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OSCILLATION AND NONOSCILLATION CRITERIA
FOR SOME SELF-ADJOINT EVEN ORDER

LINEAR DIFFERENTIAL OPERATORS

ROGER T. LEWIS

Oscillation and nonoscillation results are presented for
the operator

L2ny = ± {-ιy-«{vuy<n-kψ-k)

where po(x) > 0 on (0, oo) and for Jc = 0,1, , n, ph is a real-
valued, n — k times differentiate function on (0, oo). Also,
y is an element of the set of all real-valued, 2n — fold con-
tinuously differentiate, finite functions on (0, oo).

In particular, a nonoscillation result is given for L2n

without sign restrictions on the coefficients. Oscillation re-
sults are given for L4 without the requirement that px be
negative for large x. Finally, the oscillation of

L2ny = (~l)n (ry™)w + py

is considered for τ(x) not necessarily bounded.

The oscillatory behavior of L4 has been considered by Leighton
and Nehari [8], Barrett [1], and Hinton [4]. In general, L2n has been
considered by Glazman [2], Hinton [5], Hunt [6], and Hunt and
Namboodiri [7].

DEFINITION 0.1. The operator L2n is called oscillatory on [a, b]
provided there is a function yy y ^ 0, and numbers c and d for which
a ^ c < d g b such that L2ny = 0 and

yM(c) = 0 = y{k)(d) for k = 0, 1, - , n - 1 .

Otherwise, L2% is called nonoscίllatory on [α, b]. The operator L2n is
called oscillatory on [α, oo) if for any given c ;> a there is a d > c
such that L2n is oscillatory on [c, d].

DEFINITION 0.2. Given a positive integer n and a number a define
®w(6) for all b > a to be the set of all real-valued functions y with
the following properties:

(a) y{k) is absolutely continuous on [α, b] for k — 0, 1, , n — 1,
(b) y{n) is essentially bounded on [α, 6], and
(c) y{k)(a) = 0 = y{k)(b) for & = 0, 1, -. , n - 1.

For i/ e ©n(δ) define
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which is called the quadratic functional for L2n.
The following theorem has provided the primary motivation for

the results which are to follow.

THEOREM 0.1 (Reid [9]). The following two statements are
equivalent.

(i) The operator L2n is nonoscillatory on [a, b].
(ii) // yeS)n(b) and y^O then Ib(y) > 0.

Consequently, in order to show that L2n is oscillatory on (0, °o),
given any a > 0, it will suffice to construct B, ye S)Λ(δ) for some b >
a for which Ib(y) is not positive and | / ί 0. This is the technique of
proof for all of the oscillation theorems which follow.

This method of proof is especially conducive to oscillation theorems

which require that integral conditions be met by the coefficients of

L2n. For example, Glazman [2, p. 104] showed that (-ΐ)ny{2%) + py

p — — oo (see Theorem 3.2).

Initially, the construction of y is suggested by the conditions of

the hypothesis on the coefficients of L2n and the corresponding quad-

ratic formula. For example, to establish the above result, Glazman

let y == 1 over the major portion of the interval [a, b]. To show that

q = — oo (see Theorem 2.2) the author

let y(x) = x — a over a portion of [a, b]. Next, we construct y over
the remaining portion of [a, b] to insure that y e ®%(fe) and the integral
of pn~k"y(n~k)2 is bounded above for k = 0, 1, , n independent of b.

For other proofs using this method the reader should consult
Glazman [2, pp. 95-105] and Hinton [4].

l The nonoscillation of L2n.

LEMMA 1.1 (Glazman [2, p. 83]).
(i) If g(a) — 0 for some a > 0 and g' is continuous on [a, 6], then

2dxχ-2™(g(x))2dx ^ ( 2 — Y [bχ-2m+2(g'(x))
\ 2 m — 1 / Jα

for m a positive integer. Moreover, if g ^ 0 on [a, 6], the above in-
equality is strict.

(ii) If g^0, gim) is continuous on [a, b], and g(a)= =g(m~1)(a) = 0,
then

— ^- - Y
3 (2m — 1)/
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A well known result in oscillation theory is a sufficient condition
for the nonoscillation of L2 due to Hille [3]. A generalization of this
result for L2n is given in the next theorem.

THEOREM 1.1. For L2n defined above with pQ(x) = 1 let P°k(x) =
pk(x) and

P?(x) =

for m an integer greater than or equal to one when

-oo < \^P™~\t)dt < oo .

If for k = 1, - f n and x ^ a we have — oo < I P ™ < oo for
Ja

m = 0, 1, •••, k - 1, xk\Pk\ ^ ak, and Σ^t=ιdkMk ^ 1 where
Mk — k\ 24k~1J(2k)l, then L2n is nonoscillatory on [α, b] for all b > α.

Proof. The proof is given only for n > 1. Suppose L2n is oscil-
latory on [a, 6]. Then, there are numbers c and d and a function /̂
which is not identically zero such that L2ny = 0 and 2/fA;)(c) = 0 =
y{k){d) for & = 0, 1, , n - 1. Since (L2^)?/ = 0 then

= (-i)n\dy{2n)y = \d[y{nΎ ,
J c J c

by integrating by parts n times. By integrating by parts n — k
times we find that

However, by integrating by parts k times and using Leibniz's rule
we obtain
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l.3 £1-3-1))]

by Lemma 1.1 and the Cauchy inequality where

c 2"+1

k 1-3 (2k- 1)

έl W V [1-3 (2i - 1)][1 3 (2(k - i) - 1)]

A simplification shows that

Since

o = (i - ir = Σ (-Df f) = Σ (t) - Σ (2ι

2k_ 0 ,

then

Σ (2 i

2ϊ i)] - S gf) •

Therefore,

Ck = [p-WyiZh)! = Mk

Consequently,

= - Σ [ptW-'Ύ < Σ α,M
k~\ J c fc=l

which is a contradiction. Therefore, L2n is nonoscillatory on [α, δ].
It will be useful in applying Theorem 1.1 to note that Mk+1 =

SMk/(2k + 1).
For the remainder of this paper we will assume that pk(x) is

identically zero for k = 1 to n — 2 and will denote ί>o(#), Λ-i(#), and
Pn(%) by r(a?), g(α ), and p(x) respectively. Similarly, P%{x) and P£-i(#)
will be denoted by Pk(x) and QA(α;) respectively.

If p(x) = kx~\ r Ξ= 1, and ? Ξ O , then L4?/ = 0 is the familiar Euler
equation. In this case, L4 is oscillatory if and only if k < —9/16.
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Also, k < -9/16 and p(x) = kx~* implies x2P2(x) < -3/32. Theorem 1.1
shows that L4y = yiv + py is nonoscillatory when x2\ P2(x) | ^ 3/32.

2 The oscillation of L4* Using Theorem 0.1, Hinton [4]

S oo Co*

1/r = oo, gr <; 0, and I p = — co.
The same technique yields the following results.

THEOREM 2.1. Suppose that r(x) ^ N, q(x) ^ M and I p = — oo

/or a; > 0, then L±y = (ryft)" — (qy')f + p?/ is oscillatory on (0, oo).

THEOREM 2.2. // 0 < r(a ) ^ M, [°°q = - oo, αwd ί°°α;2| p(a ) | < ^

then L4y = {ry")tf — (<^/')' + p7/ is oscillatory on (0, oo).

Proof. .

ί°

y(χ) = <

ζ(x-

x — a

-ξ(x

bλ ~ o

-ξ(χ

-ξ'(b

ξ(χ-

It is easy to

Let ξ(x) = x

a)

- 1 / 2

- h) + bί-

,

- h) + b,-

t - b3)(x - b

b)

show that

72.

a

a

0 +

Define y(x) as follows:

x <

a :S

α +

δi ^
6 2 ^

&! — α — ί ( 6 4 — 63) bi S

α

X

1

X

ίB

0!

X

X

X

<

VII

<

<

<

<

<

•

a + 1

a; <b

62 =

65

5

<16ikf \~x2\p\
Ja

if we require that 64 — δ3 = b — δ5 ^ 1. There is a number c such that

1 + 16Af + +
for all a? ̂  c.

q(t)dt. Since Γ^α;) tends to — 00 as x tends to
c

there is a number \ which is the last zero of Y^x). Hence,

HvΎlll - 2\\'y"Yι < 0
J 6j

since ^(60 = 0 = 2/'(&2), y" = - 1 , j / ' ^ 0, and Y, < 0 on (6lf δ j .

and let 63 be the last zero of Y2. Pick 64 so
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that -1/2 ̂  Y2(x) £ 0 on [b3, b4] and δ4 - b3 ̂  1. Since / = 0 on

ft, δj, - 1 ̂  1/' ̂  0 on ft, 6], Γf ^ 0 on ft, ^) , Γ W ) 2 < 0 we have
that

J&i J&3

 3 J 6 3

Consequently,

h{y) = \a

r(y"y + v(y'y +

<16ΛΓ + (°V |p | +
Ja

which completes the proof.
We now know that L4 is oscillatory on (0, oo) is for r bounded

S oo r oo

p = — oo and q <̂  0 or 1 q — — oo and p ^ 0. These facts

suggest the results of the following theorem.

p — — co, \ g = -oo, cmώ 0 < r(x) ̂  M ίftew

L4 is oscillatory on (0, co).

Proof. Except for some changes in the parameters we may define
y(x) as in the proof of Theorem 2.2. As before, if b4 — b3 — b6 — b5 ^
1 then \br(y")2£ 1QM.

Ja

There is a number c such that

1 + 16M + \a+1q(y'Y + Γ q < 0

for all x ^ c. Let Γ(x) = 1 q(t)dt and let 6X be the last zero of Y(x).
Jc

Integrating by parts we obtain the fact that
')*= -2[ y'y'Ύ

)bx

since Y{bλ) = 0 - i/'(6). Since 3/' ̂  0, /̂" = - 1 , and Y^O on ft, δ2]
then

r<-2Γt fyr.
Jδ2

S i n c e 7/" = 0 o n [ δ 2 , δ 3 ] a n d ft, δ 5 ] , ί / ' ^ 0 o n [ δ 5 , δ ] , y " - I o n [ δ 5 , δ ] ,
a n d Y < 0 o n [ δ 5 , δ ] , t h e n
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— 91 U'II'Ύ <^ — 91 %/?/'Y" — 91 %/VΔ\ y y J.<^ — Δ \ y y i — Δ\ y I ,

But, on [63, 64], y' <Ξ 1. Consequently,

Γff(y/)1<2(Vr^2p|r|.
J δ̂  J δ3 J 63

S oo

p — — oo, there is a number d> b2 such that for a? ̂  d

Γ W + (6, - aγ[ p<0.
U J&2

Let W(x) = \ p and 63 J> d be the last zero of W. Hence,

py*= - 2 Γ yy'W(t)dt < 0 .

227

Let iV == max {| Y(x) \:xe [63, 63 + 1]} which we may assume is
greater than or equal to one. Pick 64 so that 64 — δ3 = 1/(2JV). Con-
sequently,

Γ q(vΎ < 1

Pick 65 so t h a t \imx-+bδ- y(x) — (64 — 63)
2/2 and pick 6 so t h a t 6 — 65 =

64 — 63. We now have t h a t

Ib(y) < 16ΛΓ
Γα+1 Γx Γ

\ q{yf + \ Q + 1 + \
Ja Ja+l J

9 + 1 + \hpy2 + (^(δ, - a)2p < 0 .
α+l Ja Jb2

THEOREM 2.4. If 0 < r(x) ^ M, -00 < p < 00, 1 p x = - 00,

g I a; x < °°, απd g(α ) —> 0 as a; —> 00 ί/^e^ L4 is oscillatory on (0, 00).

Proo/. Let ξ(x) = -(3a;3 - 5a;2)/2, α(a ) = l/aΓ, and /3(a;) = x\ Let

0 a; < a

ζ{x — a) a ^ x < α + 1

α(# — α) α + l ^ a ; < δ 1

— β{x — 62) + a(6 x — a) + β{bt — 62) δ2 ̂  a? < δ2

^(61 — α) + ^(δ x — δ2) δ2 ̂  a; < δ3

~β(x - δ3) + y(b2) h^x <h

a(b — x) δ4 ̂  a? < δ5

ί(δ — a;) δ5 ̂  x < δ

0 6 < x .
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Given δx and δ3 we choose δ4, δ5, and δ so that δ4 — δ3 = δ2 — δx, δ5 —
δ4 = δi — (α + 1), and δ = δ5 + 1. Actually, only bt and δ3 will be
chosen for reasons other than symmetry and the continuity of y and y'.

First, note that since we are going to pick bίf , δ5 so that
2/eS)2(δ) then

( V - -Piiflί + [PW = \*Pι(vΎ
Ja Ja Ja

Hence,

Calculations show that

\hM(y")* ^ 2 + i-

since yf being continuous requires that 0 < δ2 — δx = δ4 — δ3 ^ 1/4.
Since limbos ?(^) = 0 and q is continuous then q is bounded by

some number, B, on [α, <*>). Let

A - 4

There is a number c so that

M, + 2 + £ + W ) 2 +

+ A + B + (a + 1) (~ x-1! q(x) | ^ - [" P

and I P^a;) | ^ 1 for all x ^ c since P1 —> 0 as a? —* oo.
PSftdt and δx be the last zero of R(x). Pick δ2 so

c

that 1/(21/6! — α) = — 2(δx — δ2) which insures that yr is continuous
at bίm We now have that

1 q(y'Y ^ \h (x - αΠίl - Γ ^ - αΓ^lgl
α+l Jα+1 Jα+1

< (α + 1)P χ-γ\q\ < (α
J+

(
Jα+l

and

[Φ - b2γ < B
J&!

since δ2 — bt ^ 1/4. Also,
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W ) ' - 2yy'R\l* - 2Ϋ\{yJ + yy"]R £ -2 \\yJR
hλ hi

S 2Γ1 j>,(«)! ( V ) ' < 1
J&l J61

since y\b2) = 0 = Rfa), 2/" ^ 0, 3/ ^ 0, and i? ^ 0 on [blf δ j . Pick b3

so that I P^s) | ^ [6y(δ2)(62 - α)]"1 and | q(x) \ ̂  4(^ - a - I)" 1 for α? ^
fe3. Consequently,

f 6 it fδ

J &3 J &3

s i n c e \y\^k y(b2), \ y'\ ^ 3, a n d b — bd = b2 — a. A l s o ,

[ q(y'Y £ B\bU(x - &3)
2 + (l/4)ί&5(δ6 - x ) 1 φ ) |

+ s(* [5(&, - x) - 9(66 - x)
Jb5

In conclusion,

Ib(y) ^ Mi + \ q(y')2 + (a + 1)1 α;"1! g | + 5 + A
Jσ Jα+1

+ p ' p ^ 2 ) ' + \h Pi + l + l ^ o .
Ja Jα+1

The conditions of Theorem 2.4, 1 | q \/x < co and lim^^ g(α?) = 0,

S CO

I q I < co and g bounded, to
obtain the same result with a similar proof.

THEOREM 2.5. Suppose 0 < r(x) ^ M, \ p < co, \ p x < oo, and

P^x) S Cx~* for x > 0. 1/ lim^oo inf x2P2(x) < — 7—ikΓ ί/̂ β^ L4y =

(ry")n + py is oscillatory on (0, co).

Proof. We will use the fact that for α > 0

for 2/ given below. Let ζ(x) = -(3a;3 - 5α;2)/2, α(a ) = T/^", and β{x) =
α;2. For 0 < μ < l , 0 < σ ^ l , /θ>0, and 0 < 7 ^ 1 define 2/ as follows:



230

y(χ) =(

Ό

a{χ-
%H
-β{x

βip) +

-β{x

-27(a;

β{x-

,0

- * )
— μ] )

- μp \
-μ\)

- (R + σ)) H

- N) + y(R

-N-Ύ) +

b)

Calculations show that

r(y"
Jμp

)2

ROGER T.

h β(σ) + a

)

+ o)
y(R + σ)

x < μp

Ng,x <N+<y

i\Γ+7^«<6

b - Ί ̂ x <b

6 ^ α .

- μ) + 87JW - μ)]

Since

liminf aj ΓPx < -7—Af,
Ja; 32

there is a δ > 0 and a sequence <pfc> —> oo for which

Pick j« so close to zero that 7(l/32)Λf(l - μ)~2 = 7(l/32)Λf + 7δ/8.
There is a positive integer N so large that μft. > α,
δ/8, and

32

for all k ̂  N. Let p = pN.
Given R, we will pick σ so that 2/'(#) is continuous at x = R. There-

fore,

σ = l/(4Vp[l-μ](R-μp)).

Since σ —> 0 as R —+ oo and P t is bounded on [α, oo) pick JS so large that
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a < (δ/8)/μMp\l - μ)] ,

and σ\ P1 | < S/(8p*) for all x ^ R. On [R, R + σ],

0 < y(x) £ a((x - μp)l(p[l - μ]))

and

0 ^ y'(x) £Ξ a'((x - μp)/(p[l - μ))) l/(p[l - μ])

which implies that 0 ^ 2yy' S V(p[l — μ]) on [R, R + σ].
On [,«ft p] 0 ^ 2iw' < 3/(/0[l - ,«])• Hence,

μP

3C(p[l -

where Pf(x) = Px(x) when P^x) ^ 0 and zero otherwise.
On [N, b] 0 ^ 2/(#) ̂  τ/(i2 + σ) and ] i/' ] ̂  27. Since y is linear on

[i\Γ + 7, δ — 7] we have that

[y(R + σ) - 272]/[6 - iSΓ - 27] = 27

or

6 — iSΓ = [i/(i? + σ)]/(27) + 7 .

Since P^a;) —> 0 as x —> co we can pick N so large that

I Px I £ (d/8)/(2[y(R + σ)]ψ[l - μ])

for all x^N. Pick 7 so small that 2y2[y(R + cr)]"1 < 1 and

SMr^fl - ^] < 3/8 .

Pick b so that

lim jy(x) = 72 .

We now have that

^ 27(6 - N) (δ/S)/(y(R + σ)p*[l - μ[)

= 27([l/(Λ + σ)/(27)I + y) (δ/S)/(y(R + σψ[l - μ])

= (S/8)I(PS[1 - μ]) + 27\δ/8)/(y(R + σ)p*[l - μ])

- μ])
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Consequently,

P, + 35/8)

Hence,

Uv) = \"r(y'Ύ
Ja

< (P3[ί ~ μ])-{l^-M + 7S/8 + δ/8 + δ/S + 8/2 + A*Pλ ^ 0
\ oΔ JP /

which completes the proof.

3. The oscillation of L2ny = (-ΐ)n(ry{n)Yn) + py.

THEOREM 3.1. / / p(x) ^ 0, 0 < r(x) ^ Mxa for a < 2n - 1, and

lim sup α8*-1-

- 1)!] Σ (-l)*- 1 ^ I I)(2Λ - fc)"1

then L2ny = (—l)%(r^/(M))(w) + p(#)2/ iβ oscillatory on (0, oo).

Proof. Let f(α;) be the polynomial of degree 2w — 1 such that
ξ(0) = ξtoφ) = f (*>(1) - 0 for k = 1, 2, . ., n - 1 and ξ(l) = 1. Given
α > 0, define 2/(#) as follows:

y(x) =

0 x < μp

ξ([x - μp]/[p(l - μ)]) μp^x<p

1 p^x<R

ξ([vB - x]/[B(v - 1)]) R^x<vR

It can be shown that [(ξ{n)(x))2dx = A2

n.
Jo

A result due to Glazman [2, p. 100] considers the case when a ^
0. Consequently, we will consider here only the case in which a > 0.

Since

"Rr{ywγ S Mpλ" {ywY + M(vR)a[B(y<»y

μp Jμp JR

= MAi/ip**-1-^! - μf1"1]
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and p(x) ^ 0, then

iΛv) = \* [r(y{n)f + py2]
J μp

^ 1 ( MAj ,. MAW-1- o — \R\P\) .
— Qin-l-a \Π β)271"1 _2J2»-1—α/yl-α/(2Λ—l) y-a/(2«-l)\2»—1 " )p J '

There is a sequence {pk} —> oo and a number δ > 0 such that

lim pt~l-a\° I p I ̂  ikΓA2

n + δ .

Choose ^ > 0 so small that

MAII\{1 - ^)2W-1] < MAI + 8/4 .

There is a number if so that μpk > a and

for all k^> K. Set ^ = pκ% Choose R so large that

(**-1-"\R\p\ > MAI + δ/2.
JP

Choose v > 1 so large that

We now have that I»R{y) < 0 which implies that L2n is oscillatory
on (0, oo).

THEOREM 3.2. If there are numbers M and a such that 0 < r(x) ^
Mxa and if for some v > 1 and An as in Theorem 3.1

— — oo

where K= MA2

nv
a/(v — I)2™-1 ί^e^ L2%^/ = (—l)n(ry { n )) + p^/ is oscillatory

on (0, oo).

Proof. For μ, />, i2, and v below, let y(x) be as in the proof of
Theorem 3.1. Pick μ and v so that 0 < μ < 1 and v > 1. Pick p so
large that μp^>a. As in the proof of Theorem 3.1

There is a number c such that
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S x

p . S i n c e T(x) —• — oo a s a ? — * o o , t h e r e

is a last zero of T(x). Let i? be the last zero of T(x). This implies
that

[BPV2= -2[Ryy'T(x)<0 .
JR JR

Since

S vR Cp ΓR

py2 <\ py2 + \ v
μp Jμp Jp

then IR{y) < 0.
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