-skeleton.

Since T and T are isomorphie, there is a homeomorphism 4 map-
ping K onto K such that each 2-simplex E of T is mapped by % onto
a 2-simplex B’ of 7. Then EN A and E' N A’ may be viewed as
S-curves in a 2-sphere, and % as a homeomorphism mapping the outer
boundary of E N A onto the outer boundary of E’ N A’. Thus by a
result of Whyburn [7, p. 322], % restricted to Bd E can be extended
to a homeomorphism &, mapping EN A onto E'N A’. The mapping
h can then be extended to a homeomorphism mapping A onto A’ by
defining h(x) = hg(x) for x € A and « contained in the 2-simplex E of T.

Next it is established that certain 2-complexes are completely
characterized by their S-curves. Let K be the union of all the proper
faces of a 3-simplex and let K’ be a 2-simplex. Then A(K) is homeo-
morphic to A(K’) but K is not homeomorphic to K’. This example
shows that extra conditions are needed on the 2-complexes for such
a characterization. The sufficient conditions are stated in Theorem 2.

First, some terminology from Borsuk [1, p. 84] must be introduced.
Let A(K) = K — Uz, Int D; be an S-curve associated with a 2-complex
K. The set Bd A(K) = U, Bd D; is said to be the boundary of A(K).
The set Int A(K) = A(K) — Bd A(K) is said to be the interior of
A(K). Singular interior points of A(K) are those interior points
contained in the singular graph of K.

Let S be a Sierpinski plane universal curve and I an arc (a space
homeomorphic to the closed interval [0, 1]). Let Y denote the space
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obtained by identifying an endpoint of I with an interior point « of S.
Observe that every interior point of S is interior to arbitrarily small
rectangular plane neighborhoods whose boundaries lie in S. Hence Y
is not embeddable in the plane. This fact will be used in the proof
of the following lemma.

LEMMA 2. Let K be a 2-complex such that every 1-simplex 1s the
face of two or more 2-simplexes, and let A(K) be the associated S-curve.
A point x in A(K) is a singular interior point if and only if mo
netghborhood of x in A(K) is embeddable in the plane.

Proof. 1t is clear that if x does not have a neighborhood in A(K)
embeddable in the plane, then x does not have such a neighborhood
in K. Thus x belongs to the singular graph of K and is a singular
interior point of A(K).

Conversely, suppose « is a singular interior point. Then % is an
element of the singular graph of K. To show that no neighborhood
of # in A(K) is embeddable in the plane it suffices to establish that
every neighborhood of z in A(K) contains a subset homeomorphic to
Y (as defined above). Whittlesey has classified the singular points of
a 2-complex. His definitions [5, p. 842] are used to consider the
various cases.

Case 1. « is a line singularity. Then x has arbitrarily small
neighborhoods in K homeomorphic to the space obtained by identify-
ing the z-axes of n (» = 3 by the hypothesis of the lemma) copies of
the closed euclidean half-plane y = 0. It follows that every neighbor-
hood of # in A(K) contains a subset homeomorphic to Y.

Case 2. x is a conical point. Then x has arbitrarily small
neighborhoods in K homeomorphic to the set which is obtained if =
copies (n = 2) of the plane are identified at the origin. Again every
neighborhood of x in A(K) contains a copy of Y.

Case 3. x is a node. A node is necessarily a vertex in any
triangulation of K. Let T be a triangulation of K. Then the regular
part of the Star of x falls into components each of which is a cone
with 2 at the vertex or is, topologically, an open triangle with x as
a vertex and with two singular edges, both edges having x as a
vertex, and the edges may be distinct or coincide. Since by hypothesis
every l-simplex is the face of two or more 2-simplexes, every neighbor-
hood in A(K) of a node will contain a copy of Y.

All possible singular interior points have been considered and the
proof is completed.
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THEOREM 2. Let K and K' be 2-complexes such that every 1-sim-
lex in a triangulation of K or K’ is the face of two or more 2-sim-
plexes. Let A(K) and A(K') be the S-curves associated with K and K’
respectively. Then A(K) is homeomorphic to A(K’) if and only if K
s homeomorphic to K'.

Proof. Let h mapping A(K) onto A(K’) be a homeomorphism.
Let Int D; be an open disc in K — A(K) with Bd D, = C which is
contained in A(K). Consider #(C) = C’. Then C’ is a simple closed
curve in A(K’). Next it is established that C' = Bd D; where A(K') =
K' — Uz, Int D..

If e C, then there exists a neighborhood of x in A(K) embed-
dable in the plane. By Lemma 2, ki(x) is not a singular interior point
of A(K’). Furthermore, if xc C then z is contained in the interior
of an arc in C that does not locally decompose A(K). It follows
from [1, p. 84] that C’ is contained in Bd A(K’). Hence ¢’ = Bd D;
for some i. For each ¢ the map ~ restricted to the Bd D, can be
extended to a homeomorphism %; mapping the dise D; onto the dise
D;. Since the diameters of the sets A(Bd D,) converge to zero, the
diameters of the discs D} converge to zero. Extend % to a mapping
k' of K onto a subset of K’ by defining A'(x) = h(x) for « in A(K)
and 2'(x) = hy(x) for # in Int D;,. Then &' is a mapping of K onto a
subset of K’. But since h(A(K)) = A(K'), I’ is also onto K’; and K
is homeomorphic to K’.

The converse follows from Theorem 1.

The reader will able to make the necessary modifications to extend
these results by himself to arbitrary finite 2-complexes.
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