THE RANGE OF A DERIVATION AND IDEALS

R. E. WEBER

When A is in the Banach algebra $\mathscr{B}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H} , the derivation generated by A is the bounded operator Δ_A on $\mathscr{B}(\mathscr{H})$ defined by $\Delta_A(X) = AX - XA$. It is shown that the range of a derivation generated by a Hilbert-Schmidt or a diagonal operator contains no nonzero one-sided ideals of $\mathscr{B}(\mathscr{H})$. Also, for a two-sided ideal \mathscr{I} of $\mathscr{B}(\mathscr{H})$, necessary and sufficient condition on an operator A are given in order that the range of Δ_A equals the range of Δ_A restricted to \mathscr{I} .

1. In the following ${\mathscr H}$ will denote an infinite dimensional complex Hilbert space.

For a fixed $A \in \mathcal{B}(\mathcal{H})$, we will concern ourselves with the following problems:

- (a) For what $B \in \mathscr{B}(\mathscr{H})$ is $B\mathscr{R}(\varDelta_A) \subset \mathscr{R}(\varDelta_A)$ or $\mathscr{R}(\varDelta_A)B \subset \mathscr{R}(\varDelta_A)$.
- (b) For what $B \in \mathcal{B}(\mathcal{H})$ is $B \in \mathcal{B}(\mathcal{H}) \subset \mathcal{R}(\Delta_A)$ or $\mathcal{B}(\mathcal{H})B \subset \mathcal{R}(\Delta_A)$.
 - (c) For what $B \in \mathcal{B}(\mathcal{H})$ is $\mathcal{R}(\Delta_B) \subset \mathcal{R}(\Delta_A)$.

It is easy to verify that for $A, X, Y \in \mathcal{B}(\mathcal{H})$.

- (i) $\Delta_A = \Delta_{A+\lambda}$ for all $\lambda \in \mathscr{C}$ and
 - (ii) $\Delta_A(XY) = X\Delta_A(Y) + \Delta_A(X)Y$.

The identity (ii) yields some simple facts about the range of a derivation which show the interrelation of the above problems. (For a proof see [8].)

LEMMA 1. Let $A, B \in \mathcal{B}(\mathcal{H})$ and let A' belong to the commutant $\{A\}'$ of A. Then

- (a) both $A'\mathcal{R}(\Delta_A)$ and $\mathcal{R}(\Delta_A)A'$ are contained in $\mathcal{R}(\Delta_A)$.
- (b) if $\mathcal{R}(\Delta_B) \subset \mathcal{R}(\Delta_A)$, then both $\Delta_{A'}(B)\mathcal{R}(\mathcal{H})$ and $\mathcal{R}(\mathcal{H})\Delta_{A'}(B)$ are contained in $\mathcal{R}(\Delta_A)$.
 - (c) $B\mathscr{R}(\Delta_A) \subset \mathscr{R}(\Delta_A)$ if and only if $\Delta_A(B)\mathscr{R}(\mathscr{H}) \subset \mathscr{R}(\Delta_A)$.
 - (d) $\mathscr{R}(\Delta_A)B \subset \mathscr{R}(\Delta_A)$ if and only if $\mathscr{R}(\mathscr{H})\Delta_A(B) \subset \mathscr{R}(\Delta_A)$.

From (b) of Lemma 1 it follows that if $\mathscr{R}(\Delta_A)$ does not contain left- or right-ideals, then a necessary condition for $\mathscr{R}(\Delta_B) \subset \mathscr{R}(\Delta_A)$ is that $B \in \{A\}$ ". In fact, more is true:

LEMMA 2. Let $A \in \mathscr{B}(\mathscr{H})$. If $\mathscr{R}(\Delta_A)$ contains either no nonzero left-ideals or no nonzero right-ideals, then $\Delta_B(\mathscr{F}) \subset \mathscr{R}(\Delta_A)$ implies

 $B \in \{A\}''$. (F denotes the ideal of finite rank operators.)

Proof. Assume that $\mathcal{R}(\Delta_A)$ contains no nonzero left-ideals (the argument for the other assumption is similar). Let P be a finite rank projection. If $A' \in \{A\}'$, then

$$\Delta_{A'}(B)PX = A'\Delta_B(PX) - \Delta_B(A'PX)$$

is in $\mathscr{R}(\Delta_A)$ for all $X \in \mathscr{B}(\mathscr{H})$. Therefore, $\Delta_{A'}(B)P\mathscr{B}(\mathscr{H}) \subset \mathscr{R}(\Delta_A)$ and hence $\Delta_{A'}(B)P = 0$. However, this is true for any such P and hence $\Delta_{A'}(B) = 0$.

For the sake of completeness we include a somewhat simpler proof of a theorem of Stampfli [6]. In the proof, $\sigma_l(A)$ denotes the left essential spectrum of A and is defined to be the set of those λ for which the coset of the Calkin algebra $\mathscr{B}(\mathscr{H})/\mathscr{K}$ (where \mathscr{K} is the ideal of compact operators) containing $A-\lambda$ fails to have a left inverse. The right essential spectrum $\sigma_r(A)$ is defined in the obvious way.

THEOREM 1. Let $A \in \mathcal{B}(\mathcal{H})$. Then $\mathcal{R}(\Delta_A)$ contains no nonzero two-sided ideals of $\mathcal{B}(\mathcal{H})$.

Proof. Replace A by $A - \lambda$ where $\lambda \in \sigma_l(A) \cap \sigma_r(A)$ if necessary in order to assume that there exist orthonormal sequences $\{f_n\}$ and $\{g_n\}$ such that $\sum ||Af_n||^{1/2} < \infty$ and $\sum ||A^*g_n||^{1/2} < \infty$. (See [6].) Then for all $X \in \mathscr{B}(\mathscr{H})$,

$$\sum |((AX - XA)f_n, g_n)|^{1/2} \leq \sum ||X||^{1/2} (||A^*g_n||^{1/2} + ||Af_n||^{1/2}) < \infty$$
.

If $\mathscr{R}(\Delta_A)$ contains a two-sided ideal, then it contains all finite rank operators. In particular, if $f \otimes g$ denotes the rank one operator $f \otimes g(x) = (x, g)f$, then $(f \otimes f)X \in \mathscr{R}(\Delta_A)$ for all $f \in \mathscr{H}$ and $X \in \mathscr{R}(\mathscr{H})$. Hence

$$\sum |\left((f igotimes f) X f_{n}, \ g_{n}
ight)|^{1/2} < \infty$$
 .

Since

$$\sum |((f \otimes f)Xf_n, g_n)|^{1/2} = \sum |(Xf_n, (f \otimes f)g_n)|^{1/2} = \sum |(Xf_n, f)(\overline{g_n, f})|^{1/2},$$

then

$$\sum |(Xf_n,f)(\overline{g_n,f})|^{1/2} < \infty$$

for all $f \in \mathcal{H}$ and $X \in \mathcal{B}(\mathcal{H})$. However, if we choose X such that $Xf_n = g_n$ and f such that $\{|(g_n, f)|\}$ is not summable, we have a contradiction.

2. Let \mathscr{S} denote the set of Hilbert-Schmidt operators on \mathscr{H} . Equipped with the trace inner product $(A, B) = \operatorname{tr}(AB^*)$, \mathscr{S} is a Hilbert space [5]. If $A \in \mathscr{B}(\mathscr{H})$, then the restriction of Δ_A to \mathscr{S} is a bounded operator on \mathscr{S} with adjoint $(\Delta_A \mid \mathscr{S})^* = \Delta_{A^*} \mid \mathscr{S}$. Hence $\mathscr{S} = \mathscr{B}(\Delta_A \mid \mathscr{S})^* \oplus (\{A^*\}' \cap \mathscr{S})$ where the double bar indicates closure with respect to the topology on \mathscr{S} .

THEOREM 2. Let $A \in \mathcal{S}$. Then $\mathscr{R}(\Delta_A)^{=} = \mathscr{R}(\Delta_A \mid \mathcal{S})^{=}$.

Proof. It follows from the above remarks that $\mathscr{R}(\varDelta_A)^{\perp} \subset \mathscr{R}(\varDelta_A \mid \mathscr{S})^{\perp} = \{A^*\}' \cap \mathscr{S}$. It remains to show the reverse inclusion. Let $T \in \{A^*\}' \cap \mathscr{S}$. Then for $X \in \mathscr{B}(\mathscr{H})$

$$(\mathcal{A}_{A}(X), T) = \operatorname{tr} (T^{*}\mathcal{A}_{A}(X)) = \operatorname{tr} (T^{*}AX) - \operatorname{tr} (T^{*}XA)$$

$$= \operatorname{tr} (AT^{*}X) - \operatorname{tr} (T^{*}XA) = \operatorname{tr} (T^{*}XA) - \operatorname{tr} (T^{*}XA) = 0.$$

Therefore $T \in \mathcal{R}(\Delta_A)^{\perp}$.

COROLLARY. Let $A \in \mathcal{S}$. Then $\mathscr{R}(\mathcal{A}_A)^= \bigoplus (\{A^*\}' \cap \mathcal{S}) = \mathcal{S}$.

THEOREM 3. If $A \in \mathcal{S}$, then $\mathscr{R}(\Delta_A)$ does not contain any nonzero left- or right-ideals.

In the proof of Theorem 3 we will make use of the following result.

LEMMA 3. Let $A \in \mathcal{S}$. If $(f \otimes f)\mathscr{B}(\mathcal{H}) \subset \mathscr{R}(\Delta_A)$, then Af = 0.

Proof. Since $\mathscr{B}(\Delta_A) \perp \{A^*\}' \cap \mathscr{S}$, then $0 = \operatorname{tr}(A(f \otimes f)X) = \operatorname{tr}(Af \otimes X^*f) = (Af, X^*f)$ for all $X \in \mathscr{B}(\mathscr{H})$. Hence Af = 0.

Proof of Theorem 3. Suppose that $(f \otimes f)\mathscr{B}(\mathscr{H}) \subset \mathscr{R}(\Delta_A)$. Then $f \otimes f = \Delta_A(X)$ for some $X \in \mathscr{B}(\mathscr{H})$ and by Lemma 3, $f = (f \otimes f)f = AXf - XAf = AXf$. Since $(f \otimes f)\mathscr{B}(\mathscr{H}) = \Delta_A(X)\mathscr{B}(\mathscr{H}) \subset \mathscr{R}(\Delta_A)$, then by Lemma 1, $X\mathscr{R}(\Delta_A) \subset \mathscr{R}(\Delta_A)$. Therefore, $((Xf) \otimes (Xf))\mathscr{B}(\mathscr{H}) \subset X(f \otimes f)\mathscr{B}(\mathscr{H}) \subset \mathscr{R}(\Delta_A)$ and by Lemma 3, $Xf \in \ker(A)$. Hence f = AXf = 0. The remainder follows by taking adjoints.

COROLLARY 1. Let $A \in \mathcal{S}$ and $B \in \mathcal{B}(\mathcal{H})$. Then $B\mathcal{R}(\Delta_A) \subset \mathcal{R}(\Delta_A)$ if and only if $B \in \{A\}'$.

Proof. This follows from Lemma 1 and the theorem.

COROLLARY 2. Let $A \in \mathcal{S}$. If $\Delta_B(\mathcal{F}) \subset \mathcal{R}(\Delta_A)$ then $B \in \{A\}''$.

Proof. This follows from Lemma 2 and the theorem.

3. We now turn our attention to diagonal operators. When expressing a diagonal operator as the sum $A = \sum \alpha_n P_n$, unless otherwise stated we shall assume that P_n is the rank one projection onto the subspace spanned by e_n , where $\{e_n\}$ is an orthonormal basis. (However, we do not require that the α_n 's be distinct.) Each operator X has a matrix (x_{ij}) with respect to this fixed basis.

The principle result of this section is that the range of a derivation generated by a diagonal operator contains no nonzero left- or right-ideals. The theorem is slightly more general.

THEOREM 4. Let $A \in \mathcal{B}(\mathcal{H})$ have the property that there exist reducing subspaces \mathcal{M}_n of A, each finite dimensional, such that $\mathcal{H} = \sum \bigoplus \mathcal{M}_n$. Then $\mathcal{R}(\Delta_A)$ contains no nonzero positive operators.

Proof. Let $P=\Delta_A(X)$ where P is positive. If P_n is the orthogonal projection onto \mathscr{M}_n , then $P_nP\mid \mathscr{M}_n=A_nX_n-X_nA_n$ where $A_n=A\mid \mathscr{M}_n$ and X_n is the compression of X to \mathscr{M}_n . Since \mathscr{M}_n is finite dimensional, then $\operatorname{tr}(P_nP\mid \mathscr{M}_n)=0$. Hence $P_nP\mid \mathscr{M}_n$ being a positive operator with zero trace, must be 0. Therefore, $P_nPP_n=0$ (on \mathscr{H}). Hence $P^{1/2}P_n=0$ and $P^{1/2}=0$.

COROLLARY 1. If A satisfies the hypothesis of the theorem and if either $B\mathscr{R}(\Delta_A)$ or $\mathscr{R}(\Delta_A)B$ is contained in $\mathscr{R}(\Delta_A)$, then $B \in \{A\}'$.

COROLLARY 2. If A satisfies the hypothesis of the theorem and $\Delta_B(\mathcal{F}) \subset \mathcal{R}(\Delta_A)$, then $B \in \{A\}''$.

COROLLARY 3. Let A be normal with finite spectrum. Then for $B \in \mathcal{B}(\mathcal{H})$, $\mathcal{R}(\Delta_B) \subset \mathcal{R}(\Delta_A)$ if and only if $B \in \{A\}''$.

Proof. If $B \in \{A\}$ " then B is a polynomial of A and hence $\mathscr{R}(\Delta_B) \subset \mathscr{R}(\Delta_A)$. (See [1, p. 79].) The converse follows from Corollary 2.

LEMMA 4. Let $A, B \in \mathcal{B}(\mathcal{H})$ where $A = \sum \alpha_i P_i$. Then $\mathcal{B}(\Delta_B) \subset \mathcal{B}(\Delta_A)$ if and only if $B = \sum \beta_i P_i$ for some set of scalars $\beta_0, \beta_1 \cdots$ and for every operator $X = (x_{ij}) \in \mathcal{B}(\mathcal{H})$ there exists an operator $Y = (y_{ij}) \in \mathcal{B}(\mathcal{H})$ such that $(\alpha_i - \alpha_j) = (\beta_i - \beta_j) x_{ij}$ for all i, j.

Proof. This follows from Corollary 2 and the fact that $[\Delta_A(X)]_{ij} = (\alpha_i - \alpha_j)x_{ij}$ if $X = (x_{ij})$.

THEOREM 5. Let $A \in \mathcal{B}(\mathcal{H})$ be diagonal. If for $B \in \mathcal{B}(\mathcal{H})$, $\mathcal{B}(\Delta_B) \subset \mathcal{B}(\Delta_A)$, then B = f(A) for some function f which is Lipschitz on the spectrum of A.

Proof. Let $A = \sum \alpha_i P_i$. If $\mathscr{R}(\Delta_B) \subset \mathscr{R}(\Delta_A)$, then by Corollary 2, $B = \sum \beta_i P_i$ for some sequence of scalars $\{\beta_i\}$ and for any $X = (x_{ij}) \in \mathscr{R}(\mathscr{H})$, there exists a $Y = (y_{ij}) \in \mathscr{R}(\mathscr{H})$ such that $y_{ij} = ((\beta_i - \beta_j)/(\alpha_i - \alpha_j))x_{ij}$ whenever $\alpha_i \neq \alpha_j$. It follows that $((\beta_i - \beta_j)/(\alpha_i - \alpha_j))$ is bounded by some positive number M. Define f such that $f(\alpha_i) = \beta_i$. Then f is a Lipschitz function defined on a dense subset of $\sigma(A)$ onto a dense subset of $\sigma(B)$. Therefore, we can extend f to be Lipschitz on $\sigma(A)$ onto $\sigma(B)$.

It was shown in [7] that if B is an analytic function of A, then $\mathscr{R}(\Delta_B) \subset \mathscr{R}(\Delta_A)$. To have range inclusion it is neither necessary that B be an analytic function of A nor sufficient that B be a continuous function of A as seen in the next two examples.

EXAMPLE 1. Let $A = \sum \alpha_n P_n$ where dim $P_n = 1$, $\alpha_0 = 0$, and

$$lpha_n = egin{cases} i/n & ext{for} & n & ext{even} \ 1/n & ext{for} & n & ext{odd} \ . \end{cases}$$

Let $B = \sum \beta_n P_n$ where $\beta_0 = 0$ and $\beta_n = -i/n^2$ for $n \ge 1$. A direct computation shows that if n < m, then $|(\beta_n - \beta_m)/(\alpha_n - \alpha_m)| \le 2/n$. Now, for any $X = (x_{ij}) \in \mathscr{B}(\mathscr{H})$, consider the matrix $Y = (y_{ij})$ where $y_{ij} = ((\beta_i - \beta_j)/(\alpha_i - \alpha_j))x_{ij}$ whenever $\alpha_i \ne \alpha_j$ and zero otherwise. Then

$$\sum_{i,j} |y_{ij}|^2 = \sum_{n=0}^{\infty} \sum_{j=n}^{\infty} |y_{nj}|^2 + \sum_{m=0}^{\infty} \sum_{i=m}^{\infty} |y_{im}|^2$$
 .

For m>0,

$$\sum\limits_{i=m}^{\infty}\mid y_{im}\mid^{2} \leqq 4/m^{2}\sum\limits_{i=m}^{\infty}\mid x_{im}\mid^{2} \leqq 4/m^{2}\mid\mid X\mid\mid^{2}$$

and for n > 0,

$$\sum_{i=n}^{\infty} |y_{nj}|^2 \le 4/n^2 ||X||^2$$
 .

Hence

$$\sum_{i,j} |y_{ij}|^2 \le ||X||^2 + \sum_{m=1}^{\infty} 4/n^2 \, ||X||^2 + ||X||^2 + \sum_{m=1}^{\infty} 4/m^2 \, ||X||^2$$
 .

Therefore, $Y \in \mathscr{B}(\mathscr{H})$ and by Lemma 4, $\mathscr{R}(\Delta_B) \subset \mathscr{R}(\Delta_A)$. Now, assume f is an analytic function on $\sigma(A)$ such that for even n, $f(i/n) = -i/n^2$. Then $f(z) = z^2i$. Hence for odd n, $f(1/n) = i/n^2 \neq -i/n^2$ and $B \neq f(A)$.

EXAMPLE 2. Let $A=\sum \alpha_n P_n$ where P_n is rank one for all n, $\alpha_0=0$, and $\alpha_n=1/n^2$ for n>0 and let $B=\sum \beta_n P_n$ where $\beta_0=0$

and $\beta_n=1/n$ for n>0. Then B is a continuous function of A, in fact B=f(A) where $f(z)=z^{1/2}$. Let $X=(x_{ij})\in \mathscr{B}(\mathscr{H})$ where

$$x_{nj} = egin{cases} 1/n & ext{for} & n>0 & ext{and} & j=0 \ 0 & ext{otherwise} \ . \end{cases}$$

If $\Delta_{B}(X) = \Delta_{A}(Y)$ where $Y = (y_{ij})$, then

$$y_{n0} = x_{n0}(\beta_n - \beta_0)/(\alpha_n - \alpha_0) = (1/n)(1/n)/(1/n^2) = 1$$

for all n. Hence $Y \notin \mathcal{B}(\mathcal{H})$ and $\mathcal{R}(\Delta_B) \not\subset \mathcal{R}(\Delta_A)$.

Other derivations whose ranges do not contain any nonzero onesided ideals are those generated by unitary and self-adjoint operators. (See [9].)

It was shown in [7] that the range of a derivation generated by a nonunitary isometry *does* contain nonzero left-ideals. Other operators which possess this property are some of the weighted shifts.

4. Another question concerning the range of a derivation and, in this case, a two-sided ideal \mathscr{I} of $\mathscr{B}(\mathscr{H})$ is whether $\mathscr{B}(\Delta_A) = \Delta_A(\mathscr{I})$.

THEOREM 6. Let $A \in \mathcal{B}(\mathcal{H})$ and let \mathcal{I} be a proper two-sided ideal of $\mathcal{B}(\mathcal{H})$. Consider the following conditions:

- (a) $\{A\}' + \mathcal{I} = \mathcal{B}(\mathcal{H}).$
- (b) $\mathscr{R}(\Delta_A) = \Delta_A(\mathscr{I}).$
- (c) $\mathcal{R}(\Delta_A) \subset \mathcal{I}$.
- (d) $A = T \lambda$ for some $T \in \mathscr{I}$ and $\lambda \in \mathscr{C}$.
- (a) is equivalent to (b), (c) is equivalent to (d), and (b) implies (c).

Proof. That (a) is equivalent to (b) is a consequence of the fact that X = T + A' for some $T \in \mathscr{I}$ and $A' \in \{A\}'$ if and only if $\Delta_A(X) \in \Delta_A(\mathscr{I})$. That (c) is equivalent to (d) is a consequence of a theorem of Calkin [2] where he shows that the center of $\mathscr{B}(\mathscr{H})/\mathscr{I}$ consists of scalars. It is immediate that (b) implies (c).

REMARK. An example to show that (c) does not imply (b) for the case when $\mathscr I$ is the ideal of compact operators can be obtained by letting A be the adjoint of the weighted shift with weights $\{2, 1, 1/2, 1/3, \cdots\}$ and showing that each element of $\{A\}'$ is the translate of a Hilbert-Schmidt operator. (See [8].)

If we require only that the closures be equal, we have the following;

THEOREM 7. Let $A \in \mathscr{B}(\mathscr{H})$ be compact and let \mathscr{F} be the ideal of finite rank operators. Then $\mathscr{B}(\varDelta_{A})^{-} = \varDelta_{A}(\mathscr{F})^{-}$.

Proof. Let $f \in \mathcal{B}(\mathcal{H})^*$. Then $f = f_0 + f_T$ for some trace-class operator T where $f_T(X) = \operatorname{tr}(XT)$ and where f_0 annihilates the compact operators. (See Dixmier [3].) If f annihilates $\Delta_A(\mathcal{F})$ then $f_T(\Delta_A(F)) = f(\Delta_A(F)) = 0$ for all $F \in \mathcal{F}$. However,

$$f_T(\Delta_A(F)) = \operatorname{tr} ((AF - FA)T) = \operatorname{tr} (AFT - FAT)$$

= $\operatorname{tr} (FTA - FAT) = \operatorname{tr} (F\Delta_A(-T))$

for all $F \in \mathscr{F}$. Since \mathscr{F} is dense in the trace-class operators, then $\Delta_A(-T) = 0$ and $T \in \{A\}'$. Hence f_T annihilates the range of Δ_A and since A is compact, $f(\Delta_A(X)) = f_T(\Delta_A(X)) = 0$ for all $X \in \mathscr{B}(\mathscr{H})$.

If A is normal then Theorem 6 can be improved;

THEOREM 8. Let $A \in \mathcal{B}(\mathcal{H})$ be normal and let \mathcal{I} be a proper two-sided ideal of $\mathcal{B}(\mathcal{H})$. The following are equivalent:

- (a) $\{A\}' + \mathcal{I} = \mathcal{B}(\mathcal{H}).$
- (b) $\mathscr{R}(\Delta_A) = \Delta_A(\mathscr{I}).$
- (c) $\mathscr{R}(\Delta_A) \subset \mathscr{I}$ and $\sigma(A)$ is finite.
- (d) $A = T \lambda$ for some $T \in \mathcal{I}$, some $\lambda \in \mathcal{C}$ and $\sigma(A)$ is finite.

Proof. That (a) is equivalent to (b) and (c) is equivalent to (d) follows from Theorem 6. If A is normal with finite spectrum, then by a theorem of Anderson [1, p. 96] $\mathscr{R}(\mathcal{A}_A) + \{A\}' = \mathscr{R}(\mathscr{H})$. Hence, if $A = T - \lambda$ for some $T \in \mathscr{I}$ and $\lambda \in \mathscr{C}$ then $\mathscr{R}(\mathcal{A}_A) \subset \mathscr{I}$ and (d) implies (a). To show that (a) implies (d), assume that $\sigma(A)$ is infinite and that $\{A\}' + \mathscr{I} = \mathscr{R}(\mathscr{H})$. Then by Theorem 6, $A - \lambda \in \mathscr{I}$ for some $\lambda \in \mathscr{C}$. Since \mathscr{I} is contained in the ideal of compact operators, we can assume that A is compact. Let $A = A_1 \oplus A_2$ on $\mathscr{M} \oplus \mathscr{M}^\perp$ where A_1 is an infinite dimensional diagonal operator with distinct eigenvalues and let P be the orthogonal projection onto \mathscr{M} . Hence, if $X \in \{A\}'$, then PXP is diagonal. However, if we let U be the unilateral shift on \mathscr{M} , then $\{A\}' + \mathscr{I} = \mathscr{R}(\mathscr{H})$ implies that U = D + K for some diagonal operator D and some compact operator K. This is clearly a contradiction (let $\{e_n\}$ be an orthonormal basis for \mathscr{M} by which U is the shift, then $((D - U)e_n, e_{n+1}) = 1$ for all n).

REFERENCES

- 1. J. H. Anderson, Derivations, Commutators, and The Essential Numerical Range, Thesis, Indiana University, 1971.
- 2. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-872.
- 3. J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opératures bornés d'un espace de Hilbert, Ann. of Math., 51 (1950), 387-408.
- 4. R. G. Douglas, On majorization, factorization, and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-416.

- 5. R. Schatten, Norm Ideals of Completely Continuous Operators, 2nd printing, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 27, Springer-Verlag, Berlin, 1970.
- 6. J. G. Stampfli, On the range of a derivation, Proc. Amer. Math. Soc., 40 (1973), 492-496.
- 7. R. E. Weber, Analytic functions, ideals, and derivation ranges, to appear.
- 8. ——, Derivation Ranges, Thesis, Indiana University, 1972.
- 9. J. P. Williams, On the range of a derivation II, to appear.

Received November 28, 1972 and in revised form October 10, 1973. This paper contains part of a doctoral dissertation written under the direction of Professor J. P. Williams at Indiana University.

INDIANA UNIVERSITY SOUTHEAST