A NOTE ON THE CONTINUITY OF BEST POLYNOMIAL APPROXIMATIONS

S. J. POREDA

An example is given to show that while best uniform polynomial approximation in the complex plane is continuous, it is not in geneal uniformly continuous.

For a continuous complex valued function f defined on E, a compact set in the plane and $n \in \{0, 1, 2, \dots\}$, let $p_n(f, E)$ denote the polynomial of degree n of best uniform approximation to f on E and let $||f||_E$ denote the uniform norm of f on E. In [2] it was shown that for any such f and E there exists for each n and each β , $0 < \beta < 1/2$, a constant $M(n, \beta) > 0$ such that

$$||p_n(f, E) - q_n||_E \leq M(n, \beta)[||f - q_n||_E - ||f - p_n(f, E)||_E]^{\beta}$$

where q_n is any polynomial of degree n. If we in fact let $M(n, \beta)$ denote the least such constant then we ask if the sequence $\{M(n, \beta)\}_{n=0}^{\infty}$ is bounded. The purpose of this note is to show that in general it is not.

Let f(z)=1/z and $E=U=\{|z|=1\}$. Then $p_n(f,U)\equiv 0$ for $n=0,1,2,\cdots$. Now for each $k=1,2,\cdots$ and each $\beta,0<\beta<1/2$, let $\varOmega_{k,\beta}$ denote a simply connected Jordan region containing the origin such that

- 1. $\Omega_{k,\beta} \subset \{|z| < k^{\beta}\}$
- 2. $k^{\beta} \in \bar{\Omega}_{k,\beta}$
- 3. $\Omega_{k,\beta} \cap \{|z| > k(\beta-1)/\beta\} \cap \{\operatorname{Re} z \leq 0\} = \Phi$.

The region $\Omega_{k,\beta}$ can in fact be chosen to be a displaced ellipse. Futhermore, there exists a conformal map $g_{k,\beta}$ of the unit disc $\{|z| < 1\}$ onto $\Omega_{k,\beta}$ such that $g_{k,\beta}$ (0) = 0. Furthermore $g_{k,\beta}$ will be continuous in $\{|z| \le 1\}$ and map U onto the boundary of $\Omega_{k,\beta}$. As a consequence of these definitions we have that

$$||1 - g_{k,\beta}(z)/k||_{U} \le 1 + (1/k)^{1/\beta}$$

and

$$||g_{k,\beta}(z)/k||_U = k^{\beta}/k$$
.

Now there exists [1, p. 98] a polynomial p such that

$$||g_{k,\beta}(z)/z - p(z)||_{U} < k^{(\beta-1)/\beta}$$
.

Thus

$$||1/z - p(z)/k||_U \le 1 + 2(1/k)^{1/\beta}$$

and

$$||p(z)/k||_{\scriptscriptstyle U} \geq rac{k^{eta}-k^{(eta-1)/eta}}{k} = rac{k^{eta}-k^{(eta-1)/eta}}{2^{eta}} \Big(rac{2^{eta}}{k}\Big)$$
 .

Consequently, we see that for this particular choice of f and E, and for each $0<\beta<1/2$,

$$\lim_{n\to\infty} M(n,\,\beta) \ge \lim_{k\to\infty} \left(\frac{k^{\,\beta} - k^{(\beta-1)/\beta}}{2^{\beta}}\right) = \,\infty \,\,.$$

REFERENCES

- 1. Gunter Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, (1967).
- 2. S. J. Poreda, On the continuity of best polynomial approximations, Proc. Amer. Math. Soc., November, 1972.

Received September 28, 1972.

CLARK UNIVERSITY