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POWER INVARIANT RINGS

JOONG-HO KIM

A ring A is called power invariant if whenever B is a
ring such that the formal power series rings A[[X|] and J5[[Z]]
are isomorphic, then A and B are isomorphic. A ring A is
said to be strongly power invariant if whenever B is a ring
and φ is an isomorphism of A[[X]] onto J5[[X|], then there
exists a JS-automorphism f of B[[X]] such that f(X) = φ(X).
Strongly power invariant rings are power invariant. For any
commutative ring A, A/J(A)n is strongly power invariant,
where J(A) is the Jacobson radical of A, and n is any posi-
tive integer. A left or right Artinian ring is strongly power
invariant. If A is a left or right Noetherian ring, then A[t],
the polynomial ring in an indeterminate t over A, is strongly
power invariant.

Introduction* Coleman and Enochs [2] raised the following ques-
tion: Can there be nonisomorphic rings A and B whose polynomial
rings A[X] and B[X] are isomorphic? Recently Hochster [4] answered
this question in the affirmative. The analogous question about a
commutative formal power series ring was raised by O'Malley [7]:
If A[[X]] = i?[[X]], must A ~ J5? We know no counterexamples.

In this paper all rings are assumed to have identity elements.
The Jacobson radical and the prime radical (the intersection of all
prime ideals) of a ring A will be denoted by J(A) and rad(A), re-
spectively. Let ^.[[X]] be the formal power series ring in a com-
mutative indeterminate X over a ring A, and let β be a central
element of A[[X]]. Then (βn) will denote the ideal of A[[X]] gener-
ated by βn for a nonnegative integer n, and (A[[JΓ|], (/9)) denotes
the topological ring A[[X]] with the (/3)-adic topology. It is well
known that (A[[X]], (/?)) is Hausdorff if and only if f)~=i (βn) = (0).
The (/S)-adic topology is metrizable in the obvious way, and we say that
(A[[X]], (/9)) is complete if each Cauchy sequence of -A[[X]] converges
in A[[X]]. Then clearly (A[[X|], (X)) is a complete Hausdorff space.

Extending the terminology used in [2], O'Malley [7] defined
"power invariant ring" and "strongly power invariant ring" as follows:
A ring A is power invariant if whenever B is a ring such that
A[[X]] = J3[[-3Γ]], then A ~ B. A ring A is said to be strongly power
invariant if whenever B is a ring and φ is an isomorphism of A[[X]]
onto J5[[-SΓ]], then there exists a ^automorphism ψ of i?[[X]] such
that ψ(X) = φ(X).

Let A be a strongly power invariant ring and let φ be an iso-
morphism of A[-[X]] onto 5[[X]]. Then there exists a J5-automorphism
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ψ of J5[[X]] such that ψ(X) — φ{X). Then ψ~ιφ is an isomorphism
of A[[X]] onto B[[X]] such that (^φ){X) = X. Therefore, A s
•̂[[-XΊl/CX") = B[[X]]/(X) = J5. Thus a strongly power invariant ring

is power invariant.
In this paper we attempt to impose conditions on a ring A so

that A[X] ~ B[[X]] implies A ~ B.

l Strongly power invariant rings* The following theorem ex-
tends Theorem (4.5) in [8].

THEOREM 1.1. Let B be a ring and β = Σ£=oδi-X"% un element
of B[[X]]. Then the following statements are equivalent:

(1) bi is central for each i, bt is a unit, and (J5[[X]], (β)) is a
complete Hausdorff space.

(2) There exists a B-automorphism of ψ of B[[X]] such that
= β.

Proof. Suppose that (2) holds. Since (£[[X]], (X)) is a complete
Hausdorff space and ψ is a uniformly bicontinuous mapping of
(B[[X]]f (X)) onto (B[[X]]f <β)), (B[[X]]9 (β)) is a complete Hausdorff
space. Since X commutes with every element of B, β commutes with
any element of B and therefore bi is central for each i. Let C be
the center of B. Then C[[X]] is the center of B[[X]] and hence
^(C[[X]]) = C[[X]]. Then ψ induces the C-automorphism of C[[X]]
which maps X onto β. Therefore, by Theorem (4.5) in [8], bλ is a
unit. Thus (2) implies (1).

Suppose that (1) holds. Since (2?[[X]], (β)) is a complete Hausdorff
space, there is a 2?-endomorphism ψ of i?[[X]] such that ψ(X) = β.
This comes from the same argument as the commutative case; namely
(2.2) in [8]. Since bi is central for each i, that ψ is a J?-automo-
rphism, also follows from the commutative argument; namely Lemma
(4.2) and Corollary (4.4) in [8]. This completes the proof.

Let φ be an isomorphism of A[[X]] onto i?[[X]] such that φ(X) =
β = ΣΓ=o btX\ By similar argument as in the proof of Theorem 1.1,
we see that bt is central in B for each i and (i?[[X]], (β)) is a com-
plete Hausdorff space. Therefore, by Theorem 1.1, we see that a
ring A is strongly power invariant if and only if whenever B is a
ring and φ is an isomorphism of A[[X]] onto ί?[[X]] such that φ(X) =
Σ̂ Lo biX\ then bt is a unit.

The following lemma has appeared as Result 4.3 in [7] for the
commutative case.

LEMMA 1.2. For any ring A, A/J(A) is strongly power invariant.
In particular, if A is a semisimple ring then A is strongly power
invariant.
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Proof. Let A be a semisimple. To prove this lemma, it suffices
to show that A is strongly power invariant. Let B be a ring such
that there is an isomorphism ψ of A[[X]] onto J5[[X]]. Let φ(X) =
ΣΓ=o kX*. Since J(A) = (0), it follows that J(A[[X]]) = (X), and

φ(J(A[[X]})) = φ((X)) = (φ(X)) = φ(X) B[[X]] = J(B[[X]]) .

Clearly XeJ(B[[X]]), and so there exists Σ?=* CiX* e B[[X]] such that
toeiX

i = X; i.e., (ΣΓ=o W (ΣΓ=o ̂ JF) - X. Then 60̂  +
6̂ 0 = 1. But bQeJ(B), so 1 — 6<A is a unit. Therefore, 6jC0 is a unit,
and so bλ is a unit. Hence A is strongly power invariant.

THEOREM 1.3. If A is a commutative ring, then for any positive
integer n, A/J(A)n is strongly power invariant.

Proof. Let A be a commutative ring such that J(A) is nilpotent.
To prove this theorem, it suffices to show that A is strongly power
invariant. Let B be a ring such that there is an isomorphism φ of
A[[X]] onto B[[X]], and let φ(X) = β = ΣΓ=o b,X\ Then clearly B is
commutative. Let N be the ideal of nilpotent elements of B, and
let {P7} be the collection of prime ideals of B. Then N = f\r Pr, and
for each 7, Pr[[X]] is a prime ideal of 2?[[X]]. Therefore, the ideal
of nilpotent elements of J3[[X]] is a subset of JV[[X]]. Note that
iV[[X]] is not necessarily the ideal of nilpotent elements of I?[[X]].
Since J(A) is nilpotent, J(A)[[X]] is the ideal of nilpotent elements
of A[[X]]. Therefore, φ(J(A)[[X]]) s N[[X]]. In order to show the
opposite inclusion, let g — ΣΓ-o^X^e 7ST[[X]]; gτeN for each i, and
let ^"^X) = α = ΣΓ̂ o diX*, a, e A. Then φ~\g) - ΣΓ=o Φ'ι{Qi)a\ and
Φ~\gτ) is a nilpotent element of A[[X]] for each i. Note that aoeJ(A)
i.e., α0 is nilpotent, and Φ~\gi)eJ(A)[[X]]. Expanding ΣS=o^(^α*
in powers of X, we see that the coefficient of X* is an element of
J(A) for each i since α0 is nilpotent. Thus Φ~\g) e J(A)[[X]]. There-
fore, we get 0(J(A))[[X]] = iV[[X]]. Consider the isomorphism φ:
(A/J(A))[[X]]^(B/N)[[X]] given by

where the middle isomorphism is induced by φ and others are the
obvious ones. Then it follows that φ{X) = ΣΓ=o bX\ where b% denotes
the coset bz + N in B/N. Since A/J(A) is strongly power invariant,
bλ is a unit in B/N. But N C J(B) so bλ is a unit in B. Thus A is
strongly power invariant. This completes the proof.

COROLLARY 1.4. Let A be a ring and C, the center of A. If
J(C) is nilpotent, then A is strongly power invariant. In particular,
if C is a Artinian ring, then A is strongly power invariant.
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Proof. Let B be a ring such that there is an isomorphism φ of
A[[X]] onto B[[X]], and let φ(X) = ΣΓ=o btX*. If JD denotes the
center of B, Φ(C[[X]]) = Z?[[X]]. But by Theorem 1.3, C is strongly
power invariant. Therefore, bx is a unit and so A is strongly power
invariant.

It is well known that the prime radical of a ring A, denoted by
rad (A), is the intersection of all prime ideals of A, and also it is the
ideal of all strongly nilpotent elements of A. (P. 55-56 in [6].)
Clearly, every strongly nilpotent element is nilpotent. In particular,
if A is commutative, then every nilpotent element is strongly nilpotent.
Note that if A is a commutative Noetherian ring, and N is the ideal
of nilpotent elements of A, then iVΊfX]] is the ideal of nilpotent
elements of A[[X]] [3]. The following lemma extends this statement
to the noncommutative case.

LEMMA 1.5. If A is a left or right Noetherian ring, then
nd(A[[X])) =τ*d(A)[[X]].

Proof. We show that if P is a prime ideal of A, then P[[X]] is
a prime ideal of A[[X]]. Suppose that P is a prime ideal of A and
P[[X]] is not a prime ideal of A[[X]]. Then there exist/ = ΣiT-ofiX*
and g = Σ^oQiXi in A[[X]] such that f A[[X]] - g Q P[[X]] but
fiP[[X)] and gίP[[X]]. Let m be the smallest integer such that
/ » ί P , and let n be the smallest integer such that gn$P. Since
f'A[[X]].g s P[[X]],f-a g belongs to P[[X]] for any element a of A.
Expanding f-a-g in powers of X, we see that the coefficient of Xm+n

is Σi?+£*fi(i9s which is in P. But ΣΓ-ί^o/iα^ - / m α ^ e P , so /mαβrn

must be in P. Therefore, /mA#% £ P, but P is a prime ideal of A;
so fmeP or #„ e P. This is a contradiction to our choice of m and
w. Hence P[[X]] is a prime ideal of A[[X]]. Therefore, it follows
that rad(A[[X]]) £ rad(A)[[X]]. To show the opposite inclusion, we
let ΣΓ=oαiX*erad(A)[[X]]. Then each at is strongly nilpotent. Let
21 be the ideal of A generated by the set of all α/s. Then clearly
§1 <ΞΞ rad (A); therefore, SI is a nil ideal of A. But since A is left or
right Noetherian, 51 is nilpotent. Thus Σjΐ^a^ e rad (A[[Z]]). There-
fore, rad (A[[X]]) = rad

THEOREM 1.6. Let A be a left or right Noetherian ring and let
N = rad (A). Then A is strongly power invariant if A/N is strongly
power invariant.

Proof. Let B be a ring such that there is an isomorphism φ of
A[[X]] onto B[[X]], and let M - rad (JS). Since A is left (or right)
Noetherian, A[[X]] is left (or right) Noetherian. Then B[[X]] is left
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(or right) Noetherian, and therefore, B is left (or right) Noetherian.
So rad (S[[X]]) = M[[X]] (by Lemma 1.5). From the invariance of
the prime radical under isomorphism, we have that (̂JV[[X]]) =
Λf[[X]]. Write Φ(X) = Σ*7=o kX*; bteB. Consider the isomorphism,
φ: (A/N)[[X]] -> (BJM)[[X]] given by

where the middle isomorphism is induced by φ and the others are the
obvious ones. Since AjN is strongly power invariant, we can show
that δj. is a unit of B by the same argument as in the proof of
Theorem 1.3. Thus A is a strongly power invariant ring.

COROLLARY 1.7. // A is a left or right Noetherian ring such
that J(A) is nil, then A is strongly power invariant.

Proof. Clearly J(A) is nilpotent. So every element of J(A) is
strongly nilpotent. Therefore, J(A) = rad (A). By Lemma 1.2 and
Theorem 1.6, A is strongly power invariant.

COROLLARY 1.8. A left or right Artinian ring is strongly power
invariant.

COROLLARY 1.9. If A is a left or right Noetherian ring and if
A[t] is the polynomial ring in a commutative indeterminate t over
Ay then A[t] is strongly power invariant.

Proof. It is well known that for any ring A, J(A[t]) = N[t] holds,
where N = J(A[t]) f] A and N is a nil ideal in A [1]. Since A is left
(or right) Noetherian, N is nilpotent and A[t] is left (or right) Noe-
therian. Thus J(A[t]) = N[t] is a nilpotent ideal in A[t]. Therefore,
by Corollary 1.7, A[t] is strongly power invariant.

2* Perfect power invariant rings* The following proposition
extends Theorem 3.1 in [7].

PROPOSITION 2.1. Let A and B be rings and suppose that φ is
an isomorphism of A[[X]] onto B[[X]]. If φ{A) §Ξ B, then φ(A) = B.

Proof. Let φ(X) = β = ΣΓ=o hX*; b, e B. Then b, is central for
each i and (I?[[X]], (β)) is a complete Hausdorff space. Then there
exists a 5-endomorphism ψ of, I?[[X]] into 1?[[X]] such that ψ(X) -
β. Then by hypothesis, we have
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Therefore, B[[β\\ = B[[X]], which implies ψ is onto. Now let B be
J?/(δ2) and let 6 = 6 + (δj for j>e 5. Then _X->ΣΓ=o δ X* induces a
surjective S-endomorphism of i?[[X]]. But b1 is 0, so this impossible
unless (6X) = B; i.e., 6i is a unit. Therefore, by Theorem 1.1, | i s a
JS-automorphism of 2?[[Jf]]. Then ψ~ιφ is an isomorphism of A[[X|]
onto B[[X]] such that ψ~ιΦ{A) £ B and ~̂V(-X") = -X". So φ~ιφ(A) =
5; but ψ^ί-B) = £; therefore 0(A) = B.

DEFINITION. A ring A is said to be perfectly power invariant if
whenever B is a ring and φ is an isomorphism of A[[X]] onto i?[[JΓ]],
then φ(A) £ B.

Let A be a perfectly power invariant ring, and let B be a ring
such that there is an isomorphism φ of -A[[X]] onto £[[X]]. In the
proof of Proposition 2.1, we have shown that there exists a j?-auto-
morphism ψ of i?[[X]] such that ψ(X) = Φ(X). So a perfectly power
invariant ring is strongly power invariant. But a strongly power
invariant ring is not necessarily perfectly power invariant.

EXAMPLE. Let K be a field and let K[t] be the polynomial ring
in an indeterminate t over K then K[t] is strongly power invariant
(by Corollary 1.9). But, by Corollary 2.8 in [5], we see that there is
an automorphism φ of iφ][[X]] such that Φ(K[t]) g K[t]. Therefore,
K[t] is not perfectly power invariant.

PROPOSITION 2.2. If a ring A is generated by its central idem-
potents, then A is perfectly power invariant. In particular a Boolean
ring is perfectly power invariant.

Proof. Let B be a ring such that there is an isomorphism φ of
A[[X]] onto 2?[[X]]. It is straightforward to show that the only
central idempotents of 2?[[-XΊ] are those of B, therefore φ(A) £ B.
Thus B is perfectly power invariant.

PROPOSITION 2.3. Let K be a field and let Π be the prime field
of K. If K is algebraic over Π, then K is perfectly power invariant.

Proof. Let B be a ring such that there is an isomorphism φ
of if[[X]] o n t ° £[[-XΊI Since K is strongly power invariant, we have
K~ B. Therefore, B is a field. Clearly, φ(Π) is the prime field of
B. It is straightforward to show that any element fe B[[X]];f& B,
is not algebraic over a field B. So / is not algebraic over φ(Π).
But φ{K) is algebraic over φ(Π), therefore φ(K) £ B. Thus K is
perfectly power invariant.
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COROLLARY 2.4. Let D be an integral domain and let Π be the
prime ring of D {that is, Π is the subring of D generated by the
identity element of D). If D is integral over 77, then D is perfectly
power invariant.

COROLLARY 2.5. An algebraic number field is perfectly power in-
variant, and the ring of algebraic integers is perfectly power invariant.
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