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THE RANGE OF A DERIVATION AND IDEALS
R. E. WEBER

When A is in the Banach algebra <%(5%) of all bounded
linear operators on a Hilbert space 57, the derivation gener-
ated by A is the bounded operator 4, on & (%) defined by
4,X)=AX— XA. It is shown that the range of a deriva-
tion generated by a Hilbert-Schmidt or a diagonal operator
contains no nonzero one-sided ideals of ZZ(5#°). Also, for a
two-sided ideal .# of <Z(5#°), necessary and sufficient con-
dition on an operator A are given in order that the range
of 4, equals the range of 4, restricted to 7.

1. In the following 57 will denote an infinite dimensional com-
plex Hilbert space.

For a fixed Ae & (5#), we will concern ourselves with the fol-
lowing problems:

(a) For what Be ' (5#) is B#(4)cC H4,) or F#(4)BC
F(4,).

(b) For what Be &#(5#) is B & (7)) #(4,) or & (S#)BC
F(4,).

(¢) For what Be Z(5#) is A(4dp) C FH(4)).

It is easy to verify that for A4, X, Ye & (5#).

(i) 4,=4,,; for all \e &
and

(i) 4,XY) = X4,(Y) + 4,X)Y.

The identity (ii) yields some simple facts about the range of a
derivation which show the interrelation of the above problems. (For
a proof see [8].)

LEMMA 1. Let A, Be & (57) and let A’ belong to the commutant
{AY of A. Then

(a) both A’ H(4,) and F(4)A" are contained in Z(4)).

(b) if P(dp)c.FB(4,), then both 4, (B)Z (57) and Z(5#)4,, (B)
are contained in F(4,).

(¢c) BAR4,)c B4, if and only if 4,(B)F (7)) .A(4)).

(d) FU)Bc B4, if and only if F(S7)4(B) < H(4,).

From (b) of Lemma 1 it follows that if <#Z(4,) does not contain
left- or right-ideals, then a necessary condition for .2(4;) c #(4,) is
that Be {A4}’. In fact, more is true:

LEMMA 2. Let Ae Z(5#). If S#(4,) contains either no nonzero
left-ideals or mo monzero right-ideals, then 4x,(F)C #(d4,) implies
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Be {A}'. (& denotes the ideal of finite rank operators.)

Proof. Assume that .Z#(4,) contains no nonzero left-ideals (the
argument for the other assumption is similar). Let P be a finite
rank projection. If A’e{A}, then

4,(B)PX = A'4,(PX) — 4,(A’PX)

is in #(4,) for all Xe =#(5#). Therefore, 4,(B)PZ (7)) C F#(4,)
and hence 4,(B)P = 0. However, this is true for any such P and
hence 4,(B) = 0.

For the sake of completeness we include a somewhat simpler
proof of a theorem of Stampfli [6]. In the proof, o,(A4) denotes the
left essential spectrum of A and is defined to be the set of those
» for which the coset of the Calkin algebra <Z(57)/22 (where 2~
is the ideal of compact operators) containing A — A fails to have a
left inverse. The right essential spectrum o,(4) is defined in the
obvious way.

THEOREM 1. Let Ac <& (57). Then #(4,) contains no nonzero
two-sided ideals of B (5F).

Proof. Replace A by A — » where reo0,(A4) N g.(4) if necessary
in order to assume that there exist orthonormal sequences {f,} and
{9.} such that 3\[|Af,[* < e and 3. [[A%g,[['"* < . (See [6].)
Then for all Xe &% (57),

2(AX — XA)f,, 9) ['"* = 2N XM A%gu [ 4 [ ALL ) < oo

If #(4,) contains a two-sided ideal, then it contains all finite rank
operators. In particular, if f® ¢ denotes the rank one operator
F®gx) = (», 9)f, then (f Q f)Xe F#(4,) for all fe &7 and X e Z (7).
Hence

(R X Sy gu) [1F < o0
Since

2 ®NXS, 9.) 7 = ZN(X L, (f @F)9a) [
= 3 [(Xfa, )@ F) [

then
S (X ny )Gy P17 < o0

for all fe 5% and Xe.=#(5#). However, if we choose X such that
Xf, =9, and f such that {/(9.,f)|} is not summable, we have a
contradiction.
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2. Let & denote the set of Hilbert-Schmidt operators on S5£
Equipped with the trace inner product (4, B) = tr (AB*), & is a
Hilbert space [5]. If Ae <& (5#), then the restriction of 4, to &7 is
a bounded operator on .&¥ with adjoint (4,| &)* = 4,.|.%% Hence
=B, ) B ({A*Y N.S) where the double bar indicates closure
with respect to the topology on &4

THEOREM 2. Let Ae . Then FB4)~ = F4,|.&)".

Proof. It follows from the above remarks that F(4):c
PB4, .F) = {A*}Y N~ It remains to show the reverse inclusion.
Let Te{A*) N .~ Then for Xe .Z(5%)

(4AX), T) = tr (T*4(X)) = tr (T*AX) — tr (T*XA)
= tr (AT*X) — tr (T*XA) = tr (T*XA) — tr (T*XA) = 0 .

Therefore T'e #(d4,)".

COROLLARY. Let Ae .~ Then 2U4)~ P {4 NSF) =~

THEOREM 3. If Ae .Y then & (4,) does not contain any nonzero
left- or right-ideals.

In the proof of Theorem 3 we will make use of the following
result.

LEMMA 3. Let Ae & If (f QF)Z(2F)c F(4,), then Af = 0.

Proof. Since .#(4,) L{A*Y NS then 0=tr (A RS)X) =
tr (Af ® X*f) = (Af, X*f) for all Xe <& (2#). Hence Af = 0.

Proof of Theorem 3. Suppose that (f QR [f)F (e#) . H(4,). Then
fFRf = 4,X) for some Xe Z(57) and by Lemma 3, f = (f R f)f =
AXf — XAf = AXSf. Since (f Q f)F (7)) = 4(X)Z (7)< 2 (4)),
then by Lemma 1, X.2(4,)C .2 (4,). Therefore, (Xf) R (Xf))Z (7))
X(f ® f)# (7)) “#(4,) and by Lemma 3, Xfe ker(4). Hence
f=AXf =0. The remainder follows by taking adjoints.

COROLLARY 1. Let Ace.%” and Be.Z(57). Then BZZ(4,)C
FB(4,) if and only if Be{A}.

Proof. This follows from Lemma 1 and the theorem.
COROLLARY 2. Let Ae &~ If 4x(F)C #(4,) then Be {A)".

Proof. This follows from Lemma 2 and the theorem.
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3. We now turn our attention to diagonal operators. When
expressing a diagonal operator as the sum A = 3 «,P,, unless other-
wise stated we shall assume that P, is the rank one projection onto
the subspace spanned by e,, where {¢,} is an orthonormal basis.
(However, we do not require that the a,’s be distinct.) Each operator
X has a matrix (x;;) with respect to this fixed basis.

The principle result of this section is that the range of a deriva-
tion generated by a diagonal operator contains no nonzero left- or
right-ideals. The theorem is slightly more general.

THEOREM 4. Let Aec & (57) have the property that there exist
reducing subspaces _#, of A, each finite dimensional, such that
=D, D #,. Then Z(4,) contains no nonzero positive operators.

Proof. Let P = 4,(X) where P is positive. If P, is the orthogo-
nal projection onto _~,, then P,P| _#, = A, X, — X, A, where A4, =
A| _#, and X, is the compression of X to _#,. Since _#, is finite
dimensional, then tr (P,P|._#,) = 0. Hence P,P|_#, being a positive
operator with zero trace, must be 0. Therefore, P,PP,=0 (on 5#).
Hence PP, = 0 and P'* = 0.

COROLLARY 1. If A satisfies the hypothesis of the theorem and
if either B@(4,) or B(4,)B is contained in B(d4,), then Be {A).

COROLLARY 2. If A satisfies the hypothesis of the theorem and
Ag(F) T H(4,), then Be {A)".

COROLLARY 3. Let A be normal with finite spectrum. Then for
Be F(57), B(dp) C #(4,) if and only of Be{A)".

Proof. If Be{A})” then B is a polynomial of A and hence .<#(4;) C
#(4,). (See [1, p. 79].) The converse follows from Corollary 2.

LEMMA 4. Let A, Be &Z(57) where A = >, a.P,. Then F(4;)C
A4, if and only if B =, B;P; for some set of scalars B, B, +--
and for every operator X = (x;;)e & (5#) there exists an operator
Y = (yi;) € F(SF) such that (a; — a;) = (B — Bi)ws; for all 1, 7.

Proof. This follows from Corollary 2 and the fact that [4.,(X)];; =
(a; — aj)x;; if X = (x).

THEOREM 5. Let Ac Z(5#) be diagonal. If for Be 2 (57),
F(d) T FH(4,), then B = f(A) for some function f which is Lipschitz
on the spectrum of A.
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Proof. Let A =3 a;P;. If #(45)c c#(4,), then by Corollary
2, B = 3 B;P; for some sequence of scalars {@;} and for any X =
(%:7) € F (), there exists a Y = (y;;) € & (57) such that y,;; = (8; —
Bi)l(a; — a;))x;; whenever a; = a;. It follows that (8; — B;)/(a; — «;))
is bounded by some positive number M. Define f such that f(a;) = B..
Then f is a Lipschitz function defined on a dense subset of ¢(A) onto
a dense subset of o(B). Therefore, we can extend f to be Lipschitz
on o(A) onto o(B).

It was shown in [7] that if B is an analytic function of A, then
FA(dg) C H#(4,). To have range inclusion it is neither necessary that
B be an analytic function of A nor sufficient that B be a continuous
function of A as seen in the next two examples.

EXAMPLE 1. Let 4 = >, a,P, where dmP, =1, o, = 0, and

n

_ {z’/n for n even
" |1/n for m odd.

Let B= >,58,P, where 8, =0 and B, = —i/n* for n = 1. A direct
computation shows that if n < m, then |(8, — Bn)/(a, — @) | = 2/n.
Now, for any X = (x;;) € £Z(5#), consider the matrix Y = (y;;) where
Y = ((B: — B)/(a; — a;))x;; whenever «; = «; and Zzero otherwise.
Then

Sivl =5 Sl + 5 5 gl

n=0 j=n
For m > 0,
i;ﬂ | Yim [P = 4/m? i;» | Zim 2 < 4/m? || X ||?
and for n > 0,
2y I = 4 [ X
Hence

i lys P S 1 XIP + g}/nz X+ X0+ > 4/m [ X

Therefore, Ye #(5#) and by Lemma 4, 2(d;)C #(4,). Now,
assume f is an analytic function on ¢(A4) such that for even =, f(i/n) =
—1/n*. Then f(z) = 2%. Hence for odd =, f(1/n) = i/n* %+ —i/n® and
B = f(4).

ExAMPLE 2. Let A = 3 «,P, where P, is rank one for all =,
o, =0, and a, = 1/n* for n >0 and let B= 3 RB,P, where 8, =0
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and B, = 1/n for » > 0. Then B is a continuous function of A4, in
fact B = f(A) where f(z) = 2'*. Let X = (x;;) € <& (5#) where

nj

B (1/n for »>0 and ;7 =0
i = 10 otherwise .

If 4,(X) = 4,Y) where Y = (y,;), then
Yno = Tao Bu — Bo)/(tw — ) = (I/n)(1/m)/(1/n") = 1

for all ». Hence Y ¢ <#(57) and Z(4y) & F#(4.,).

Other derivations whose ranges do not contain any nonzero one-
sided ideals are those generated by unitary and self-adjoint operators.
(See [9].)

It was shown in [7] that the range of a derivation generated by
a nonunitary isometry does contain nonzero left-ideals. Other oper-
ators which possess this property are some of the weighted shifts.

4. Another question concerning the range of a derivation and, in
this case, a two-sided ideal .7 of <& (5#) is whether FZ(4,) = 4.,(7).

THEOREM 6. Let Ac <2 (57) and let .7 be a proper two-sided
ideal of <Z(57). Consider the following conditions:

(a) {AY + 7 = Z (7).

(b) Z(4,) = 47).

(¢) FU)c.”.

(d) A=T— ) for some Te . and ne & .
(a) is equivalent to (b), (c) is equivalent to (d), and (b) tmplies (c).

Proof. That (a) is equivalent to (b) is a consequence of the fact
that X = T + A’ for some Te.” and A’ e{A} if and only if 4,(X)e
4,-7). That (¢) is equivalent to (d) is a consequence of a theorem
of Calkin [2] where he shows that the center of . (57)/.7 consists
of scalars. It is immediate that (b) implies (c).

REMARK. An example to show that (c) does not imply (b) for
the case when .# is the ideal of compact operators can be obtained
by letting A be the adjoint of the weighted shift with weights {2, 1,
1/2, 1/3, -- -} and showing that each element of {4} is the translate
of a Hilbert-Schmidt operator. (See [8].)

If we require only that the closures be equal, we have the
following;

THEOREM 7. Let Ac Z(57) be compact and let # be the ideal
of finite rank operators. Then FB(4,)” = 4,(F) .
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Proof. Let fe #(5#)*. Then f = f, + fr for some trace-class
operator T where f,(X) = tr (XT) and where f, annihilates the com-
pact operators. (See Dixmier [3].) If f annihilates 4,(& ) then
Fr(4,(F)) = f(4,(F)) = 0 for all Fe &#. However,

Fid(F)) = tr (AF — FA)T) = tr (AFT — FAT)
= tr (FTA — FAT) = tr (F4,( — T))

for all Fe . Since .&# is dense in the trace-class operators, then
4,(— T) =0 and Te{A). Hence f, annihilates the range of 4, and
since A is compact, f(4.(X)) = fr(44X)) = 0 for all Xe Z(57).

If A is normal then Theorem 6 can be improved;

THEOREM 8. Let Ac <Z(57) be normal and let .7 be a proper
two-sided ideal of <Z(5#). The following are equivalent:

(a) {AY + .7 = FZ (7).

(b) R(4,) = 4,(7).

(c¢) FUy)c.” and o(A) is finite.

(d) A=T-—\ for some Te . 7 some ne & and d(A) is finite.

Proof. That (a) is equivalent to (b) and (¢) is equivalent to (d)
follows from Theorem 6. If A is normal with finite spectrum, then
by a theorem of Anderson [1, p. 96] .<2(4,) + {A}Y = <& (5#). Hence,
if A=T— for some Te.” and ne & then #(4,)c .” and (d)
implies (a). To show that (a) implies (d), assume that o(A) is infinite
and that {4} + .7 = <#(5#). Then by Theorem 6, A — xe.# for
some Me &. Since . is contained in the ideal of compact operators,
we can assume that A is compact. Let A=A, PA, on 7 H 2+
where A, is an infinite dimensional diagonal operator with distinet
eigenvalues and let P be the orthogonal projection onto 2. Hence,
if Xe{A), then PXP is diagonal. However, if we let U be the
unilateral shift on _#; then {4} + .7 = < (5#°) implies that U =
D + K for some diagonal operator D and some compact operator K.
This is clearly a contradiction (let {e¢,} be an orthonormal basis for
A by which U is the shift, then (D — U)e,, ¢,.,) = 1 for all n).
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