VERTICALLY COUNTABLE SPHERES AND THEIR WILD SETS

L. D. Loveland

Abstract

A 2 -sphere S in E^{3} is said to have vertical order n if the intersection of each vertical line with S contains no more than n points. It is shown that $S \cup \operatorname{Int} S$ is a 3-cell that is locally tame from Ext S modulo a 0 -dimensional set if S has vertical order 5. A subset X of E^{3} is said to have countable (finite) vertical order if the intersection of X with each vertical line consists of countably (finitely) many points. A 2sphere in E^{3} with countable vertical order can have a wild set of dimension no larger than one.

For each 2 -sphere S in E^{3} there is a homeomorphism $h: E^{3} \rightarrow E^{3}$ such that each vertical line intersecting $h(S)$ does so in a 0 -dimensional set [2, Theorem 10.1]; thus the condition that a 2 -sphere be "vertically 0 -dimensional" imposes no restriction on the wildness of the 2 -sphere. A study of vertically finite 2 -spheres (spheres with finite vertical order) was begun in [10] where it was proven that a 2-sphere in E^{3} having vertical order 3 is tame. Even though there are wild 2 -spheres having vertical order 4 , it is known that $S \cup \operatorname{Int} S$ is a 3 -cell if S has vertical order 5 [11]. We extend this result to show that the set $W(S)$ of points where the 2 -sphere S fails to be locally tame must be 0-dimensional if S has vertical order 5. An example is given at the end of the paper to show that 5 is the largest integer for which this result is true. We also show that the wildness of a vertically countable sphere is limited to a 1 -dimensional set.

In the remainder of the paper we use $\pi: E^{3} \rightarrow E^{2}$ to denote the vertical projection of E^{3} onto the horizontal plane E^{2}. For convenience, we always assume that E^{2} is located vertically below the sphere or cube under investigation. We use $L(x)$ to denote the vertical line containing the point x.

A vertical line L is said to pierce a subdisk D of a 2 -sphere S if there is an interval I in L such that $I \cap S$ is a point $p \in D$ and I intersects both Int S and Ext S. We say that L links the boundary $\mathrm{Bd} D$ of a disk D if L intersects every disk bounded by $\mathrm{Bd} D$.
2. Spheres having countable vertical order.

Theorem 2.1. If S is a 2-sphere in E^{3} having countable vertical order, then $W(S)$ contains no open subset of S.

Proof. Suppose that $W(S)$ contains a disk D in S. We shall
produce a contradiction by exhibiting a vertical line L whose intersection with D contains a Cantor set.

Assertion A. If D^{\prime} is a subdisk of D, then there is an open subset U of E^{3} such that $\pi(U) \subset \pi\left(D^{\prime}\right)$.

To prove Assertion A it suffices to show that $\pi\left(D^{\prime}\right)$ is not onedimensional. This follows from [9, Theorem VI.7, p. 91] since the $\operatorname{map} \pi \mid D^{\prime}: D^{\prime} \rightarrow \pi(D)$ is closed.

Assertion B. If D^{\prime} is a subdisk of D and U is an open subset of E^{3} such that $\pi(U) \subset \pi\left(D^{\prime}\right)$, then there exist disjoint disks D_{1} and D_{2} in D^{\prime} and an open subset N of U such that each vertical line through cl (N) intersects both D_{1} and D_{2}.

In order to select the disks D_{i} in Assertion B we first show the existence of a vertical line L containing two points r and t in D^{\prime} and containing two sequences $\left\{u_{i}\right\}$ and $\left\{l_{i}\right\}$ of points such that
(1) $\left\{u_{i}\right\}$ converges to r from above,
(2) $\left\{l_{i}\right\}$ converges to r from below,
(3) there is a component V_{1} of $E^{3}-S$ containing every u_{i}, and
(4) $E^{3}-\left(S \cup V_{1}\right)=V_{2}$ contains every l_{i}.

Notice that some vertical line L^{\prime} intersects D^{\prime} in more than two points [7, Theorem 2.3], so we may choose two points r^{\prime} and t^{\prime} in $L^{\prime} \cap D^{\prime}$. Let B be an open ball centered at r^{\prime} such that $B \cap S \subset D^{\prime}$. If r^{\prime} does not satisfy the four conditions above relative to L^{\prime}, it must be because some interval I in $L^{\prime} \cap B$ has r^{\prime} as its midpoint and lies, except for r^{\prime}, in a single component, say V_{1}, of $E^{3}-S$. Let B_{1} and B_{2} be disjoint round open balls of equal radius centered at points of L^{\prime} above and below r^{\prime}, respectively such that $B_{1} \cup B_{2} \subset V_{1} \cap B$. Now close to r^{\prime} and vertically between B_{1} and B_{2}, there must exist a point e of V_{2}. Then $L=L(e)$ intersects V_{2} between its two intersections with $V_{1} \cap\left(B_{1} \cup B_{2}\right)$, so L intersects D^{\prime} at least twice. Let r be the lowest point of the component of $L \cap\left(S \cup V_{1}\right)$ containing $L \cap B_{1}$, and choose t to be some other point of $L \cap S$. Since S has countable vertical order it is clear that r is a limit point of $L \cap V_{1}$ from above and of $L \cap V_{2}$ from below. Thus conditions (1), (2), (3), and (4) are satisfied.

Choose a disk D_{1} in D^{\prime} such that $r \in \operatorname{Int} D_{1}$ and $t \notin D_{1}$. We claim that there is an open set U_{1} containing r such that every vertical line through U_{1} intersects D_{1}. Suppose there is no such open set, and for each i let E_{i} be a horizontal disk centered at l_{i} and lying in V_{2}. There must be a sequence $\left\{x_{i}\right\}$ such that $x_{i} \in E_{i}$, for each i, no $L\left(x_{i}\right)$ intersects D_{1}, and $\left\{L\left(x_{i}\right)\right\}$ converges to $L(r)$. For erch i let y_{i} be the first point of S above x_{i} on $L\left(x_{i}\right)$ (such a point will exist for suf-
ficiently large integers i since u_{i} and l_{i} are different components of $E^{3}-S$), and let I_{i} be the vertical interval $\left[x_{i}, y_{i}\right]$ in $S \cup V_{2}$. Since some subsequence of $\left\{y_{i}\right\}$ converges, we assume for notational convenience that $\left\{y_{i}\right\}$ converges to a point y. Of course $y \in L(r) \cap S$. It is clear that y is not above r on $L(r)$ because $\{r, y\} \subset \lim \inf I_{i} \subset S \cup V_{2}$ whereas $\left\{u_{i}\right\} \rightarrow r$ and $u_{i} \in V_{1}$. Nor is y below r on $L(r)$ because $\left\{l_{i}\right\} \rightarrow r$, $\left\{l_{i}, x_{i}\right\} \subset E_{i}$, and x_{i} lies vertically below y_{i}. Thus $\left\{y_{i}\right\}$ converges to r, and we have the contradiction that most of the y_{i}^{\prime} must belong to D^{\prime} while $L\left(y_{i}\right) \cap D^{\prime}$ was supposed to be empty. The existence of U_{1} is established.

Now choose a disk D_{2} such that $D_{1} \cap D_{2}=\varnothing, t \in \operatorname{Int} D_{2}, D_{2} \subset D^{\prime}$, and $\pi\left(D_{2}\right) \subset \pi\left(U_{1}\right)$. From Assertion A there is an open set U_{2} such that every vertical line through U_{2} intersects D_{2}. Such a line will also intersect U_{1} and hence D_{1}. Choose N to be any open subset of U such that $\pi\left(\mathrm{cl}(N) \subset \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)\right)$.

Now that the two assertions have been proven it might be clear how to proceed inductively to produce a vertical line containing uncountably many points of S; nevertheless, we give a brief outline. From Assertion A there is an open set U such that every vertical line through U intersects D. Now we apply Assertion B to obtain an open set U_{1}, whose closure lies in U, and two disjoint disks D_{1} and D_{2} in D such that every vertical line through $\mathrm{cl}\left(U_{1}\right)$ intersects both D_{1} and D_{2}. This ends the first step in the construction. Assertion B can now be applied to D_{1} to obtain two disjoint disks D_{11} and D_{12} in D_{1} and an open set N_{1} such that vertical lines through cl $\left(N_{1}\right)$ intersect both D_{11} and D_{12}. Now B is applied to D_{2} and N_{1} so that at the completion of step 2 we have an open set U_{2} whose closure lies in U_{1} and four disjoint disks D_{11}, D_{12}, D_{21}, and D_{22} in D where each vertical line through $\mathrm{cl}\left(U_{2}\right)$ intersects each of the four disks. When the construction is finished it is clear that a vertical line through $\bigcap_{1}^{\infty} \operatorname{cl}\left(U_{i}\right)$ will intersect each of the 2^{n} disks at the nth step. Thus such a line contains an uncountable set of points of S. This contradiction establishes the theorem.

Corollary 2.2. If S is a 2 -sphere in E^{3} having countable vertical order, then S is locally tame modulo a 1-dimensional subset.
3. Spheres of vertical order order 5. The following four lemmas are used to establish the main result (Theorem 3.5).

Lemma 3.1. If S has vertical 5, then S is locally tame at each point of S that is vertically above or below a point of Int S; that is, $\pi(\operatorname{Int} S) \cap \pi(W(S))=\varnothing$.

Proof. Let p be a point of S such that $L(p) \cap \operatorname{Int} S \neq \varnothing$. Thus
$L(p)$ must link the boundaries of each of two disjoint disks D_{1} and D_{2} in S. Let B be a ball lying in Int S such that each vertical line through B links both $\mathrm{Bd} D_{1}$ and $\mathrm{Bd} D_{2}$. If $p \notin D_{1} \cup D_{2}$, then there is a disk D_{3} in S such that $p \in \operatorname{Int} D_{3}, D_{3} \cap\left(D_{1} \cup D_{2}\right)=\varnothing$, and $\pi\left(D_{3}\right) \subset \pi(B)$. Then each vertical line intersecting D_{3} also intersects both D_{1} and D_{2}. Since D has vertical order 5 it is clear that D_{3} has vertical order 3. Thus D is locally tame at p [7, Theorem 2.3] and so is S.

We may now assume that $p \in \operatorname{Int} D_{1}$. Let D_{1}^{\prime} be a subdisk of D_{1} such that $\pi\left(D_{1}^{\prime}\right) \subset \pi(B)$, and, for each $\xi>0$, let X^{ξ} be the union of all vertical intervals of diameter no less than ξ in $S \cup$ Int S that intersect D_{1}^{\prime}. It is an exercise to see that X^{ξ} is closed, and it follows from [6, Theorem 5] that X^{ξ} is a *-taming set. Now consider a point q in D_{1}^{\prime} but not in $X^{1 / i}$ for any i. It follows that q lies in no vertical interval in $S \cup$ Int S. Thus $L(q)$ does not pierce D_{1}^{\prime} at q, and $L(q)$ must pierce D_{1}^{\prime} at some other point t by the choice of B. Let D be a disk in D_{1}^{\prime} with t in its interior such that $q \notin D$ and $L(q)$ links Bd D. Then there is a disk D_{q} in $D_{1}^{\prime}-D$ such that $q \in \operatorname{Int} D_{q}$ and each vertical line through D_{q} links Bd D. Thus such a line intersects both D and D_{2}. This means that D_{q} has vertical order 3 and is tame [7, Theorem 2.3]. Now we see that each point of D_{1}^{\prime} either lies in the interior of a tame disk in D_{1}^{\prime} or lies in $\bigcup_{1}^{\infty} X^{1 / i}$. Since a tame disk is a *-taming set and a countable number of tame disks suffice to cover $D_{1}^{\prime}-\bigcup_{1}^{\infty} X^{1 / i}$, we see that D_{1}^{\prime} lies in a *-taming set of the form $\left(\bigcup_{1}^{\infty} X^{1 / i}\right) \cup$ (a countable collection of tame disks) in $S \cup \operatorname{Int} S$ [5, Theorem 3.7 and Corollary 3.8]. Thus S is locally tame at p from $E^{3}-(S \cup \operatorname{Int} S)$ by the definition of a *-taming set. Since S is locally tame from $\operatorname{Int} S$ [11], it follows that S is locally tame at p.

Lemma 3.2. If M is a continuum in $W(S)$ and S is a 2-sphere having vertical order 5, then M is tame.

Proof. We may assume that M is nondegenerate since singleton sets always lie on tame spheres. From the previous lemma it is clear that $\pi(M) \subset \operatorname{Bd} \pi(\operatorname{Int} S)$. Let $U=\operatorname{Int} S$ and let X be the component of $\mathrm{Bd} \pi(U)$ containing $\pi(M)$. We shall show the existence of a space homeomorphism $H: E^{3} \rightarrow E^{3}$ such that $\pi(H(M))$ is either an arc or a simple closed curve. Then $H(M)$ is clearly tame since it lies in $\pi^{-1}(\pi(H(M)))$.

The continuum X can be shown locally connected as in [7, Part 0.2]. Notice that $\pi(U)$ is open and connected. We let U^{\prime} be the component of $E^{2}-X$ containing $\pi(U)$ and for convenience in what follows we assume that U^{\prime} is bounded. Notice that $\operatorname{cl}\left(U^{\prime}\right)=X \cup U^{\prime}$ since every point of S is accessible from Int S. Let $B^{2}=\left\{(x, y) \mid x^{2}+\right.$ $\left.y^{2} \leqq 1\right\} \subset E^{2}$. There is a continuous function $f: B^{2} \rightarrow \mathrm{cl}\left(U^{\prime}\right)$ such that
$f \mid$ Int B^{2} is a hemeomorphism of Int B^{2} onto U^{\prime} and $f^{-1}(x)$ is a totally disconnected subset of $S^{1}=\operatorname{Bd} B^{2}$ for each $x \in X$ (see [12, p. 186]). Now we follow [7, $\S \S 2.1,2.2,2.3$, and 2.4] to find a homeomorphism H of E^{3} onto E^{3} such that $\pi\left(H\left(\pi^{-1}(X) \cap S\right)\right.$) is a simple closed curve. Thus $\pi(H(M))$ is either an arc or a simple closed curve since $\pi(H(M)) \subset$ $\pi\left(H\left(\pi^{-1}(X) \cap S\right)\right)$.

In the case where U^{\prime} is not bounded the map f above takes E^{2} - Int B^{2} onto cl (U^{\prime}) and causes some notational difficulties when we try to follow [7] as above. However, [7] still serves as an outline and we leave the details to the reader.

Lemma 3.3. If M is a nondegenerate continuum in $W(S)$ and S is a 2-sphere having vertical order 5, then each point of M is a limit point of $W(S)-M$.

Proof. Suppose some point $p \in M$ is not a limit point of $W(S)-M$, and choose a disk D on S such that $p \in \operatorname{Int} D, \mathrm{Bd} D$ is tame [3], and $D \cap W(S) \subset M$. Let $X=M \cup(\operatorname{Bd} D)$, and let S^{\prime} be a 2 -sphere containing $M \cup D$ that is locally tame modulo $X[1]$. From Lemma 3.2 we see that X is a taming set [4, Theorem 8.1.6, p. 320]. Thus S^{\prime} is tame. This is a contradiction and the result follows.

Lemma 3.4. If D is a disk in a 2 -sphere S, S has vertical order 5, $p \in \operatorname{Int} D$, and V is an open subset of E^{3} such that $p \in V$ and, for each vertical line L piercing D at a point in $V, L \cap \operatorname{Int} S$ has exactly one component whose closure intersects D, then D is locally tame at p.

Proof. If $L(p)$ intersects Int S, then the conclusion of Lemma 3.4 follows from Lemma 3.1. Thus we now assume $L(p) \cap \operatorname{Int} S=\varnothing$. Choose a 2 -sphere H in the shape of a right circular cylinder such that $p \in \operatorname{Int} H, H \cap S \subset D, \operatorname{Bd} D \subset \operatorname{Ext} H,[L \cap(\operatorname{Int} H)] \cap S=\{p\}$, the top and bottom disks T and D of H lie in Ext S, and each vertical line intersecting H also intersects V.

Let X be a component of $(\operatorname{Int} S) \cap H$, and let $K=\operatorname{Bd} X$. We shall show that $X \cup K$ is a disk by showing that K is a simple closed curve. To show that K is connected it suffices to prove that each simple closed curve J in X bounds a disk in X. Such a curve J cannot be essential on the annulus $H-D \cup T$ since J would link $L(p)$ while $L(p) \subset(\operatorname{Ext} S) \cup S$ and $J \subset \operatorname{Int} S$. Thus J must bound a disk E in $H-D \cup T$. From the hypothesis of Lemma 3.4 it is clear that $E \subset X$. Thus K is connected. The fact that K has vertical order 5 insures that K is arcwise accessible from both its complementary domains in H, and this implies that K is a simple closed curve.

Thus the closure of each component of ($\operatorname{Int} S$) $\cap H$ is a spanning
disk for the 3 -cell $C=S \cup \operatorname{Int} S$. There can be at most a countable collection $\left\{D_{1}, D_{2}, \cdots\right\}$ of these spanning disks since their interiors are pairwise disjoint. The fact that D has vertical order 5 insures that $\left\{D_{i}\right\}$ is a null sequence. We use these spanning disks to construct a 2 -sphere S^{\prime} containing p and lying in $D \cup\left(\bigcup_{1}^{\infty} D_{i}\right)$ and in $H \cup$ Int H. From the hypothesis on D we see that the interior of S^{\prime} is vertically connected; thus S^{\prime} is tame [7, Main Theorem]. This means that D is locally tame at p.

Theorem 3.5. If a 2 -sphere S in E^{3} has vertical order 5, then $S \cup \operatorname{Int} S$ is a 3-cell and S is locally tame from Ext S modulo a 0-dimensional set.

Proof. That $C=S \cup \operatorname{Int} S$ is a 3 -cell follows from [11]. It remains to show that the set W of wild points of S is 0-dimensional. Suppose to the contrary that there is a nondegenerate continuum M lying in W. Since C is a 3 -cell there is an embedding $g: M \times[0,1] \rightarrow C$ such that $G=g(M \times[0,1]) \subset \operatorname{Int} S$ and $g(m, 0)=m$ for every $m \in M$. We let $F=g(M \times[0,1])$, and we note that it follows from Lemma 3.1 that $\pi(M)$ lies in the boundary of $\pi(F)$ in E^{2}. For the same reason, $\pi(G) \cap \pi(M)=\varnothing$. Let U be a disk in E^{2} and let p^{\prime} be a point of Int U such that $U \cap(\pi(\mathrm{Bd} F)) \subset \pi(M)$ and $p^{\prime} \in \pi(M)$. Choose a point p in $M \cap \pi^{-1}\left(p^{\prime}\right)$. In the next paragraph we show the existence of a disk E in S with $p \in \operatorname{Int} E$ and $\pi(E) \subset U \cap \pi(F)$.

The difficulty in choosing E is the requirement that $\pi(E) \subset \pi(F)$. If no such E exists there must exist a sequence $\left\{p_{i}\right\}$ of points of Int S converging to p such that $\pi\left(p_{i}\right) \in U-\pi(F)$ for each i. Using the 0 -ULC of Int S it is easy to select a point $g \in G \subset \operatorname{Int} S$ close enough to p and an integer N large enough that g and p_{N} are the end points of an arc A in Int S where $\pi(A) \subset U$. Now $\pi(A)$ contains an arc with one end point a in $\pi(G)$ and the other end point b in $U-\pi(F)$. If this arc is traversed from b to a, then there is a first point f of $\pi(F)$ encountered. This point f clearly belongs to $\mathrm{Bd} \pi(F)$. This contradiction establishes the existence of E.

Now that the existence of E is clear we proceed by using Lemma 3.3 to pick a point q in $E \cap(W-M)$. Let V be an open ball centered at q such that $V \cap S \subset E$ and $V \cap F=\varnothing$. Since $L(q) \cap$ Int $S=\varnothing$ (see Lemma 3.1) there are open balls B_{1} and B_{2} centered at points above and below q, respectively, that lie in $(\operatorname{Ext} S) \cap V$. We choose a disk D in $V \cap S$ with $q \in \operatorname{Int} D$ vertically between B_{1} and B_{2} such that $\pi(D) \subset \pi\left(B_{1}\right) \cap \pi\left(B_{2}\right)$. We shall show that D is locally tame at q to obtain a contradiction to $q \in W$.

In order to apply Lemma 3.4 we must show that if a vertical line L pierces D at a point of V, then $L \cap \operatorname{Int} S$ has exactly one
component whose closure intersects D. Suppose to the contrary that for some such line L there are two components X and Y of $L \cap \operatorname{Int} S$ whose closures intersect D. Now $X \cup Y \subset V$ since D lies between B_{1} and B_{2}. Since $L \cap \operatorname{Int} S=\varnothing$ and $\pi(D) \subset \pi(F)$, we see that $L \cap G \neq \varnothing$. Thus $L \cap(\operatorname{Int} S)$ has a third component Z, different from both X and Y because Z lies either above B_{1} or below B_{2}. Now the only way to avoid there being 6 points in $L \cap S$ is for X and Y to share an end point x. In this case there is a point e of $\operatorname{Ext} S$ close enough to x to insure that there are three components of $L(e) \cap \operatorname{Int} S$ with pairwise disjoint closures. Now $L(e) \cap S$ contains 6 points contrary to the hypothesis.
4. Examples and questions. One can use a countably infinite null sequence of Fox-Artin [8] "feelers" whose wild points form a dense subset of an arc to see that a vertically countable 2 -sphere can have an are in its wild set. Thus Corollary 2.2 cannot be improved in this direction.

Example 4.1. A wild 2-sphere S having vertical order 6 such that $W(S)$ is not 0 -dimensional. In Figure 1 we see an embedding of

Figure 1.
the Alexander Horned Sphere, having vertical order 4, inside a wedgeshaped 3-cell in E^{3}. We attach a null sequence of such wedges to a right circular cone, as indicated in Figure 2, to obtain the desired example S. Notice that $W(S)$ is the union of a tame simple closed curve with countably infinite number of tame Cantor sets. Furthermore, every point of S is a piercing point of S.

In Example 4.1 we see that every nondegenerate continuum in $W(S)$ is tame.

Figure 2.
Question 4.2. If S is a 2 -sphere in E^{3} having finite vertical order, then must every nondegenerate continuum in $W(S)$ be tame?

We do not know the answer to Question 4.2 even when "vertical order n " replaces "finite vertical order", unless $n \leqq 5$ where Theorem 3.5 applies. The proof of Lemma 3.2 shows an affirmative answer to Question 4.2 if it is also known that $\pi(W(S)) \cap \pi(\operatorname{Int} S)=\varnothing$.

References

1. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math., (2) 65 (1957), 456-483.
2. -, Conditions under which a surface in E^{3} is tame, Fund. Math., 47 (1959), 105-139.
3. ——, Each disk in E^{3} contains a tame arc, Amer. J. Math., 84 (1962), 583-590.
4. C. E. Burgess and J. W. Cannon, Embeddings of surfaces in E^{3}, Rocky Mountain J. Math., 1 (1971), 259-344.
5. J. W. Cannon, *-taming sets for crumpled cubes, I: Basic properties, Tran. Amer. Math. Soc., 161 (1971), 429-440.
6. ——, *-taming sets for crumpled cubes, II: Horizontal sections in closed sets, Trans. Amer. Math. Soc., 161 (1971), 441-446.
7. J. W. Cannon and L. D. Loveland, A 2-sphere in E^{3} with vertically connected interior is tame, Trans. Amer. Math. Soc., (to appear).
8. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math., (2) 49 (1948), 979-990.
9. W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Series, Vol. 4, Princeton Univ. Press, Princeton, N. J., 1941.
10. R. A. Jensen and L. D. Loveland, Surfaces of vertical order 3 are tame, Bull. Amer. Math. Soc., 76 (1970), 151-154.
11. L. D. Loveland, A 2-sphere of vertical order 5 bounds a 3-cell, Proc. Amer. Math. Soc., 26 (1970), 674-678.
12. M. H. A. Newman, Elements of the Topology of Plane Sets of Points, First Edition, Cambridge Univ. Press, Cambridge, 1937.

Received November 21, 1972.
Utah State University

