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A COUNTER EXAMPLE TO THE BLUM HANSON
THEOREM IN GENERAL SPACES

M. A. AKCOGLU, J. P. HUNEKE AND H. ROST

Let T and S be two bounded linear operators on a Banach
space B. One studies the question whether weak convergence
of the powers Tn to S implies convergence of the Cesaro
averages 1/n 2?=i Tm) to S for all subsequences 0 ^ i(l) <
i(2) < - of the integers. It is well known that this implica-
tion holds if B is the L2 of a finite measure space and T is
induced by a measure preserving transformation of that space
(this is the Blum Hanson theorem) or, more generally, if B
is a Hubert space and T of norm at most 1, or if B is a L1

space and T a positive operator of norm at most 1. In the
present paper the conjecture that the above implication holds
in general Banach spaces for all T with 11 T \ \ S 1 is disproved
by constructing a counterexample in a Banach space of the
type B= ^(X), X a compact Hausdorff space.

Specifically, let B and i?* be a Banach space and its adjoint,
respectively, and let T: B—> B and S: B —> B be two linear and bounded
operators. Consider the following two statements:

( i ) Tn converges weakly to S; i.e., for each fe B and FeB*,

(ii) Let i{n) be a sequence of integers so that 0 ^ i{n) < i(n + 1)
for each n^l. Then, Ijn Σ L i Tiik) converges strongly to S; i.e., if
fe B, then lim || 1/n Σ L i Ti{k)f - Sf || = 0.

It is easy to see that (ii) always implies (i). The Blum Hanson
theorem [2] states that if B is the L2 space of a finite measure space
and if T is induced by a measure preserving transformation of this
measure space, then (i) also implies (ii). Later it was shown that the
equivalence of (i) and (ii) is true if T is a contraction (i.e., if | |Γ | | ^ 1)
and B is a Hubert space [1], [3] or the L1 space of a tf-finite measure
space [1]. It is then natural to ask if these two conditions (i) and
(ii) are always equivalent. In this note, we give a counterexample to
show that in general (i) does not imply (ii), even if T is a contraction.

2Φ Reducing the question to a topological one* Let X be a
compact Hausdorff space and let ^ = ^(X) be the Banach space of
all real valued continuous functions on X, with the usual, supremum
norm. If τ:X—>X is a continuous transformation, then there is an
induced linear contraction Γ:^—> <g*; defined as (Tf)(x) ~ f(τx) for
each fe<& and xeX. Note that Tnf converges weakly in ^ if and
only if f(τnx) converges for each x e X, as a sequence of real numbers.
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Hence, if there is a point xoe X so that lim^^ τnχ = χ0 for every
xeX, then Tn converges weakly to S: <& -» <g*, defined as (Sf)(x) =
f(x0) for each xeX and / e <if.

Now assume that r is such a transformation and also that there
is a compact Ka X, not containing the point x0 and satisfying the
following condition:

(A) For each integer N ^ 0 there is a point x — x(N) in X so that
K contains more than N terms of the sequence τnχy n = 0, 1, 2,

Before we give an example for such an X and τ in the next
section, here we note that in this case (i) does not imply (ii). Let
/ e ^ be a nonnegative function so that f(xQ) = 0 and f(x) Ξ> 1 for all
xe K. Hence, Tnf converges weakly to zero. Now define a sequence
%{n) of integers as follows. Let i(l) = 0. For each r ^ 1, if the first
2r~1 terms are determined then the next 2r~ι terms [i.e., the terms
i(2r"1 + 1), •• ,ΐ(2r)] are chosen as follows. With the notations of
Condition (A), let xr — a;(ί(2r~1) + 2r~1) and let the following conditions
be satisfied: r^7*"1 + s)Zre K for each s = 1, 2, - , 2 r - 1 and ί(2r~1) <
i{2*-1 + 1) < •̂(2ί•). Then,

for each r ^ 1. Hence,

— Σ
n k=i

does not converge strongly to zero.

3* The topological example* We are now going to give an
example of a compact Hausdorίf space X and a continuous transfor-
mation τ: X~> X so that all the assumptions of the second section are
satisfied.

Let R be the real line with the usual topology and let C = [0, 1) =
{x I 0 ^ x < 1} be the unit interval with its circle topology. Let
φ: C -+ C be a homeomorphism that is linear in [0, 1/2) and in [1/2, 1)
and satisfies φθ = 0, <pl/2 = 3/4. Note that if 0 < x < 1 then φnx~* 1
in R. Hence, φnx—>0 in C, for each xeC. Also, let α:C—>C be
a continuous function that is linear in [1/4, 1/2), vanishes identically
on [1/2,1) and is equal to — A/logx at every xe (0,1/4). Here, A
is a positive constant so that maxxeCαx — + A/log 4 is less than 1/4.

Now let X = C2 be the two-dimensional torus with its usual
topology. The points of X are denoted as (#, y), where x, yeC. Let
a mapping τ: X-+ X be defined as r(aj, ?/) = ([φx + α̂ /] mod 1, <Py). It
is then clear that τ is continuous.
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LEMMA. If fa, y) e X, then l i m ^ τn(x, y) = (0, 0).

Proof. Let τn(x, y) = (χnf yn). Hence, x0 = x, y0 = y and iίn}>l,
then yn == φnyy xn = ξn mod 1, where ζn = <Pxn-x + ayn^. If y0 = 0,
then 2/Λ = 0 for all w ̂  0 and α?Λ = Ψxn-γ = <Pnx0 -> 0 in C. If τ/0 > 0,
then there is an integer m ^ 0 so that yn = φny0 > 1/2 for all n |Ξ> m.
This means that 0:3/* = 0 and α;w = φn~mxm for all n ^ m. Hence,
(#n, 2/«) = (^%~w^m, ^ 0 ) converges to (0, 0) for all (xθ9 y0) e X.

LEMMA. If K = {fa, 2/) | fa, y) eX,l/8^x^ 7/8}, then K satisfies
Condition A of § 2.

Proof. With the notations of the previous proof, let

δΛ = δwfa, y) = ξn - a?Λ_! = ^ ^ _ ! - icw_! + ayn-! .

Then,

Λ?Λ = h&o + Σ Sjj. mod 1 .

Now note that if

then there is an integer n, so that nx ^ n ^ n2 and that (xn, yn) e iί.
In fact, for each k "2> 1, 0 ^ δk ^ m a x s e c (<pχ — x) + max^c ay ^ 1/2,
and hence, if

then,

U ΣΣ

is between 1/8 and 7/8 for some n, nt < n g n2. Therefore, to prove
the present lemma, it is enough to show that given any number N,
there is a point fa, y) e X so that

Σ

Let 0 < 7/ < 1/4 be given and let ilί = M(y) be the largest integer
in the set {n\n ^ 0, 9 ^ < 1/4}. Let z — φMy. Hence, z < 1/4, but
φz = (3/2)2 ^ 1/4. Therefore, if 0 ^ % ̂  Λf, then yn = φny - (S/2)ny =
(3/2)*-Mz^(S/2)*-Ml/6, and α:τ/w = -Aβogyn^A/((M- n) log3/2 + log6).
This means that
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M M M—l I

k=ι »=i »=o n log 3/2 + log 6

But it is clear that there are points y e (0, 1/4) for which M = M(y)
is arbitrarily large, hence, for which Σ?=i K is also arbitrarily large.
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