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ON THE EXISTENCE OF SUPPORT POINTS OF
SOLID CONVEX SETS

J. T. MARTI

Let E be a separable Frέchet lattice. It is shown that
a solid convex set X with void interior in E is supported at
each of its boundary points if and only if the span of X is
not dense in E. This result then is applied to the case of
solid convex sets with void interior in real Frέchet spaces
with an unconditional Schauder basis and in the real Banach
lattice C(S), S compact Hausdorff.

1* Introduction* If E is a real Hausdorff topological vector
space and X is a convex subset of E with nonempty interior and
boundary 3Xthen, by a known theorem, every point of dX supports X,
that is, for every x e dX there exists a continuous nontrivial linear
functional f on E such that sup f(X) = f(x). However, if X has void
interior, there are examples of compact convex sets, e.g., the Hubert
cube in l2 [1, p. 160], which have boundary points that are not support
points.

The object of this note is to investigate conditions on convex sets
X with void interior in a separable real Frechet lattice E, such that
every point of dX is a support point of X A theorem obtained is
that for such sets X which are also solid, X is supported at each
boundary point if and only if the span sp X of X is not dense in E.
Moreover, if E is a real Frechet space with an unconditional basis
{xn,fn} (the sequence space s, the Banach spaces c0 and lp(l Sv<°°)
and so all separable real Hubert spaces are examples of such spaces)
and if E is equipped with the ordering induced by the basis {xn,fn},
then a solid convex set X with void interior in E is supported at each
of its boundary points if and only if X does not contain a weak order
unit of E. On the other hand, if E is the Banach lattice C(S), S
compact Hausdorff, all solid convex subsets X with void interior in E
have the property that the boundary points and the support points
of X coincide.

2* Support properties of solid convex sets with void interior*
A set X in a Prechet lattice E is said to be solid if y is in X when-
ever x is in X and \y\ ^ \x\. An element x in the positive cone of
E is said to be a weak order unit of E if y = 0 whenever y is in E
and x A \y\ = 0. For the terminology see also H. H. Schaefer [5]
or A. L. Peressini [4]. The topological boundary of X is denoted
by dX.
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THEOREM 1. Let X be a solid convex set with void interior in
a separable real Frechet lattice E. Then every x e dX supports X if
and only if sp X is not dense in E.

Proof. (Sufficiency) Let Er be the topological dual of E. If sp X
is not dense in E there is an fe E'\{0} such that f(X) = {0}. In this
case / obviously is a supporting functional of X for every x e dX.

(Necessity) Let K be the positive cone of E and if = {fe Ef:f(x) ^
0, x e K) the dual cone in E\ We define the sets Sx, x e X Π K, by

It is clear that each Sx is a σ(E', JE -̂closed set in E' which contains
0. Moreover, let

s= n s..
xeXCίK

Since E is a Frechet space there exists a countable base {Un} of
neighborhoods of 0 in E, and since E is separable there is a sequence
{Vn} of open σ(E', ^-neighborhoods oΐ 0 in Ef satisfying f|?=i Vn = {0}.
(The sequence {Vn} can, for instance, be constructed in the following
way: If {xn} is a dense set in E, let Wmn be defined by Wmn =
{fe E': \f(xn) I < 1/m}. It then follows that Γ1Ϊ.-1 Wnn = {0} since for
each / in this last intersection one has f({xn}) = {0} and hence / = 0.)
We assume now that S = {0}. Then £"\{0} = C Sand so for all m,neN
one has

ί7.0c U U°k = E'= Vm\j U CS. .

Since the polars UZ of ?/„ are σ(£", £7)-compact there is for each m
and each n in N a finite set Aww in J Π ί Γ such that

K c F . U U CiS,.

If {%} is a sequence in XΠ K such that {%} = U ^ = i 4 « we get for
all me N,

Whence

^ = fli(7- U Qt65'*) = 0 C < S * U

and

( i) ή sn = c(ϋ es.Λ - c(^\{o}) = {0}.
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Next, if d is a translation invariant metric generating the topology
of E, we define the real sequence {ak} by

ak = inf {2~k, sup {t > 0: d(0, sxk) g 2~k, s e [0, t]}} .

S i n c e X is so l id w e h a v e (2n - 1)2~ % + A ; akxk e X f o r a l l k,neN a n d
s i n c e X is c o n v e x ,

n n

XT' n rv ίθn 1 \—1O*- V 9~fc/9% 1 \O~n + krf σ> c Y~
y j {Jukthk — yώ JLj & / i CΛ \LΛ -*-/^< ^k^k ^- -*:*-
fc=l k=L

for all ne N. Since X is complete and since for n < m

Σ αjb̂ *, Σ Uk%k) ^ Σ d(0, akxk) ^ Σ 2~fc < ^ - 1 ,

k=l 1c=l / k=n + l k = n + ί

limn Σϊ=i a^̂ A exists in X and this limit is denoted by x. Since
int X = 0 and X is solid [4, Proposition 2.4.8] it follows that
Ij2x e dX and thus is a support point of X. If / is a corresponding
support functional we have f Φ 0 and 0 = /(0) ^ f(l/2x) = /(») —
f(l/2x). If {s/Λ} c X is a sequence that converges to α? in J? one
obtains f(x) ^ supn/(yn) ^/(l/2α?), and hence /(#) = 0. Now, since E
is a locally convex lattice and again since X is solid, it follows that

^ sup {/(y): y e E, 11/1 g x] £ sup/(Z) = sup/(X) = f(hε) = 0 .

Therefore, | / | e K'\{0} and | / | (a?) = 0. This shows that

S.\{0} ̂  0

Since 0 ^ αfca;4 ^ *, one has 0 ^ g(xk) ^ αj1 ί/(x) = 0, g e Ŝ , A; e N. In
view of (1) one thus obtains

and this contradiction shows that

S\{0} Φ 0 .

If / is a nonzero element of S then /(XΓΊ K) = {0}. Thus for any
a? G X we have f(x) = /(a;+) - /(α?") = 0 because a?* 6 X. Hence /(X) =
{0}, showing that spX cannot be dense in E.

Let now E be a real Frechet space with an unconditional basis
{«n,/»} I* i s known that the set K = {xe E:fn(x) ;> 0, ^6 N} is a
closed, normal, generating cone in E and equipped with K, E becomes
an order complete locally convex lattice [3, Theorem 5]. Obviously,
{xn} c K and the coefficient functional fn are positive with respect to
K. Therefore, the basis is a positive Schauder basis for E [2].
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REMARK. A slight modification of the above argument shows
that in Theorem 1 the separability of E can be replaced by the
(weaker) condition: There exists a sequence {un} in the positive cone
of E such that sp U~=i [0, un] is dense in E.

THEOREM 2. If X is a solid convex set with void interior in E
(E being specified above), then every point of dX supports X if and
only if X does not contain a weak order unit of E.

Proof. (Necessity) Let every point of dX support X and let us
assume that X contains a weak order unit x of E. Then from [3,
Proposition 11] it follows that the span of [0, x] is dense in E. Since
[0, x] c X this contradicts Theorem 1. Hence X does not contain a
weak order unit.

(Sufficiency) If X does not contain a weak order unit of E,
suppose that sup fn(X) > 0, n e N. Then for every n there is a yn e X
such that sup/w(X) ^ 2fn(yn). Since X is solid this yields for all n
that supfn(X)xn^2\yn\; whence l/2suj>fn(X)xne X. In the same
way as in the proof of the necessity part of the preceding theorem we
can now construct an element xe X ΓΊ K such that x = limw Σ?= 1 α ^ ,
where a{ > 0, ie N. If ye K\{0} then there must be a positive integer
n such that fn(y) > 0. If ze K is given by z = inf {anf fn(y)}xn it fol-
lows that z Φ 0 and z — x /\y, i.e., x is a weak order unit of E in X.
By this contradiction to our assumption there is an neN such that
sup/^(X) = 0. Therefore, spX cannot be dense in E and an applica-
tion of Theorem 1 finally completes the proof.

Concerning the real Banach lattice C(S), S compact Hausdorff,
it is clear that there can exist solid subsets X of C(S) with void
interior containing a weak order unit of C(S) and such that every
boundary point of X is a support point of X. For instance, take
X = {ye C[0, 1]: | y | ^ x}, where x, given by x(s) — s, se [0, 1], is a
weak order unit of C[0, 1]. Therefore, that X contains no weak
order unit of C(S) is not a necessary condition for X to be supported
at each boundary point, as is also seen by the following theorem:

THEOREM 3. If X is a convex solid set with void interior in
C(S) then every boundary point of X supports X.

Proof. We assume that sp X is dense in C(S). If /, is the point
evaluation functional of a general point s of S, this implies that
sup/s(X) > 0, seS. In this case, since X is solid, there is for
every se S an x8^0 in X such that xs(s)>0. Hence for every seS
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there is an open neighborhood V8 of s in S such that inf xs(Vs) > 0.
Since S is compact and {F/.seS} is an open covering of S there is
a finite subcovering {Vsil), •••, Vs{m)} for S. Taking x = m"1 Σ™=1 x s U )

it is clear that x is in X since X is convex, and that

inf x(S) ^ m"1 inf ̂ m inf,xs{n)(Vs{n)) > 0 .

If U is the unit ball of C(S) we obtain (inf x(S)) \y\^x,yeU, which,
since X is solid, implies that (inf x{S))Ua X. This contradiction shows
that s p X ^ C(S) and the result follows in the same way as in the
sufficiency part of the proof of Theorem 1.
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