THE MULTIPLIER ALGEBRA OF A CONVOLUTION MEASURE ALGEBRA

Kari Ylinen

Abstract

In this paper the structure theory of convolution measure algebras due to J. L. Taylor is used in studying the multiplier algebra $M(A)$ of a commutative semi-simple convolution measure algebra A. A criterion is given for the embeddability of $M(A)$ in the measure algebra $M(S)$ on the structure semigroup S of A, and the relationship between the structure semigroups of A and $M(A)$ is investigated in case $M(A)$ is also a convolution measure algebra and S has an identity.

1. Introduction. A convolution measure algebra A is a complex L-space with a multiplication which gives A the structure of a Banach algebra and satisfies certain additional requirements. For precise definitions and the basic theory of convolution measure algebras we refer to J. L. Taylor's paper [11]. A central role in Taylor's theory is played by the structure semigroup S of a commutative convolution measure algebra A. The maximal regular ideal space of A may be identified with the set of semicharacters of the compact commutative topological semigroup S, and some properties of A are reflected in those of S.

For any (complex) commutative Banach algebra A, let $\Delta(A)$ denote the spectrum of A, that is, the space of nonzero multiplicative linear functionals on A, equipped as usual with the relative weak* topology. If A is in addition semisimple, then we denote by A^{m} the space of all complex-valued functions on $\Delta(A)$ that keep the space \hat{A} of the Gelfand transforms \hat{x} of the elements x of A invariant by pointwise multiplication, i.e., $A^{m}=\{f: \Delta(A) \rightarrow C \mid f \hat{x} \in \hat{A}$ for all $x \in A\}$. It can be easily shown that each $f \in A^{m}$ determines a unique bounded linear operator $T_{f}: A \rightarrow A$ satisfying $\widehat{T_{f} x}=f \hat{x}, x \in A$. Then $M(A)=\left\{T_{f} \mid f \in A^{m}\right\}$ is a Banach algebra under the uniform operator norm, called the multiplier algebra of A. For the general theory of multiplier algebras one may consult e.g. Larsen's book [5].

In this paper we study the multiplier algebra of a commutative semi-simple convolution measure algebra A. J. L. Taylor has shown in [11] that A may be naturally embedded in the convolution algebra $M(S)$ of finite regular Borel measures on the structure semigroup S. In § 3 we show that $M(A)$ can be isometrically realized as a subalgebra of $M(S)$ containing the image of A if and only if S has an identity. As is to be expected, the measures then corresponding to isometric onto multipliers have one point support in S. Section 4 gives con-
ditions for $M(A)$ to be a convolution measure algebra, too, and $\S 5$ concentrates on describing the relationship that exists between S and the structure semigroup of $M(A)$ provided $M(A)$ is a convolution measure algebra and S has an identity. For related results in a somewhat different situation, see [13].

For any compact Hausdorff space $S, C(S)$ will denote the Banach space of continuous complex-valued functions on S with the supremum norm, and $M(S)$ is the conjugate space of $C(S)$. Of course, $M(S)$ may be interpreted as the space of finite regular Borel measures on S, and if S is also a topological semigroup, $M(S)$ is a Banach algebra under the convolution product

$$
\mu_{* \nu}(f)=\int_{S} \int_{S} f(x y) d \mu(x) d \nu(y)
$$

2. Taylor's structure semigroup of a commutative convolution measure algebra. Preliminarily to our discussion of the multiplier algebra we give in this section the structure semigroup a description which differs slightly from Taylor's original construction. In special cases an essentially similar method has been used e.g. by Rennison in [8] and Ramirez in [7]. See also [6] and [13].

The conjugate space A^{\prime} of any complex L-space A is a commutative C^{*}-algebra with identity. The corollary in [11, p. 157] says that if A is a commutative convolution measure algebra, then $\Delta(A) \cup\{0\}$ is a self-adjoint multiplicative subsemigroup of A^{\prime} containing the identity, so that the norm closed linear span P of $\Delta(A)$ in A^{\prime} is a C^{*}-algebra with identity. A semicharacter on a topological semigroup is a non-zero continuous homomorphism into the multiplicative semigroup of complex numbers z with $|z| \leqq 1$.

Theorem 2.1. Let A be a commutative convolution measure algebra and P as above. For any $F, G \in P^{\prime}$ there is a unique element, denoted $F G$, of P^{\prime} such that $F G(\alpha)=F(\alpha) G(\alpha)$ for all $\alpha \in \Delta(A)$. The $\operatorname{map}(F, G) \mapsto F G$ is a commutative Banach algebra product in P^{\prime}. The spectrum $\Delta(P)$ of P is a multiplicative subsemigroup of P^{\prime}. With the relative weak* topology $\Delta(P)$ is a compact topological semigroup, and the semicharacters of $\Delta(P)$ are precisely the Gelfand transforms of the elements of $\Delta(A)$. The structure semigroup S of A in the sense of Taylor [11] is topologically isomorphic to $\Delta(P)$.

Proof. The product in P^{\prime} that we are referring to is discussed in [1, p. 816] and [13, pp. 168-169]. In particular, since $F G(\alpha \beta)=$ $F(\alpha \beta) G(\alpha \beta)$ for all $\alpha, \beta \in \Delta(A), F, G \in P^{\prime}$, even if $\alpha \beta=0$, the proof of Theorem 2.3 in [13] is valid also in our present situation where,
in general, merely $\Delta(A) \cup\{0\}$ is a multiplicative subsemigroup of A^{\prime}. Similarly, Theorem 2.4 in [13] is applicable, for the semi-simplicity of A is nowhere needed in its proof, and $\Delta(A)$ (rather than $\Delta(A) \cup\{0\}$) is assumed to be closed with respect to multiplication only to allow one to appeal to the above mentioned Theorem 2.3. From the proof of Theorem 2.2 in [11] it is clear that there is a homeomorphism φ from the structure semigroup S of A onto $\Delta(P)$ such that its natural dual map from $C(\Delta(P)$) onto $C(S)$ puts the sets of semicharacters on S and $\Delta(P)$ in a bijective correspondence. As in the proof of Theorem 6.5 in [7] it is seen that φ is also a semigroup isomorphism.

From now on we call $\Delta(P)$ with the product mentioned in the above theorem the structure semigroup of A and use the notation $S=\Delta(P)$.

Theorem 2.2. Let A and P be as in Theorem 2.1. If P^{\prime} is given the product referred to in that theorem, then the isometric embedding $F \mapsto \mu_{F}$ from P^{\prime} onto $M(S)=C(S)^{\prime}$ defined by $\left\langle f, \mu_{F}\right\rangle=$ $\langle f, F\rangle$ for $F \in P^{\prime}, f \in P=C(S)$, is an algebra isomorphism.

Proof. Suppose $F, G \in P^{\prime}$. By the definition of the convolution $\mu_{F} * \mu_{G}$ we have for any $\alpha \in \Delta(A)$,

$$
\begin{aligned}
\left\langle\hat{\alpha}, \mu_{F^{*}} \mu_{G}\right\rangle & =\int_{S} \int_{S} \widehat{\alpha}(x y) d \mu_{F}(x) d \mu_{G}(y)=\int_{S} \hat{\alpha}(x) d \mu_{F}(x) \int_{S} \widehat{\alpha}(y) d \mu_{G} \\
& =\langle\alpha, F\rangle\langle\alpha, G\rangle=\langle\alpha, F G\rangle=\left\langle\hat{\alpha}, \mu_{F G}\right\rangle
\end{aligned}
$$

Since the functions $\hat{\alpha}, \alpha \in \Delta(A)$, generate the Banach space $C(S)$, the equality $\left\langle h, \mu_{F} * \mu_{G}\right\rangle=\left\langle h, \mu_{F G}\right\rangle$ is valid for all $h \in C(S)$, i.e., $\mu_{F} * \mu_{G}=\mu_{F G}$.
3. Representing the multipliers as measures on the structure semigroup. Throughout the rest of the paper we assume that A is a commutative, semi-simple convolution measure algebra with structure semigroup $S=\Delta(P)$, where P is always the closed linear span of $\Delta(A)$ in A^{\prime}. The set of semicharacters on S is denoted by \widehat{S}. We give P^{\prime} the Banach algebra product mentioned in Theorem 2.1.

Lemma 3.1. The natural embedding $\theta: A \rightarrow P^{\prime}$ defined by $\langle f, \theta x\rangle=$ $\langle x, f\rangle, x \in A, f \in P$, is an isometric and bipositive (i.e., $\theta x \geqq 0$ if and only if $x \geqq 0$) algebra homomorphism.

Proof. From the definition of the product in P^{\prime} it is clear that θ is a homomorphism. Theorem 2.3 in [11] along with the corollary in [11, p. 154] shows that it is isometric and bipositive. Alternatively, θ is isometric by virtue of the Kaplansky density theorem [10, p. 22], and bipositive by Propositions 1.5 .1 and 1.5 .2 in $[10, \mathrm{p} .9]$, since P
contains the identity of A^{\prime}.
We usually identify P^{\prime} and $M(S)$ as ordered Banach spaces and Banach algebras in accordance with Theorem 2.2. Following Taylor [11], we use the notation $\theta(A)=A_{S} \subset M(S)$. It follows e.g. from [11, Theorem 2.3] and the corollary in [11, p. 154] that A_{S} is an L-subspace [11, p. 151] of the complex L-space $M(S)$.

LEMMA 3.2. The convolution product in $M(S)$ is separately weak* continuous.

Proof. Suppose $\nu \in M(S)$ and $f \in C(S)$. It is a simple matter to show that the function $\varphi, \varphi(y)=\int_{S} f(x y) d \nu(x)$, is continuous on S. (A much more general result may be proved using Grothendieck's weak compactness theorem, see [3, p. 205].) Since we have $|\langle f, \nu * \mu\rangle|=$ $\left|\int_{S} \int_{S} f(x y) d \nu(x) d \mu(y)\right|=|\langle\varphi, \mu\rangle|$, the mapping $\mu \mapsto \nu * \mu$ is weak* continuous at zero, hence everywhere.

Lemma 3.3. Suppose that S has an identity and $\mu \in M(S)$. Then $\mu \geqq 0$ if and only if $\mu_{*} \nu \geqq 0$ for all $\nu \geqq 0$ in A_{S}.

Proof. Clearly the latter condition is necessary. Suppose now that $\mu_{* \nu} \geqq 0$ for all $\nu \geqq 0$ in A_{s}. Choose a basis \mathscr{U} of compact neighborhoods of the identity u of S, directed in the natural order opposite to inclusion. Each $\nu \in A_{S}$ is a linear combination of nonnegative elements of A_{S} and if $\lambda \in M(S), 0 \leqq \lambda \leqq \nu \in A_{S}$, then $\lambda \in A_{S}$ since A_{s} is an L-subspace of $M(S)$. Furthermore, since A_{s} separates $P=C(S), A_{S}$ is a weak* dense subspace of $M(S)$. It follows easily that for each $U \in \mathscr{U}$ there exists a positive measure $\mu_{U} \in A_{S}$, $\left\|\mu_{S}\right\|=1$, with support contained in U. The net $\left(\mu_{U}\right)_{U \in \mathscr{H}}$ converges to the Dirac measure δ_{u} in the weak* topology. By assumption, $\mu * \mu_{U} \geqq 0$ for all $U \in \mathscr{U}$, and since the positive cone in $M(S)$ is weak* closed and the convolution is separately weak* continuous (Lemma 3.2), it follows that $\mu=\mu * \delta_{u}=\lim _{U} \mu_{*} \mu_{U} \geqq 0$.

We regard the multiplier algebra $M(A)$ as an ordered Banach space with positive cone $\{T \in M(A) \mid T x \geqq 0$ for all $x \geqq 0$ in $A\}$.

Theorem 3.1. If S has an identity, then there exists a bipositive, isometric algebra isomorphism from $M(A)$ onto the subalgebra $B=$ $\left\{\mu \in M(S) \mid \mu_{*} \nu \in A_{s}\right.$ for all $\left.\nu \in A_{S}\right\}$ of $M(S)$. Conversely, if there exists an isometric algebra isomorphism ψ from $M(A)$ onto a subalgebra of $M(S)$ containing A_{s}, then S has an identity, and for any isometric and surjective $T \in M(A)$ we have $\psi(T)=c \delta_{x}$, where $c \in C,|c|=1$ and δ_{x} is the Dirac measure corresponding to some $x \in S$.

Proof. Suppose that S has an identity u. The net $\left(\mu_{v}\right)_{U \in \mathscr{U}}$ constructed in the proof of Lemma 3.3 converges to the Dirac measure δ_{u} in the weak* topology of $M(S)$. In particular, $\lim _{U}\left\langle\mu_{U}, \gamma\right\rangle=1$ for each $\gamma \in \Delta(A)=\hat{S}$. If we denote by $T_{f} \in M(A)$ the operator corresponding to the function $f \in A^{m}$ (see the introduction), an argument given in [1, p. 817] shows that $\left|\sum_{k=1}^{n} a_{k} f\left(\gamma_{k}\right)\right| \leqq\left\|T_{f}\right\|\left\|\sum_{k=1}^{n} a_{k} \gamma_{k}\right\|$ for all $\gamma_{k} \in \Delta(A), a_{k} \in \boldsymbol{C}, k=1, \cdots, n$. It follows that f can be extended as a continuous linear functional f to the whole of P with norm $\|\boldsymbol{f}\| \leqq\left\|T_{f}\right\|$. Since the embedding $\theta: A \rightarrow P^{\prime}$ is isometric (Lemma 3.1), we have, using the definition of the product in $P^{\prime},\|f\| \geqq$ $\sup \{\|f \theta(x)\| \mid x \in A,\|\theta(x)\| \leqq 1\}=\sup \{\|f \theta(x)\| \mid x \in A,\|x\| \leqq 1\}=$ $\sup _{\substack{\|x\| \leq 1 \\ x \in A}}\left\|T_{f} x\right\|=\left\|T_{f}\right\|$. Thus $\|\boldsymbol{f}\|=\left\|T_{f}\right\|$. From the definition of the product in P^{\prime} it is obvious that the above embedding of $M(A)$ in P^{\prime} is an algebra homomorphism, so that it may be interpreted as an isometric algebra homomorphism $\pi: M(A) \rightarrow M(S)$ (Theorem 2.2). Since the embedding of A in $M(S)$ is bipositive (Lemma 3.1), it is clear from Lemma 3.3 that π is bipositive. Denote $\pi(M(A))=B \subset M(S)$. For functions in $A^{m}(\supset \widehat{A})$, pointwise multiplication corresponds to the convolution of the respective measures on S (see the proof of Theorem 2.2). Therefore, A_{S} is an ideal in B. Also, if $\mu \in M(S)$, and $\mu * \nu \in A_{S}$ for all $\nu \in A_{S}$, then the function $f_{\mu}: \Delta(A) \rightarrow \boldsymbol{C}$ obtained by restricting μ to $\hat{S}=\Delta(A)$ belongs to A^{m}. The first part of the theorem is thus proved. To prove the converse assertion we note that $M(A)$ has always an identity. The hypothesis then implies that a weak* dense subalgebra of $M(S)$ has an identity η. It follows from Lemma 3.2 that η is also an identity for $M(S)$. But it is well known that the identity of any Banach algebra is an extreme point in its unit ball (see e.g. [10, p. 13]). Hence (see [2, p. 441]) we have $\eta=c \delta_{u}$ for some $u \in S$ and $c \in \boldsymbol{C},|c|=1$. In fact $c=1$, since $c \delta_{u}=c \delta_{u} * c \hat{\delta}_{u}=$ $c^{2} \delta_{u^{2}}$, so that $u=u^{2}$ and $c=c^{2}$. Now, u is an identity for S, since $\delta_{u x}=\delta_{u} * \delta_{x}=\delta_{x}$ for all $x \in S$. For the last statement, it is enough to show that $\psi(T)$ is an extreme point of the unit ball of $M(S)$ [2 , p. 441]. If $0 \leqq \lambda \leqq 1$ and $\mu_{1}, \mu_{2} \in M(S)$ are such that $\psi(T)=\lambda \mu_{1}+$ $(1-\lambda) \mu_{2}$ and $\left\|\mu_{1}\right\| \leqq 1,\left\|\mu_{2}\right\| \leqq 1$, we have for the identity η of $M(S)$, since also $T^{-1} \in M(A)$ [5, p. 15],

$$
\eta=\psi\left(T^{-1}\right) * \psi(T)=\lambda \psi\left(T^{-1}\right) * \mu_{1}+(1-\lambda) \psi\left(T^{-1}\right) * \mu_{2}
$$

where $\left\|\psi\left(T^{-1}\right) * \mu_{1}\right\| \leqq 1$ and $\left\|\psi\left(T^{-1}\right) * \mu_{2}\right\| \leqq 1$. Since η is an extreme point of the unit ball of $M(S)$, we have $\lambda=0$ or $\lambda=1$. Therefore, $\psi(T)$ is also an extreme point of the unit ball of $M(S)$.

Note. From the proof of the above theorem it is clear that S has an identity if and only if A has a weak bounded approximate
identity [1, p. 817] of norm one. (Compare [11, Theorem 3.1].)
4. $M(A)$ as a convolution measure algebra. If S has an identity, then $M(A)$ may be embedded in $M(S)$ in accordance with Theorem 3.1. Unfortunately, the nature of the image $B \subset M(S)$ of $M(A)$ is not sufficiently clear on the basis of that result. For example, we should like to conclude that B is a so-called L-subalgebra of $M(S)$, which turns out to be equivalent to saying that $M(A)$ with its natural order is a convolution measure algebra. The next theorem gives two other necessary and sufficient conditions for this to be case.

We assume henceforth that S has an identity and let $\pi: M(A) \rightarrow$ $M(S)$ be the bipositive, isometric homomorphism constructed in the proof of Theorem 3.1, and denote as before $B=\pi(M(A))=\left\{\mu \in M(S) \mid \mu * \nu \in A_{S}\right.$ for all $\left.\nu \in A_{s}\right\}$. Since S has an identity, $\Delta(A)$ (and not merely $\Delta(A) \cup\{0\}$) is a multiplicative subsemigroup of A^{\prime}, so that it makes sense to talk about translations of functions on $\Delta(A)$. A set \mathscr{F} of functions $f: \Delta(A) \rightarrow \boldsymbol{C}$ is translation invariant, if $f \in \mathscr{F}$ implies $f^{\alpha} \in \mathscr{F}$ for all $\alpha \in \Delta(A)$, where $f^{\alpha}(\beta)=f(\alpha \beta)$ for $\alpha, \beta \in \Delta(A)$.

A closed subalgebra N of the convolution measure algebra $M(S)$ is an L-subalgebra of $M(S)$, if for any $\mu \in N$ its total variation $|\mu|$ belongs to N, and if $\nu \in N$ whenever $\mu \in N$ and ν is absolutely continuous with respect to $|\mu|$ (denoted $\nu \ll|\mu|)$ [12, p. 257]. This definition is easily seen to be equivalent to requiring that N be a subalgebra and an L-subspace of $M(S)$ in the sense of [11].

Theorem 4.1. The following conditions are equivalent:
(i) $M(A)$ is a convolution measure algebra (in the order defined before Theorem 3.1),
(ii) B is an L-subalgebra of $M(S)$,
(iii) A^{m} is a translation invariant set of functions on $\Delta(A)$,
(iv) for any $\mu \in B,|\mu|$ also belongs to B.

Proof. We shall establish the following chain of implications: (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (ii) \Rightarrow (i) \Rightarrow (iv). If (ii) holds and $\mu \in B, f \in C(S)$, then the measure $f \mu$ (i.e., the functional $g \mapsto \mu(f g)$ on $C(S)$) belongs to B. But if $f \in A^{m}$ and $\mu_{f}=\pi\left(T_{f}\right)$, then we have $f^{\alpha}(\beta)=\mu_{f}(\alpha \beta)=\alpha \mu_{f}(\beta)$ for all $\alpha, \beta \in \Delta(A)=\widehat{S}$, so that $f^{\alpha} \in A^{m}$, since $\alpha \mu_{f} \in B$ and A_{S} is an ideal in B. Thus (ii) implies (iii). Next, assume (iii) and choose any $\mu \in B$. Then the function $f_{\mu}: \Delta(A) \rightarrow \boldsymbol{C}$ defined by $f_{\mu}(\alpha)=\mu(\alpha)$ for $\alpha \in \Delta(A)=\hat{S}$ belongs to A^{m}. By assumption, $\left(f_{\mu}\right)^{\alpha} \in A^{m}$ for any $\alpha \in \Delta(A)$. But the measure in B corresponding to $\left(f_{\mu}\right)^{\alpha}$ when α is regarded as a semicharacter of S, is $\alpha \mu$. As \widehat{S} generates the Banach space $C(S)$ and the mapping $f \mapsto f \mu$ is continuous from $C(S)$ to $M(S)$, which contains B as a closed subspace, we have $f \mu \in B$ for all $f \in C(S)$. Fur-
thermore, $C(S)$ is dense in $L^{1}(S,|\mu|)$ [4, p. 140] so that there is a sequence of functions in $C(S)$ converging to \bar{g} in $L^{1}(S,|\mu|)$, where g is a $|\mu|$-measurable function with $|g(x)|=1|\mu|$-a.e. and such that $\mu=g|\mu|$ [4, p. 171]. By virtue of the continuity of the mapping $f \mapsto f \mu$ from $L^{\prime}(S,|\mu|)$ to $M(S)$ and the fact that $f \mu \in B$ for all $f \in C(S)$, it follows that $|\mu|=\bar{g} \mu \in B$, i.e., (iv) holds. Assume now (iv) and that $\mu \in M(S)$ is absolutely continuous with respect to some $\lambda \geqq 0$ in B. Then we have also $\mu_{j} \ll \lambda, j=1, \cdots, 4$, in the Jordan decomposition $\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right.$), where μ_{1} and μ_{2} (resp. μ_{3} and μ_{4}) are mutually singular nonnegative measures. If $\nu \geqq 0$ is in A_{S}, we have $\nu * \mu_{j} \ll \nu * \lambda$. This has been proved in a somewhat more general setting by Pym in [6, p. 630]. Since A_{S} is an L-subspace of $M(S)$, hence an L-subalgebra in the sense of [12], we have $\nu * \mu \in A_{S}$. It follows that in fact $\nu * \mu \in A_{S}$ for an arbitrary $\nu \in A_{S}$, so that $\mu \in B$. Thus (ii) holds. Since $M(A)$ is isometrically algebra and order isomorphic to B, and any L-subalgebra of $M(S)$ is a convolution measure algebra (see [11, p. 151 and Definition 2.1]), (ii) implies (i) at once. Finally, if $M(A)$ is a convolution measure algebra (hence a complex L-space), (iv) holds by virtue of Corollary 1.6 and Proposition 1.8 in [9].

On the basis of the above theorem sufficient conditions (assuming that S has an identity) can be given to guarantee that $M(A)$ is a convolution measure algebra. Since A_{S} is an L-subalgebra of $M(S)$, an argument used in the proof of the above theorem shows that \hat{A} is translation invariant on $\Delta(A)$. If we assume for example that A is regular and has a bounded approximate identity consisting of elements with Gelfand transforms of compact support, then the theorem in [1, p. 819] shows that A^{m} consists of those functions on $\Delta(A)$ which belong locally to \hat{A} and may be extended to continuous linear functionals on P. Then Theorem 4.2 in [13] shows that A^{m} is translation invariant. Another case where the translation invariance of A^{m} follows immediately from that of \widehat{A} arises, when S is a multiplicative group, for then we have $\left(f^{\alpha} \hat{x}\right)(\beta)=f(\alpha \beta) \hat{x}^{\alpha-1}(\alpha \beta)=\widehat{y}(\beta)$ for some $y \in A$, if $f \in A^{m}$ and $x \in A$. For a discussion of this kind of a situation, see [12].
5. The structure semigroups of A and $M(A)$. We retain the general hypotheses and notational conventions made in $\S \S 3$ and 4. In particular S has an identity. Let us make the additional assumption that $M(A)$ is a convolution measure algebra (in the order defined before Theorem 3.1). When A and $M(A)$ are realized as subalgebras of $M(S)$ (§3), it is seen that the embedding $j: A \rightarrow M(A)$ defined by $j(x)=T_{\hat{x}}$ is isometric and bipositive. It is readily seen to be an L homomorphism [11, p. 152], since A_{S} is an L-subspace of $M(S)$. We let Q denote the closed linear span of $\Delta(M(A))$ in $M(A)^{\prime}$. Then $T=$
$\Delta(Q)$ with the usual topology and product is the structure semigroup of $M(A)$. Before stating Theorem 5.1, which relates S and T to each other, we prove an auxiliary result.

Lemma 5.1. The mapping $\Phi: P \rightarrow M(A)^{\prime}$ defined by $\langle\Phi f, L\rangle=$ $\langle\pi(L), f\rangle$ for $L \in M(A), f \in P=C(S)$, is an isometric C^{*}-algebra homomorphism which maps the identity of P to that of $M(A)^{\prime}$, and we have

$$
\begin{equation*}
j^{*} \circ \Phi(f)=f, \quad f \in P \tag{1}
\end{equation*}
$$

for the transpose $j^{*}: M(A)^{\prime} \rightarrow A^{\prime}$ of j. Furthermore, $\Phi(P) \subset Q$.
Proof. Equation (1) is immediate. Since $j: A \rightarrow M(A)$ is an L homomorphism, $j^{*}: M(A)^{\prime} \rightarrow A^{\prime}$ is a C^{*}-algebra homomorphism which preserves the identity [11, p. 153]. Therefore,

$$
\begin{equation*}
j^{*}(\Phi \alpha \Phi \beta)=\alpha \beta \quad \text { for } \quad \alpha, \beta \in \Delta(A)=\hat{S} \tag{2}
\end{equation*}
$$

As S has an identity, $\alpha \beta \neq 0$. A simple calculation shows that since π is a homomorphism, $\Phi \alpha$ and $\Phi \beta$ are multiplicative, so that by (2) their product is a multiplicative extension of $\alpha \beta$ to $M(A)$ (when $\alpha \beta$ is regarded as a functional on $j(A))$. Now, $\Phi(\alpha \beta)$ is also a multiplicative extension of $\alpha \beta$ to $M(A)$, and since there are only one of them [5, p. 24], we have $\Phi(\alpha \beta)=\Phi \alpha \Phi \beta$. A similar argument shows that $\Phi \mid \Delta(A)$ preserves involution. It follows that Φ is a C^{*}-algebra homomorphism. Since the identity e_{1} of A^{\prime} belongs to $\Delta(A)$ and the identity e_{2} of $M(A)^{\prime}$ to $\Delta(M(A))$, the uniqueness of the multiplicative extension again shows that $\Phi e_{1}=e_{2}$. Since any C^{*}-algebra homomorphism is norm-decreasing [10, p. 5] it follows from (1) that Φ is isometric. The last statement is a consequence of the fact that $\Phi(\Delta(A)) \subset \Delta(M(A))$.

In the following theorem \mathfrak{S} denotes the natural embedding of $M(A)$ in $M(T)$ [11, p. 158]. The identity map of a set D is denoted by $i d_{D}$.

THEOREM 5.1. There exist unique continuous semigroup homomorphisms $\psi: S \rightarrow T$ and $\varphi: T \rightarrow S$ such that
(1) $\Phi f(t)=f \circ \varphi(t)$ and $\Psi g(s)=g \circ \psi(s)$
for all $t \in T, f \in C(S)=P, s \in S, g \in C(T)=Q$, where $\Psi=j^{*} \mid Q$ and Φ is the map defined in Lemma 5.1. Furthermore,
(a) $\varphi \circ \psi=i d_{S}$ and $\Psi \circ \Phi=i d_{P}$.
(b) $\psi(S)$ is a closed ideal in T.
(c) For the identity u of S we have $\psi \circ \varphi(t)=t \psi(u), t \in T$.
(d) If we denote $M_{S}(T)=\{\mu \in M(T)| | \mu \mid(T \backslash \psi(S))=0\}$, then $M_{S}(T)$ is an ideal in $M(T)$ and $\Psi^{*}(M(S))=M_{s}(T)$ for the transpose Ψ^{*} : $M(S) \rightarrow M(T)$ of Ψ.
(e) The diagram below commutes, and all maps appearing in it are algebra homomorphisms.

Proof. It is clear that (1) holds if and only if the maps $\psi: \Delta(P) \rightarrow$ $\Delta(Q)$ and $\varphi: \Delta(Q) \rightarrow \Delta(P)$ are defined by setting $\langle\psi(s), g\rangle=\Psi g(s)$ and $\langle\varphi(t), f\rangle=\Phi f(t)$ for $s \in S, t \in T, g \in Q=C(T)$, and $f \in P=C(S)$. From the definition of the product in S and T it follows that ψ and φ, obviously continuous, are semigroup homomorphisms. For example, if $\gamma \in \Delta(M(A))$ and $x, y \in S$, then $\Psi \gamma \in \Delta(A)$ or $\Psi \gamma=0$, and in both cases $\langle\psi(x y), \gamma\rangle=\langle x y, \Psi \gamma\rangle=\langle x, \Psi \gamma\rangle\langle y, \Psi \gamma\rangle=\langle\psi(x), \gamma\rangle\langle\psi(y), \gamma\rangle$, i.e., $\psi(x y)=\psi(x) \psi(y)$. The second formula in (a) is a consequence of Lemma 5.1, and the first formula follows from the second by a simple calculation. The commutativity of the square in (e) is seen as follows: $\left\langle g, \Psi^{*} \circ \theta(x)\right\rangle=\langle\Psi g, \theta x\rangle=\langle x, \Psi g\rangle=\langle j(x), g\rangle=\langle g, \mathfrak{S} \circ j(x)\rangle$ for $x \in A$, $g \in C(T)=Q$, so that $T^{*} \circ \theta=5 \mathfrak{J} \circ j$. The lower triangle commutes because of (a). As to the upper triangle, note that if γ belongs to $\Delta(A)$, then $\Phi \gamma$ is its unique multiplicative extension to $M(A)$ (see the proof of Lemma 5.1). Therefore, $\left\langle\gamma, \Phi^{*} \circ \mathfrak{S}(L)\right\rangle=\langle\Phi \gamma, \mathfrak{S}(L)\rangle=f_{L}(\gamma)=$ $\langle\gamma, \pi(L)\rangle$, where f_{L} is the function in A^{m} corresponding to $L \in M(A)$. Since $\Delta(A)=\hat{S}$ generates $C(S)$, the equation $\Phi^{*} \circ \mathscr{S}_{2}=\pi$ follows. The second statement in (e) is also easily proved. Next we show that $\Psi^{*}(M(S))=M_{S}(T)$. Since Ψ and Φ are norm-decreasing, Ψ^{*} and Φ^{*} are so, and (e) implies that Ψ^{*} is isometric. On the other hand, Ψ^{*} is continuous from $\sigma(M(S), C(S))$ to $\sigma(M(T), C(T))$. Therefore, using the weak* compactness of $B_{r}=\{\mu \in M(S) \mid\|\mu\| \leqq r\}$, we see that $\left\{\mu \in \Psi^{*}(M(S)) \mid\|\mu\| \leqq r\right\}$ is weak* compact, hence closed for each $r \geqq 0$. The Krein-Smulian theorem [2, p. 429] then shows that $\Psi^{*}(M(S))$ is weak* closed in $M(T)$. If S (resp. T) is considered naturally embedded in $M(S)$ (resp. $M(T)$), then $\Psi^{*} \mid S=\psi$, so that $\Psi^{*}(S)=\psi(S)$. The linear combinations of the Dirac measures are weak* dense in $M(S)$. Similarly, since $\sigma\left(M_{S}(T), C(T)\right)$ and $\sigma\left(M_{S}(T), C(\psi(S))\right.$) coincide on $M_{S}(T)$, the linear span of $\psi(S)=\Psi^{*}(S)$ is $\sigma\left(M_{S}(T), C(T)\right.$)-dense in $M_{S}(T)$, which in turn is weak* closed in $M(T)$, as $\psi(S) \subset T$ is compact. From these remarks the equation $\Psi^{*}(M(S))=M_{S}(T)$ follows by the weak* continuity of Ψ^{*}. From (e) and the fact that $j(A)$ is
an ideal in $M(A)$ it follows that $\Psi^{*}\left(A_{S}\right)$ is an ideal in $\mathscr{S}(M(A))$. Since A_{S} is weak* dense in $M(S)$ [11, p. 158], it follows from what was said above that the weak* closure of $\Psi^{*}\left(A_{S}\right)$ is $M_{S}(T)=\Psi^{*}(M(S))$. By virtue of the separate weak* continuity of the convolution in $M(T)$ (Lemma 3.2), M_{S} is therefore an ideal in $M(T)$, which contains $\mathscr{E}(M(A))$ as a weak* dense subspace. Thus (d) is proved. Since multiplication in T corresponds to the convolution of Dirac measures, (b) is an immediate consequence of (d). Finally, (c) follows from the equation $\varphi(\psi \circ \varphi(t))=\varphi(t \psi(u))$, i.e., $\varphi(t)=\varphi(t) u$, since φ is injective on $\psi(S)$ and $t \psi(u) \in \psi(S)$.

Examples. The above theorem is applicable e.g. in two classical situations, where the algebra A is defined in terms of a locally compact abelian topological group G. If A is $L^{1}(G)$, the convolution algebra of Haar integrable functions on G, then as is well known [5, p. 3] the multiplier algebra $M(A)$ may be identified with the convolution algebra $M(G)$ of bounded regular Borel measures on G. In this case, S is the Bohr compactification of G and $\psi(S)$ is the kernel (i.e., minimal ideal) of T [11, p. 164].

Similarly, the theorem yields a connection between the structure semigroups of the convolution measure algebras

$$
L^{1}\left(G_{+}\right)=\left\{f \in L^{1}(G)\left|\int_{G \backslash G_{+}}\right| f(x) \mid d x=0\right\}
$$

and

$$
M\left(G_{+}\right)=\left\{\mu \in M(G)| | \mu \mid\left(G \backslash G_{+}\right)=0\right\}
$$

where G_{+}is a closed subsemigroup of G containing the neutral element of G and such that the interior of G_{+}generates G and is dense in G_{+}. For $A=L^{1}\left(G_{+}\right)$satisfies the hypotheses of the theorem (for example, S has an identity, since G_{+}may be realixed as a dense subsemigroup of S [11, p. 163]), and Birtel has shown in [1, p. 821] that $M(A)=M\left(G_{+}\right)$. In the case of $A=L^{1}\left(G_{+}\right)$(and hence if $A=$ $L^{1}(G)$) the usual order in $M(A)$ as a space of measures agrees with the order defined before Theorem 3.1, for it follows from Birtel's proof that there is a net $\left\{\mu_{o}\right\}$ of positive $\mu_{\sigma} \in L^{1}\left(G_{+}\right)$satisfying $\lim _{\sigma} \mu_{o} * \mu(f)=\mu(f)$ for all $f \in C_{0}(G), \mu \in M\left(G_{+}\right)$.

References

1. F. T. Birtel, On a commutative extension of a Banach algebra, Proc. Amer. Math. Soc., 13 (1962), 815-822.
2. N. Dunford and J. T. Schwartz, Linear Operators (Part I), Interscience, New York, 1958.
3. I. Glicksberg, Weak compactness and separate continuity, Pacific J. Math., 11 (1961), 205-214.
4. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin-GöttingenHeidelberg, 1963.
5. R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin-HeidelbergNew York, 1971.
6. J. S. Pym, Dual structures for measure algebras, Proc. London Math. Soc., (3) 19 (1969), 625-660.
7. D. E. Ramirez, The measure algebra as an operator algebra, Canad. J. Math., 20 (1968), 1391-1396.
8. J. F. Rennison, Arens products and measure algebras, J. London Math. Soc., 44 (1969), 369-377.
9. M. A. Rieffel, A characterization of commutative group algebras and measure algebras, Trans. Amer. Math. Soc., 116 (1965), 32-65.
10. S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, Berlin-Heidelberg-New York, 1971.
11. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
12. -, Convolution measure algebras with group maximal ideal spaces, Trans. Amer. Math. Soc., 128 (1967), 257-263.
13. K. Ylinen, The maximal ideal space of a Banach algebra of multipliers, Math. Scand., 27 (1970), 166-180.

Received November 8, 1972 and in revised form June 18, 1973.
University of Helsinki, Helsinki, Finland

