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ON A PROBLEM OF HURWITZ

NORMAN P. HERZBERG

A. Hurwitz proposed the problem of finding all the posi-
tive integers z, x — fe, , xn) satisfying the diophantine
equation x\ + + x\ = z xίy , xn. This paper investigates
the question of which values of z can occur, using only the
most elementary techniques. An algorithm is given for deter-
mining all permissible values of (z, n) for all n below a given
bound. As an application it is established that the only pos-
sible values in the range z ^ (n + 15)/4 are z = n, z = (n + 8)/3
when n is odd, and z = (n + 15)/4. As another application the
fifteen values of n ^ 131,020 for which the only permissible
value of z is n have been found.

2, The problem of finding all the integer solutions z, x = (a ,̂ ,

α?n) of the equation

was raised by A. Hurwitz in [1]. In that paper he showed that for
n > z there are no solutions. This is an easy consequence of Theorem
1 (see §3) and will be replaced by the stronger result in Theorem 3.
To keep this paper self-contained, let us recall the following facts
from [1].

For n = 2, the only solutions are z = 2, χL = x2; for upon setting
χ1 = dylf x2 — dy2 with (ylf y2) = 1, y\ + y\ = 2̂ 1/2, and so 2 = 2, ̂  =

If 2, #!, , Xj, , xn is a solution, then so is z, xl9 , cc' , , α;n
where ^ satisfies

The n solutions derived in this way are called the neighbors of z, x.
Define the height of a solution to be simply xλ + + xn9 and call a
solution fundamental if its height is no greater than the height of
any of its neighbors. If a solution is not fundamental, it has a
neighbor of strictly smaller height, and since the heights are all
positive integers, in a finite number of steps we arrive at a funda-
mental solution. So we see that it suffices to study fundamental
solutions. Moreover, it obviously suffices to study solutions that
satisfy

( 2 ) Xl =z X2 =: ' * ' =z Xn = •*• '

Also, as Hurwitz point out, it is easy to see that fundamental solutions
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satisfying (2) are characterized by

We now propose to study the system of Equations (1), (2), (3),
and shall regard n as well as z and xl9 , xn as variables. By the
first remark in this section we may also assume

( 4 ) n ^ 3 .

3* In this section we state our basic theorem. First some nota-
tion.

The trivial solution of (l)-(4) is xι — = xn = 1, z — n. Call
a nontrivial solution of (l)-(4) a SOL. For any SOL, we define

X(x) = the largest index i for which x{ > 1 .

THEOREM 1. Let n, z, x be a SOL with k = X(x). There is a
chain of SOLs n{i\ z, x{ί), i — 0, , t such that

(a) X(x) = X{x[i)) for all i.
(b) If z = 1 and k = 3, then n(0), x ( 0 ) = 3, (3, 3, 3). Otherwise,

n(0) = 2k z - 3fc, x[0) = = xί0) = 2.
(c) n{ί) > n{i~l) for i = 1, , t.
(d) n(t\ x{t) = n, x.
The proof is in the next section. Below we give some immediate

corollaries of the theorem, using the same notation.

COROLLARY 1. k must satisfy 2k — 3k ^ n. [By (b), since z ^ 1.]

COROLLARY 2. z must satisfy z^(n + 3)/2. [By (b), since k ^ 1.]

COROLLARY 3. The only fundamental solution to Equation (1)
with z Ξ> n is the trivial solution.

4* In this section, we prove Theorem 1. First we state and
prove some simple lemmas.

LEMMA 1. Let ny z, x be a SOL.

If z = 3, then X(x) ^ 2.
// z ^ 2, then χ(x) ^ 3.
If z = 1, and X(x) = 3, then x3 ^ 3.

Proof. If z ^ 3 and X(x) = 1, then by (3) 2x1 ^ 3 which con-
tradicts x, > 1. Hence X(x) ^ 2 . If z < 2 and Z(x) ^ 2, then by (1)
x\ + a?i + (n - 2) Γ ^ 2 - ̂  x2 1. Thus (a?x - α;2)

2 ̂  2 - n. This con-
tradicts (4). Finally suppose z = 1, λ(x) = 3 and #3 = 2. Then by (1)
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x\ + x\ + (w + 1) = 2α?1α?2> a contradiction.

LEMMA 2. Le£ n, z, x be a SOL with k = %(&). When z — 1
fc = 3, ^ ( 0 ), s, x ( 0 ) = 3, 1, (3, 3, 3) is a SOL. Otherwise if n{0) = z 2fc -

3& cmd #ί0) = . . . = α?L0) = 2, αtf" = 1 / o r i = k + 1, , n(0\ then n(0),

z, x is a SOL with X(x{0)) - k.

Proof. Obviously n{0), z, x(0) = 1, 3, (3, 3, 3) is a SOL. As for the
other cases: Σ # ί = 4A: + n(0) — k while z Π ®% — z 2Λ, thus the defini-
tion of %(0) guarantees (1). (2) and (4) are trivial while to verify (3)
we must check that

4 ^ z Π Xi
i>ί

which is obvious when z ^ 4 and true for s ^ 3 by the constraints
imposed by Lemma 1.

LEMMA 3. Let n, z, x and N, z, X be two SOLs such that

(a) X(x) = X(X) = k
(b) X,>xL

(c) X^xjfor j = 2, ...,fc.
Le£ r δβ ίAe Zαsί index j for which X3- > x3-. Let sr be the first index
j for which x3- < x19 and define s = sf if s' ^ r, s = 1 if sr > r. Then
m, z, w is a SOL if

m — n — 2xs — 1 + z Π #*

wi — Xi for i ^ k9 i Φ s

ws = xs + 1

Wi = 1 /or i> k .

Moreover m> n.

Proof. We use the notation Σ a n d Π "to denote sums and pro-
ducts for which the index i runs from 1 to k, and append a prime
to mean that i Φ s.

To check that w really is a SOL we must check (1) and (3). Now
by (1) Σ ^ ? = s Π s * - (n- k). T h u s Σ ^ ί = s Π w , = «Π'«ί - ( ^ -
k) + 2xa + 1. So by the definition of m, (1) is satisfied.

If s > 1, then since x satisfies (3) so will w. We may therefore
assume s = 1. By the definition of s, ^ = = a;r and xr+1 — Xr+1, ,
% = Xk. Thus either (i) r — 1 or (ii) r ^ 2 and χ1 = χ2. In case (i)
we note that N, z, X satisfies (3), that z]J'wi = zJΓ Xi, and that
Xλ > xγ implies 2XX ^ 2(xt + 1) = 2w1. Thus w satisfies (3). In case
(ii) we must check that zj['xi^2x1 + 2. Dividing by x1 = x2 and
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recalling that xι >̂ 2 we see that it suffices to know that

k

z Π a?* ̂  3. (The empty product equals 1.)

This is certainly true if z ^ 3 and easily checked via the constraints
of Lemma 1 when z < 3.

Finally we note that m > n is equivalent to 2 Π '&• ^ 2(#s + 1).
Multiplying by xs we see that it suffices to show z Π $• ^ 2(ίc* + &8)
and since ^ ^ # s it suffices to prove this when s = 1. Dividing by â
we obtain Equation (3) for w, which was verified above.

Proof of Theorem 1. The n{0), z, x{0) defined in (b) is a SOL by
Lemma 2. If (α ,̂ , xk) Φ (x[°\ -—,xk

0)), we apply Lemma 3 (with
8 = 1) to obtain a SOL ^ ( 1 ), z, x(1), with π ( 1 ) > n(0). By induction: At
step i, if r > 1, we will have either a?ii} = = #Γ-i > &i<} = = a?^
where a?^! = a;^ + 1, or a?ί*> = x? and s = 1. Hence we will be able
to apply Lemma 3. When r = 1, at i = ί say, we have (α?x, •••,%) =
(a î , •••, x{i]) and by (1) both n and ^ ( ί ) equal

fc k

z W Xι x j ί̂ i
i i

Hence, n{t\ z, x{t) = n9 z, x.

5* The following corollary is an easy consequence of the proof
of Theorem 1.

COROLLARY 4. Every SOL n, z, x satisfies n ^ xλ.

Proof. (We use the notation of Theorem 1.) To construct xii+1)

from x{i) we applied Lemma 3. Thus for 1 ^ j ^ k

ajί.i+D _ xn) = \0 if j Φ s

( l i f i = s .

Since n{i+1) > n{i\

Summing these equations for i = v, , t we get

( 5) n { t ) = n ^ n ( v ) + Σ ^ - x(?> ^ n { v ) + x 1 - x[v) .

If z Φ 1 or Z(x) 9̂  3, then xί0) - 2 and ^ ( 0 ) ^ 4. Thus by (5),
tt ^ a?! + 2. If z = 1 and Z(x) - 3, then n{0), x{0) = 3, (3, 3, 3); n{1),
x{1) = 5, (4, 3, 3, 1, 1); and n{2), x{2) = 10, (4, 4, 3, 1, , 1). Thus the
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corollary is true for x = x(0) or JC(1). Setting v — 2 in (5), we have
n ^ Xί + 6 otherwise.

6. Lemma 3 and Theorem 1 yield an algorithm that produces
only SOLs, and each only once.

THEOREM 2. The following seven step algorithm constructs all
SOLs n, z, x with n ^ M.

Let A be a list of SOLs, initially empty. The set of SOLs put
into A will be the SOLs sought.

(1) Set k = 1 and z = 4.
( 2 ) Using the current values of z and k, put the SOL constructed

in Lemma 2 on the bottom of the list A.
(3) If A is empty, go to Step 6, otherwise remove the top SOL

n, z, x from A.
(4) Define wx = xγ + 1, w{ — x{ for % JΞ> 2, k — X(x) and

k

v = z Π Wi — 2Wi + 1

Let m = n + v. If n < m < M define Wi = 1 for i = n + 1, , m.
m, z,w is a new SOL. Put it on the bottom of A. (If m is not
between n and M we do nothing.)

( 5 ) Find the smallest index s ^ k satisfying x1 — xs = 1. If no
such s exists, go to Step 3; otherwise define ws — xs + 1, Wι — Xi for
i φ sf k = Z(x) and

k

v — z Π Wi — %ws + 1

Let m = n + v. If m> M go to Step 3. If m S Mdefine w£ =
1 for i = n + 1, , m. m, z, w is a new SOL (since n < m is always
true). Put it on the bottom of A and go to Step 3.

(6) Increase z by 1 and set v = z 2k — 3k. If v ^ M go to
Step 3, otherwise go to Step 7.

( 7 ) Increase k by 1. If k = 2, set z = 3, otherwise set z — 1.
Set v = z-2k — Sk. If v ^ M go to Step 2, otherwise stop.

Proof. Every SOL n, z, x satisfying n ^ M eventually is put on
A because the algorithm produces a unique sequence of SOLs passing
through the X(x) = k SOLs of the form m, z, ιv(j) where X(w{j)) = k and

w{j) = ( x j f , x j f χ j + l 9 x j + 2 f . . -, x k , 1 , • • - , ! ) .

(Uniqueness is guaranteed by Step 5.)

Theorem 2 is extremely powerful, and it is no trouble to produce
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a table of SOLs by hand for moderately large n. The Appendix lists
all solutions of (l)-(4) with n ^ 45 except the trivial solution (when
z = n). We have omitted those α?< which equal 1.

7Φ In this section, we will apply Theorem 2 to get a better
bound on z than that given by Corollary 2.

Suppose n, z, x is a SOL with k = X(x), and suppose n Φ 2z — 3.
In particular, if k — 1, then % ̂  n{0). Hence either (i) k ^ 2 or (ii)
A = 1 and w ^ n{1}. In case (i) by Theorem 1 (b)

z ^ (n + 3A)/2* ^ (w + 6)/4 .

In case (ii) since n{0) = 2z — 3 and %(1) = n{0) + £ — 5, we see that
s ^ (n + 8)/3. Now if n ^ 14, (w + 8)/3 ^ (n + 6)/4, while for n ^
14, 3 ^ (n + 8)/3 by inspection.

THEOREM 3. The only SOLs n, z, x with z > (n + 8)/3 are the
SΌLs with n odd, z = (n + 3)/2, x = (2, 1, , 1).

Proof. Since w even implies n Φ 2z — 3, there are no SOLs with
z > (n + 8)/3. If w is odd and n = 2z — 3, then %(x) = 1 and n =
n{0\ x = x(0) of Theorem 1 (b).

Theorem 3 is hardly the best possible. For any n, each SOL
n, z, x is the end point of one of the chains described in Theorem 1,
and in general, the longer the chain, the larger n must be compared
to z. So for example if n Ξ> n{2\ z ^ (n + 15)/4 when X(x) = 1 and
if X(x) ^ 2 and z ^ 3, then z ^ (n + 10)/8. ΓAuβ ί/̂ βre are no solutions
to (1) when (n + 8)/3 > z > (n + 15)/4, eίc. .

8* Hurwitz asked if there exists n for which the only solutions
to (1) have z = n. There are.

PROPOSITION. There are 15 values of n ^ 301020 for which (1)~
(4) has no nontrivial solutions. They occur when n = 12, 24, 32, 48,
60, 108, 240, 384, 480, 608, 972, 984, 1020, and 2688.

This is the result of a computer program implementing Theorem
2. Suppose a computer has 6 binary bits per word. Since one only
wants to remember which n have at least one SOL, this information
can be stored in a single bit. Hence at most [n/b] + 1 words are
needed to keep track of which n have a SOL. Suppose X{x) = k ^
17, then 2k - Zk ^ 301, 021. Thus all SOLs for which n ^ 301, 020
have k g 16. By Theorem 3, z < 216. It is possible to show that for
n ^ 55, xι < λ/2n. Hence xγ < 2 9 . Thus, if 6^25, n, z, and k can be
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packed into one computer word, and xlt , xk can be packed [6/8] to
a computer word. So e.g., if b = 25, no more than six computer
words are needed for the xit The list A of active solutions will not
grow too large if the solutions are packed in this way. Finally let
me comment that removing SOLs from the end of A, rather than the
beginning (see Step 3) will save considerable computing time, since
the stack A need not be "pushed down" after a SOL is removed.
Moreover, if the last entry for each SOL is the word containing (n,
z, k), then upon removing the last word of A one knows how many
words were needed to store xlf , xk.

It is tempting to conjecture that there is at least one SOL for
all n > 2688.

PROPOSITION. There are nontrίvial solutions to (1) whenever n =
1 mod u and n > u2, or n = 2 mod u2 for any integer u > 1.

Proof. If n, z, x is a SOL with l{x) = k, then so is nr — n +
dΐ[Xi, z' = z + d, x' = (χl9 - , χkf 1, - , 1) for any d ^ 0. Apply this
fact to the SOLs, n = u2 + 2, z = 3, z = 2u, x = (u, 1, , 1) and the
SOLs, n = u2 + 2, z = 3, x = (u, u, 1, , 1).

COROLLARY. If (1) has only trivial solutions, then n = 0 or
8 mod 12.

[Set iι = 29 3.]

I take this opportunity to thank Ed Bender for many valuable
discussions.
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APPENDIX

(See the end of Section 6.)

N Z XI X2 X3 X4 X5 N Z XI X2 X3 X4 X5

3 1 3 3 3
4 1 2 2 2 2
5 1 4 3 3

4 2
6 3 2 2
7 1 3 2 2 2

2 2 2 2
3 3 2
5 2

8 1 4 2 2 2
9 6 2

10 1 4 4 3
2 3 2 2
4 2 2
6 3

11 2 4 2 2
3 3 3
7 2

12 NONE
13 1 5 4 3

3 4 3
4 3 2
7 3
8 2

14 1 3 3 2 2
1 6 4 3
4 4 2
5 2 2

15 3 2 2 2
9 2

16 8 3
17 1 2 2 2 2

2 3 3 2
8 4

10 2
18 3 4 4

6 2 2
19 1 4 3 2 2

1 5 5 3
1 4 4 4
5 3 2
9 3

11 2
20 2 2 2 2 2

4 3 3
21 3 5 4

9 4
12 2

22 1 5 3 2 2

22 2 4 3 2
3 3 2 2
3 6 4
5 4 2
7 2 2

10 3
23 1 6 3 2 2

1 6 5 3
4 2 2 2
5 5 2

13 2
24 NONE
25 1 7 5 3

2 5 3 2
4 4 3
6 3 2

10 4
11 3
14 2

26 1 5 4 4
2 6 3 2
8 2 2

10 5
27 1 3 3 3 2

3 4 2 2
3 5 5

15 2
28 1 3 2 2 2 2

1 4 4 2 2
4 5 3

12 3
29 4 6 3

5 3 3
11 4
16 2

30 1 6 6 3
2 3 3 3
3 5 2 2
6 4 2
9 2 2

31 1 6 4 4
2 3 2 2 2
2 4 4 2
3 6 2 2
3 6 5
5 2 2 2
7 3 2

11 5
13 3
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N

32
33

34

35

36

37

38

Z

17

3
6

12
18

1
4
4
6

10
14

1
1
1
3

19
3

12
1
1
5
8

12
13
15
20

1
1
2
3

XI

2
NONE

7
5
4
2
7
3
4
6
2
3
5
8
7
3
2
2
5
4
5
4
3
6
4
3
2
4
8
5
6

X2

5
2

4
2
4
2
2

4
4
6
3

2

2
5
3
2

3
6
4
6

X3

4
2

2
4
3
2

2

2
4

3
3
2

X4 X5

2

2

2 2

2

N

38

39

40

41

42
43

44

45

Z

6
7

11
1
6

21
1
2

16
2
4

13
14
22
12
1
1
2
3
4
5
7
9

13
17
23
1
1

15
24

XI

3
4
2
9
2
2
6
4
3
4
5
5
4
2
2
7
7
6
7
4
5
5
3
6
3
2
5
8
4
2

X2

3
2
2
6
2

4
2

3
4

2
4
7
4
6
2
3
2
2

2
4

X3

3
2

2
2

3

2
3
2

2

2
2

X4 X5

2
2

2

2 2
2
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