INNER FUNCTIONS UNDER UNIFORM TOPOLOGY

Domingo A. Herrero

The structure of the space \mathscr{F} of all inner functions in the unit disc $D=\{z:|z|<1\}$ under the metric topology induced by the H^{∞}-norm is considered. It is proven that if two inner functions p and q belong to the same component of \mathscr{F}, then the variation of p / q on each open arc of ∂D (the boundary of D in the complex plane C) where they can be continued analytically is bounded by a constant $C=C(p, q)$, independent of the arc. This criterion is used to show that a component of \mathscr{F} can contain nothing but Blaschke products with infinitely many zeroes, exactly one (up to a constant factor) singular inner function or infinitely many pairwise coprime singular inner functions.

The reader is assumed to be familiar with the basic theory of the space H^{∞}. We recall that the canonical form of an inner function is: $q=\lambda b r=\lambda b d s$, where $\lambda \in \partial D$ and

$$
\begin{equation*}
b(z)=\Pi_{k} b_{k}(z)=\Pi_{k} b\left(z, a_{k}\right)=\prod_{k} \overline{a_{k}} \| a_{k} \mid \cdot\left(a_{k}-z\right) /\left(1-\overline{a_{k}} z\right) \tag{1}
\end{equation*}
$$

$\left(\overline{a_{k}} /\left|a_{k}\right|=-1\right.$, if $\left.\alpha_{k}=0\right), a_{k} \in D$ and $\sum_{k}\left(1-\left|a_{k}\right|\right)<\infty ; b(z)$ is the Blaschke product of q and the b_{k} 's are the Blaschke factors;

$$
\begin{equation*}
r(z)=e(z, \mu)=\exp \left\{\int_{0}^{2 \pi}\left(z+e^{i \theta}\right) /\left(z-e^{i \theta}\right) d \mu(\theta)\right\} \tag{2}
\end{equation*}
$$

where μ is a nonnegative singular Borel measure on $\partial D ; r(z)$ is the singular part of q. If $\mu=\nu+\nu_{1}$, where ν and ν_{1} are the continuous and the purely atomic part, resp., of μ, then
(3) $s(z)=e(z, \nu)$ is the continuous singular part of q, and
(4) $d(z)=e\left(z, \nu_{1}\right)=\Pi_{j} d_{j}(z)=\Pi_{j} d\left(z ; \theta_{\jmath}, l_{j}\right)$, where $d(z ; \theta, l)=$ $\exp \left\{l\left(z+e^{i \theta}\right) /\left(z-e^{i \theta}\right)\right\}, 0 \leqq \theta<2 \pi$ and $l>0 ; d(z)$ is the atomic singular part of q. Clearly, $\sum_{j} l_{j}=\left\|\nu_{1}\right\|<\infty$; it will be assumed that $\theta_{j} \neq \theta_{h}$, whenever $j \neq h$.

The subsets of \mathscr{F} containing all those functions defined by the conditions (1), (2), (3), and (4) (or the constant multiples of such functions) will be denoted by $\mathscr{F}_{B}, \mathscr{F}_{s}, \mathscr{F}_{C}$, and \mathscr{F}_{A}, resp.

It is well-known that the inner function $q(z)$ can be continued analytically across (a neighborhood of) the point $\lambda \in \partial D$ if and only if $\lambda \notin \operatorname{Sp}(q)=\operatorname{supp}(\mu) \cup$ closure $\left\{a_{k}\right\}$; furthermore, if $\operatorname{Sp}(q) \cap \partial D \neq$ $\operatorname{Sp}(p) \cap \partial D(p, q \in \mathscr{F})$, then $\|q-p\|_{\infty}=2$, and p and q belong to different components of \mathscr{F}.

Let $\mathscr{F}_{\Gamma}(\Gamma$ a closed subset of $\partial D)$ be the set of all inner functions such that $\operatorname{Sp}(q) \cap \partial D=\Gamma$. Clearly, $\mathscr{F}_{\dot{\phi}}$ is the family of all Blaschke
products of finite order, and it is not difficult to see that $\mathscr{F}_{\phi}=$ $\bigcup_{n=0}^{\infty} \mathscr{F}_{n}$ (disjoint union!), where \mathscr{F}_{n} is the family of Blaschke products of order n and (for each n) \mathscr{F}_{n} is an acrwise connected open and closed component of \mathscr{F}, topologically homeomorphic to $\partial D \times D^{n}$ (see [2;4]).

During the "Sesquicentennial Seminar in Operator Theory" (Indiana University, Bloomington, Indiana, 1969-1970), R. G. Douglas asked for a characterization of the components of $\mathscr{F} \backslash \mathscr{F}_{\phi}$ containing a singular inner function; in particular, he asked whether or not every component of $\mathscr{F} \backslash \mathscr{F}_{\phi}$ contains a singular inner function. Here we partially answer the first question. A first counterexample to the second question was given by D. Sarason; his unpublished result follows from his paper [5] (some components of $\mathscr{F} \backslash \mathscr{F}_{\phi}$ contain nothing but Blaschke products whose zeroes converge nontangentially to $z=1$). We shall give another counterexample by using a different approach.

We want to express our gratitude to Professors R. G. Douglas, D. Sarason, and A. E. Tong for several helpful discussions; especially to D. Sarason who made available his unpublished paper [5]. We are also grateful to the referee who made several suggestions.

1. Components of \mathscr{F} containing exactly one, or $\underline{c}(\underline{c}=$ the power of the continuum) singular inner functions. We shall need a remarkable classical result due to O. Frostman.

Theorem 1.1 ([3, §59, p. 111]). Let $q \in \mathscr{F}$ and let

$$
\begin{equation*}
q_{a}(z)=[q(z)-a] /[1-\bar{a} q(z)], \quad a \in D \tag{1}
\end{equation*}
$$

Then, for all $a \in D$, except for a subset of logarithmic capacity zero, $q_{a} \in \mathscr{F}_{B}$.

For a precise definition of logarithmic capacity of a subset Λ of the complex plane, see [3; 6]. For our purposes, it is enough to recall that, if $\log \operatorname{cap} \Lambda=0$, then Λ is a "very small" subset of C; in fact, Λ has planar Lebesgue measure zero and, moreover, the projection of Λ on any line of C has linear measure zero. Thus, Theorem 1.1 implies, in particular, that \mathscr{F}_{B} is dense in \mathscr{F}.

We are going to analyze the behavior of an inner function q on a closed arc $\Gamma=\left[e^{i \alpha}, e^{i \beta}\right](0 \leqq \alpha<2 \pi, \alpha<\beta<\alpha+2 \pi)$, contained in $\partial D \backslash \operatorname{Sp}(q)$. For an arbitrary continuously differentiable unimodular function $u\left(e^{i \theta}\right)$ defined in a neighborhood (in ∂D) of Γ, we define the variation of u on Γ as

$$
M(u ; \alpha, \beta)=\arg u\left(e^{i \beta}\right)-\arg u\left(e^{i \alpha}\right)=\int_{\alpha}^{\beta} d \arg u\left(e^{i \theta}\right),
$$

where $\arg u\left(e^{i \theta}\right)$ denotes any continuously differentiable determination of the argument of $u\left(e^{i \theta}\right)$.

Lemma 1.2. Let p and q be two inner functions and let Γ be as above. Then
(i) $M(q ; \alpha, \beta) \geqq 0$;
(ii) If $\Gamma \subset \partial D \backslash \operatorname{Sp}(p), \quad M(p q ; \alpha, \beta)=M(p ; \alpha, \beta)+M(q ; \alpha, \beta) \geqq$ $M(q ; \alpha, \beta)$;
(iii) If p belongs to the component of q, then $\operatorname{Sp}(p) \cap \partial D=$ $\operatorname{Sp}(q) \cap \partial D$ and there exists a constant $C=C(p, q)$ such that $|M(q ; \alpha, \beta)-M(p ; \alpha, \beta)|=|M(q / p ; \alpha, \beta)| \leqq C$, and C is independent of Γ.

Proof. (i) This is trivial for finite Blaschke products. If $q(z)=$ $\Pi_{k=1}^{\infty} b\left(z, a_{k}\right)$ is an infinite Blaschke product such that $\Gamma \subset \partial D \backslash \operatorname{Sp}(q)$, then observe that $\left\{\prod_{k=1}^{n} b\left(z, \alpha_{k}\right)\right\}_{n=1}^{\infty}$ converges to $q(z)$ uniformly on Γ, from which the result follows. Finally, if q is any inner function, then we can find (by Frostman's theorem) a sequence $\left\{a_{n}\right\} \subset D$ converging to zero, such that $q_{n}=q_{a_{n}}$ (defined by (1)) is a Blaschke product, for all n. Clearly, q_{n} belongs to the component of q and therefore (see the introduction) $\mathrm{Sp}\left(q_{n}\right) \cap \partial D=\operatorname{Sp}(q) \cap \partial D$. Since the result is true for all $q_{n}, n=1,2, \cdots$ and $\left|q_{n}(z)-q(z)\right| \rightarrow 0$, as $n \rightarrow \infty$, uniformly on Γ, the result is also true for q.
(ii) This follows immediately from (i).
(iii) Let $\mathscr{C}_{0}(q)=\left\{q^{\prime} \in \mathscr{F}:\left\|q^{\prime}-q\right\|_{\infty}<1\right\}$ and, by induction, define $\mathscr{C}_{n}(q)=\left\{q^{\prime \prime} \in \mathscr{F}:\left\|q^{\prime \prime}-q^{\prime}\right\|_{\infty}<1\right.$, for some $\left.q^{\prime} \in \mathscr{C}_{n-1}(q)\right\}, n=1,2, \cdots$, and $\mathscr{C}(q)=\bigcup_{n=0}^{\infty} \mathscr{C}_{n}(q)$. Clearly, $\mathscr{C}(q)$ is open and closed in \mathscr{F} and contains the component of q. Moreover, $\operatorname{Sp}\left(q^{\prime}\right) \cap \partial D=\operatorname{Sp}(q) \cap \partial D$, for all $q^{\prime} \in \mathscr{C}(q)$.

Let $q^{\prime} \in \mathscr{C}_{0}(q)$; then for every $e^{i \theta} \in \Gamma,\left|q\left(e^{i \theta}\right)-q^{\prime}\left(e^{i \theta}\right)\right| \leqq\left\|q-q^{\prime}\right\|_{\infty}<1$, and therefore, for a suitable continuously differentiable definition of the argument, we have $\left.\mid \arg q\left(e^{i \theta}\right) / q^{\prime}\left(e^{i \theta}\right)\right\}<\pi / 3$. Hence, $\left|M\left(q / q^{\prime} ; \alpha, \beta\right)\right|=$ $\left|\arg q\left(e^{i \beta}\right) / q^{\prime}\left(e^{i \rho}\right)-\arg q\left(e^{i \alpha}\right) / q^{\prime}\left(e^{i \alpha}\right)\right| \leqq\left|\arg q\left(e^{i \beta}\right) / q^{\prime}\left(e^{i \beta}\right)\right|+\left|\arg q\left(e^{i \alpha}\right) / q^{\prime}\left(e^{i \alpha}\right)\right|<$ $2 \pi / 3$.

By an elementary inductive argument, it follows that $\left|M\left(q / q^{\prime \prime} ; \alpha, \beta\right)\right|<$ $2 \pi(n+1) / 3$, for all $q^{\prime \prime} \in \mathscr{C}_{n}(q), n=0,1,2, \cdots$, whence the result follows.

Theorem 1.3. Let $d(z)=d(z ; 0,1)$. Then, for each positive r, the component of d is isometric to the component of d^{r}; however, if $r \neq 1, d$ and d^{r} belong to different components of \mathscr{F}. Thus, if $0<$ $r<1$, then the subset $\left\{q d^{r} \in(c o m p o n e n t ~ o f ~ d)\right\}$ is isometric to the whole component of $d \cdot d^{r}$ is the only (up to a constant factor) singular inner function in its own component, for each $r>0$.

Proof. If $b(z)$ is a Blaschke factor, then the mapping $q(z) \rightarrow q(b(z))$ is an isometry from \mathscr{F} onto itself. If the zero of $b(z)$ is the point $a=(1-r) /(1+r) \in D(r>0)$, then $d(b(z))=d^{r}(z)$, which proves the first part.

Observe that $\operatorname{Sp}(d)=\{1\}$ and $M\left(d^{t} ; 1 / n, \pi\right) \rightarrow+\infty$, as $n \rightarrow \infty$, for each positive t; hence, d^{r} and d^{r+t} cannot belong to the same component, as follows from Lemma 1.2. Since $\mathscr{F}_{S} \cap \mathscr{F}_{11}=\left\{\lambda d^{t}: \lambda \in\right.$ $\partial D, t>0\}$, we conclude that every singular inner function in the component of d^{r} is a constant multiple of d^{r}.

The remaining statements are clear now.
Corollary 1.4. Let $q \in \mathscr{F}_{s}$ and assume that $\left\{\theta: e^{i \theta} \in \operatorname{Sp}(q)\right\}$ is well-ordered (with the usual order of the interval [0, 2π)). Then the only singular inner functions in the component of q are the constant multiples of q.

Proof. Clearly, $\mathrm{Sp}(q)$ is countable and therefore q has the form $q(z)=\lambda \Pi_{j} d\left(z ; \theta_{j}, l_{j}\right)=\lambda \Pi_{j} d_{j}(z)$ (i.e., $\left.q \in \mathscr{F}_{A}\right)$. Moreover, if $p \in \mathscr{F}_{S}$ belongs to the component of q, then $p(z)=\lambda^{\prime} \Pi_{h} d\left(z ; \theta_{h}^{\prime}, l_{j}^{\prime}\right)$, where $\lambda^{\prime} \in \partial D$ and $\operatorname{clos}\left\{e^{i \theta^{\prime}}\right\}=\operatorname{clos}\left\{e^{i \theta_{j}}\right\}=\operatorname{Sp}(q)$.

Let $q(z)=\lambda q_{1}(z) q_{1}^{\prime}(z)$, where $q_{1}(z)$ is the product of all d_{j} 's corresponding to the isolated points of $\operatorname{Sp}(q)$. It is not difficult to see, by using Lemma 1.2 and the arguments of the proof of Theorem 1.3, that $p(z)=\lambda^{\prime} q_{1}(z) p_{1}^{\prime}(z)$, where $\operatorname{Sp}\left(p_{1}^{\prime}\right)=\operatorname{Sp}\left(q_{1}^{\prime}\right) \subset \operatorname{Sp}(q)^{\prime}$ (here Γ^{\prime} denotes the derived set of the set Γ).

Now, let $q(z)=\lambda q_{1}(z) q_{2}(z) q_{2}^{\prime}(z)$, where $q_{2}(z)$ is the product of the d_{j} 's corresponding to the isolated points of $\operatorname{Sp}\left(q_{1}^{\prime}\right)$. Using the above arguments and the fact that, if $e^{i \theta} \in \operatorname{Sp}\left(q_{1}^{\prime}\right)$, then the arc $\left(e^{i \theta}, e^{i(\theta+\varepsilon)}\right]$ (for some $\varepsilon=\varepsilon(\theta)>0$) does not intersect $\operatorname{Sp}(q)$ (here we are using the "well-order property"!), we see that $p(z)=\lambda^{\prime} q_{1}(z) q_{2}(z) p_{2}^{\prime}(z)$.

The result follows by a transfinite inductive argument.
It is clear that, if $q \in \mathscr{F}$ is nonconstant, then $q(D)$ is an open subset of D; in general, $q(D) \neq D$ (namely, if q is singular, then $0 \notin q(D)$). In [6, Theorem 10], W. Seidel proved that if q is a nonconstant inner function and $D \backslash q(D)$ contains more than one point, then $\operatorname{Sp}(q) \cap \partial D$ is a nonempty perfect subset of ∂D. The set $D \backslash q(D)$ has been completely determined by O. Frostman ([3, §61, p. 113]; see also [6, Theorem 13]): If $q \in \mathscr{F}$ is nonconstant, then $D \backslash q(D)$ is a closed subset of D of logarithmic capacity zero; conversely, if Λ is a closed subset of D and $\log \operatorname{cap} \Lambda=0$, then the uniformizer of the Riemann surface $D \backslash \Lambda$ is an inner function q such that $D \backslash q(D)=\Lambda$. Moreover, if Λ is compact, then $\operatorname{Sp}(q) \cap \partial D$ has linear measure zero (see [6, p. 218]). The uniformizer of $D \backslash\{a\}(a \in D)$ can be taken equal
to $d_{(-a)}(z ; \theta, l)=q(z)$ (defined by (1); θ and $l>0$ can be arbitrarily chosen); in this case $\operatorname{Sp}(q)=\left\{e^{i \theta}\right\}$ consist of a single point and we know (by Theorem 1.3) that the component of q contains exactly one (up to a constant factor) singular inner function. On the other hand, if Λ is a compact subset of logarithmic capacity zero of D, and Λ contains more than one point, the uniformizer of $D \backslash \Lambda, p(z)$ is an inner function such that $\operatorname{Sp}(p)$ is a nonempty perfect subset of ∂D of linear measure zero; since, for every $a \in \Lambda, p_{a} \in \mathscr{F}_{s}$, we conclude that the component of p contains (at least!) two coprime singular inner functions. In fact, if $q=r s$ and $q_{a}=r t$, where $q, r, s, t \in \mathscr{F}$ and $a \neq 0$, then $q-a=r s-a=(1-\bar{a} q) r t$; hence $t(1-\bar{a} q)=s-a / r \in H^{\infty}$. It follows that r and a / r belong to H^{∞}, but this is impossible unless r is a constant. In other words, q and q_{a} ard coprime (this example and Theorem 1.5 below are due to D. Sarason).

Corollary 1.4 may be considered an improvement of the above mentioned result of W . Seidel for a very particular class of singular inner functions (in fact, Seidel's result can be reformulated as: If $\operatorname{Sp}(q) \cap \partial D$ is not perfect, then $D \backslash q(D)$ contains, at most, one point) and we guess that the "well-order" condition could be replaced by the weaker condition " $\operatorname{Sp}(q) \cap \partial D$ is countable"; however, Lemma 1.2 is not sufficient to prove this stronger conjecture. On the other hand, an analysis of the function p_{a} of the above example shows that no "reasonable" condition weaker than "countable" can work to get the same result.

Let $p(z)$ be the uniformizer of $D \backslash \Lambda$, where Λ is any nonempty perfect subset of D of logarithmic capacity zero (e.g., take as Λ a suitable "Cantor type" subset of the real interval $[0,1 / 2]$; see [3; 6]). Then, for each $a \in \Lambda, p_{a}$ is a singular inner function. Since $c(\Lambda)=\underline{c}$, the power of the continuum, it follows from the previous observations that

THEOREM 1.5 (D. Sarason). There exists a compact of \mathscr{F} containing \underline{c} pairwise coprime singular inner functions.

The perfect set Λ can be replaced by a finite subset or by a sequence of points in D converging to ∂D. This suggests that, for each $n=0,1,2, \cdots, \boldsymbol{K}_{0}$, there exists a component of \mathscr{F} containing exactly n coprime singular inner functions or, at least, exactly n "essentially different" (i.e., p / q is not a constant) singular inner functions, but we have been unable to prove it.

From Theorem 1.1, we obtain

Corollary 1.6.

(i) \mathscr{F}_{S} is a closed nowhere dense subset of \mathscr{F}.
(ii) \mathscr{F}_{B} is a dense, but not open subset of \mathscr{F}.

Proof. By the observations following Theorem 1.1, we only have to prove that \mathscr{F}_{S} is closed and \mathscr{F}_{B} is not open. The first fact is immediate, because \mathscr{F}_{s} is clearly closed with respect to the compactopen topology restricted to \mathscr{F} and the norm-topology in H^{∞} is stronger than the compact-open topology.

To see that \mathscr{F}_{B} is not open, write $d(z ; 0,1)=\prod_{j=1}^{\infty} d_{j}(z)$, where $d_{j}(z)$ is the 2^{j}-root of $d(z ; 0,1)$, and set $b(z)=\prod_{j=1}^{\infty} p_{j}(z), p_{j}(z)=\left[d_{j}(z)-\right.$ $1 / 2 j] /\left[1-(1 / 2 j) d_{j}(z)\right]$. It follows from Theorem 1.3 that $p_{j} \in \mathscr{F}_{B}$, for all j, and $b=\Pi_{j} p_{j} \in \mathscr{F}_{B}$. Given any $\varepsilon>0$, choose n so that $2 / n<\varepsilon$. Then $\left[\prod_{j \neq n} p_{j}\right] d_{n} \notin \mathscr{F}_{B}$ and $\left\|b-\left[\prod_{j \neq n} p_{j}\right] d_{n}\right\|_{\infty}=\left\|\left(d_{n}\right)_{(1 / 2 n)}-d_{n}\right\|_{\infty}<$ $2 / n<\varepsilon$.

Therefore, $b(z)$ does not belong to the interior of \mathscr{F}_{B}.
We close this section with two conjectures:
(1) The component, in \mathscr{F}_{s}, of a singular inner function p is the set of the constant multiples of p (i.e., \mathscr{F}_{s} is "essentially" a totally disconnected space).
(2) \mathscr{F}_{c} and \mathscr{F}_{A} are closed in \mathscr{F}.

2. Components contained in \mathscr{F}_{B}.

THEOREM 2.1. Given any sequence $0 \leqq r_{1} \leqq r_{2} \leqq \cdots \leqq r_{k} \leqq \cdots<1$ of radii such that $\sum_{k=1}^{\infty}\left(1-r_{k}\right)<\infty$, it is possible to choose \underline{c} sequences $\left\{\theta_{k}(t): 0 \leqq t<\infty\right\}$ of arguments such that, for each $t \in[0, \infty)$, the component of

$$
b_{t}(z)=\prod_{k=1}^{\infty} b\left(z, r_{k} \exp \left\{i \theta_{k}(t)\right\}\right)
$$

in \mathscr{F} is contained in \mathscr{F}_{B}. Moreover, if $t \neq t^{\prime}$, then b_{t} and b_{t}, belong to different components.

Proof. First of all observe that $\prod_{k=1}^{\infty} b\left(z, r_{k}\right)$ converges uniformly on each of the subsets $A_{n}=\left\{z:|z| \leqq 1,|1-z| \geqq 2^{-n}\right\}$. Therefore, we can choose $k_{0}=0<k_{1}<k_{2}<\cdots$ in such a way that

$$
\begin{align*}
& \left|M\left(\prod_{k=m_{1}}^{m_{2}} b\left(e^{i \theta}, r_{k}\right) ; 2^{-n}, 2 \pi-2^{-n}\right)\right|<2^{-n}, n=1,2, \cdots, \quad \text { and } \\
& 2 \pi\left(m_{2}-m_{1}+1\right)-2^{-n}<\left|M\left(\prod_{k=m_{1}}^{m_{2}} b\left(e^{i \theta}, r_{k}\right) ;-2^{-n}, 2^{-n}\right)\right| \tag{2}\\
& <2 \pi\left(m_{2}-m_{1}+1\right), n=1,2, \cdots,
\end{align*}
$$

whenever $k_{n} \leqq m_{1} \leqq m_{2}<\infty$.

Define $b(z)=b_{0}(z)=\prod_{h=1}^{\infty} b_{h}^{\prime}(z)$, where

$$
b_{h}^{\prime}(z)=\Pi\left\{b\left(z, r_{k} \exp \left[i 2^{-h}\right]\right): k_{h-1}<k \leqq k_{h}\right\}, h=1,2 \cdots .
$$

Then the first inequality of (2) implies that $M\left(b_{0}\left(e^{i \theta}\right) ; \pi, 2 \pi-\varepsilon\right)$ is uniformly bounded with respect to $\varepsilon, 0<\varepsilon<\pi$. Since $\operatorname{Sp}\left(b_{0}\right) \cap \partial D=\{1\}$, it is easy to see from Lemma 1.2 and the properties of the functions $d(z ; 0, l), l>0$, that the component of b_{0} in \mathscr{F} only contains Blaschke products. It is also clear that this property of b_{0} only depends on the fact that the sequence $\left\{k_{h}\right\}_{h=0}^{\infty}$ tends to infinity rapidly enough. Thus, if $k_{h}(t)$ denotes the integer part of $k_{h} h^{t}, 0 \leqq t<\infty$, and b_{t} is defined by $b_{t}(z)=\prod_{h=1}^{\infty} b_{t, h}^{\prime}(z)$, where $b_{t, h}^{\prime}(z)=\Pi\left\{b\left(z, r_{k} \exp \left[i 2^{-h}\right]\right): k_{h-1}(t)<\right.$ $\left.k \leqq k_{h}(t)\right\}$, then the component of b_{t} is also contained in \mathscr{F}_{B} and $\operatorname{Sp}\left(b_{t}\right) \cap \partial D=\{1\}$.

Finally observe that, if $0 \leqq t<t^{\prime}<\infty$, then the second inequality of (2) implies that $M\left(b_{t} / b_{t^{\prime}} ; 2^{-n}, \pi\right) \cong 2 \pi\left\{k_{n-1}(t)-k_{n-1}\left(t^{\prime}\right)+(1 / 2)\left[k_{n}(t)-\right.\right.$ $\left.\left.k_{n-1}(t)\right]-(1 / 2)\left[k_{n}\left(t^{\prime}\right)-k_{n-1}\left(t^{\prime}\right)\right]\right\}=\pi\left\{k_{n-1}(t)-k_{n-1}\left(t^{\prime}\right)+k_{n}(t)-k_{n}\left(t^{\prime}\right)\right\}=$ $-\pi\left\{k_{n}\left(n^{t^{\prime}}-n^{t}\right)+k_{n-1}\left((n-1)^{t^{\prime}}-(n-1)^{t}\right)+F\left(n ; t, t^{\prime}\right)\right\}$, where $F\left(n ; t, t^{\prime}\right)=$ $0\left(k_{n}\right)$; hence, $M\left(b_{t} / b_{t^{\prime}} ; 2^{-n}, \pi\right)$ tends to $-\infty$, as n tends to ∞. It follows from Lemma 1.2 that b_{t} cannot belong to the component of $b_{t^{\prime}}$.

Theorem 2.2. If $b(z)=\prod_{k=1}^{\infty} b\left(z, a_{k}\right)$ has the properties:
(1) The component of b in \mathscr{F} is contained in \mathscr{F}_{B},
(2) $a_{k} \neq 0$ for all k and $\pi>\arg a_{1}>\arg a_{2}>\cdots>\arg a_{k}>$ $\arg a_{k+1}>\cdots>0$, and $\lim \arg a_{k}=0$, and
(3) $M(b ; \pi, 2 \pi-\varepsilon)$ is uniformly bounded with respect to $\varepsilon, 0<$ $\varepsilon<\pi$; then there exists \underline{c} subproducts $b_{\omega}(0 \leqq \omega \leqq \pi / 4)$ of b enjoying the properties (1), (2), and (3); moreover, if $\omega \neq \omega^{\prime}$, then b_{ω} and b_{ω}, belong to different component of \mathscr{F}.

It is completely apparent that, if $b(z)$ is a Blaschke product satisfying any of the properties (1), (2), or (3), then the same result is true for every subproduct of b with infinitely many zeroes. Therefore, we only have to show that the subproducts of b can be chosen in such a way that they belong to different components. The proof of the next lemma is a minor modification of the proof given in [1].

Lemma 2.3. Let N be the set of natural numbers. There exist \underline{c} subsets $\left\{A_{\omega}: 0 \leqq \omega \leqq \pi / 4\right\}$ of N such that, if $\omega \neq \omega^{\prime}$, then
(i) $A_{\omega} \cap A_{\omega}$ is finite and
(ii) given any $N \in N, A_{\omega}$ contains a finite sequence of N consecutive numbers $n_{N}, n_{N}+1, \cdots, n_{N}+N-1$ which are not in A_{ω}.

Proof. Enumerate the points with integral coordinates in $\{(x, y): 0 \leqq x \leqq y\}$ as follows:
$1 \rightarrow(0,0)$
$2 \rightarrow(0,1), \quad 3 \rightarrow(1,1)$
$4 \rightarrow(0,2), \quad 5 \rightarrow(1,2), \quad 6 \rightarrow(2,2)$
$7 \rightarrow(0,3), \quad 8 \rightarrow(1,3), \quad 9 \rightarrow(2,3), \quad 10 \rightarrow(3,3)$. etc.
Let $P_{0}=\left\{(x, y): y>x^{2}\right\}$ and let $P_{\omega}, 0 \leqq \omega \leqq \pi / 4$, be the result of rotating P_{0} in $-\omega$ about the origin. Now it is enough to take A_{ω} equal to the subset of numbers in the above lattice lying inside P_{ω}.

Proof of Theorem 2.2. Properties (2) and (3) show that $b(z)$ can be factored as $b(z)=b^{\prime}(z) \cdot b^{\prime \prime}(z)$, where $b^{\prime}(z)$ is a finite or infinite subproduct and $b^{\prime \prime}(z)=\prod_{k=1}^{\infty} b\left(z, a_{k}^{\prime \prime}\right)$ satisfies (1), (2) (with a_{k} replaced by $a_{k}^{\prime \prime}$), and (3), and moreover,

$$
\begin{equation*}
\left|M\left(b^{\prime \prime} ; \arg a_{k}^{\prime \prime}, \pi\right)-2(k-1 / 2) \pi\right|<2 \pi \tag{3}
\end{equation*}
$$

Set $b_{\omega}(z)=b^{\prime}(z) \cdot \Pi\left\{b\left(z, a_{k}^{\prime \prime}\right): k \in A_{\omega}\right\}, 0 \leqq \omega \leqq \pi / 4$, where A_{ω} is the subset of N defined in Lemma 2.3. Now observe that the definition of A_{ω} and (3) imply that, if $0 \leqq \omega<\omega^{\prime} \leqq \pi / 4$, then

$$
\lim \sup \left\{M\left(b_{\omega} / b_{\omega^{\prime}} ; \arg \alpha_{k}^{\prime \prime}, \pi\right): k \rightarrow \infty\right\}=+\infty
$$

or $\lim \inf \left\{M\left(b_{\omega} / b_{\omega} ; \arg a_{k}^{\prime \prime}, \pi\right): k \rightarrow \infty\right\}=-\infty$. Thus, the result follows from Lemma 1.2.

Remark. It is completely apparent that the same argument can be used to prove, e.g., that \mathscr{F} has \underline{c} components containing nothing but Blaschke products whose sequences of zeroes converges nontangentially to $z=1$. To see this, set $b(z)=\prod_{k=1}^{\infty} b\left(z, r_{k}\right)$, where $\left\{r_{k}\right\}_{k=1}^{\infty}$ is a sequence of radii converging "very rapidly" to 1 so that, for a suitable sequence of arguments $\left\{\theta_{n}\right\}_{n=1}^{\infty}$, decreasing to zero, $M\left(d\left(e^{i \theta} ; 0,1 / n\right) / b\left(e^{i \theta}\right) ; \theta_{n}, \pi\right\}>n, n=1,2, \cdots$. Clearly, the same result is true for any of the subproducts b_{ω} of b (defined as in the proof of Theorem 2.2), and the result follows from Lemma 1.2.

References

1. J. R. Buddenhagen, Subsets of a countable set, Amer. Math. Monthly, 78 (1971), 536-537.
2. P. L. Duren, Theory of H^{p} Spaces, Academic Press, New York and London, 1970.
3. Otto Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la theorie des fonctions, Meddel. Lunds Univ. Mat. Sem., 3 (1935), 1-118.
4. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
5. D. Sarason, Approximation of piecewise continuous functions by quotients of bounded analytic functions, Canad. J. Math., 24 (1972), 642-657.
6. W. Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc., 36 (1934), 201-226.

Received October 9, 1972, and in revised form April 23, 1973. This research was supported by National Science Foundation Grant GP-14255 and GU-3173.

University of Chicagd
AND
State University of New York at Albany
Present address: Universidad Nacional de Río IV ${ }^{\circ}$ Departamento de Matemáticas Río IV ${ }^{\circ}$-Córdoba, Argentina

