INNER FUNCTIONS UNDER UNIFORM TOPOLOGY

Domingo A. Herrero

The structure of the space \mathscr{F} of all inner functions in the unit disc $D = \{z: |z| < 1\}$ under the metric topology induced by the H^{∞} -norm is considered. It is proven that if two inner functions p and q belong to the same component of \mathscr{F} , then the variation of p/q on each open arc of ∂D (the boundary of D in the complex plane C) where they can be continued analytically is bounded by a constant C = C(p, q), independent of the arc. This criterion is used to show that a component of \mathscr{F} can contain nothing but Blaschke products with infinitely many zeroes, exactly one (up to a constant factor) singular inner function or infinitely many pairwise coprime singular inner functions.

The reader is assumed to be familiar with the basic theory of the space H^{∞} . We recall that the canonical form of an inner function is: $q = \lambda br = \lambda bds$, where $\lambda \in \partial D$ and

(1)
$$b(z) = \prod_k b_k(z) = \prod_k b(z, a_k) = \prod_k \overline{a_k} / |a_k| \cdot (a_k - z) / (1 - \overline{a_k} z),$$

 $\overline{(a_k)}|a_k| = -1$, if $a_k = 0$, $a_k \in D$ and $\sum_k (1 - |a_k|) < \infty$; b(z) is the Blaschke product of q and the b_k 's are the Blaschke factors;

(2)
$$r(z) = e(z, \mu) = \exp \left\{ \int_{0}^{2\pi} (z + e^{i\theta})/(z - e^{i\theta}) d\mu(\theta) \right\},$$

where μ is a nonnegative singular Borel measure on ∂D ; r(z) is the singular part of q. If $\mu = \nu + \nu_1$, where ν and ν_1 are the continuous and the purely atomic part, resp., of μ , then

(3) s(z) = e(z, v) is the continuous singular part of q, and

(4) $d(z) = e(z, \nu_1) = \prod_j d_j(z) = \prod_j d(z; \theta_j, l_j)$, where $d(z; \theta, l) = \exp\{l(z + e^{i\theta})/(z - e^{i\theta})\}$, $0 \leq \theta < 2\pi$ and l > 0; d(z) is the *atomic singular part* of q. Clearly, $\sum_j l_j = ||\nu_1|| < \infty$; it will be assumed that $\theta_j \neq \theta_h$, whenever $j \neq h$.

The subsets of \mathscr{F} containing all those functions defined by the conditions (1), (2), (3), and (4) (or the constant multiples of such functions) will be denoted by $\mathscr{F}_{B}, \mathscr{F}_{S}, \mathscr{F}_{C}$, and \mathscr{F}_{A} , resp.

It is well-known that the inner function q(z) can be continued analytically across (a neighborhood of) the point $\lambda \in \partial D$ if and only if $\lambda \in \text{Sp}(q) = \text{supp}(\mu) \cup \text{closure} \{a_k\}$; furthermore, if $\text{Sp}(q) \cap \partial D \neq$ $\text{Sp}(p) \cap \partial D(p, q \in \mathscr{F})$, then $||q - p||_{\infty} = 2$, and p and q belong to different components of \mathscr{F} .

Let $\mathscr{F}_{\Gamma}(\Gamma \text{ a closed subset of } \partial D)$ be the set of all inner functions such that $\operatorname{Sp}(q) \cap \partial D = \Gamma$. Clearly, \mathscr{F}_{ϕ} is the family of all Blaschke products of finite order, and it is not difficult to see that $\mathscr{F}_{\phi} = \bigcup_{n=0}^{\infty} \mathscr{F}_n$ (disjoint union!), where \mathscr{F}_n is the family of Blaschke products of order n and (for each n) \mathscr{F}_n is an acrwise connected open and closed component of \mathscr{F} , topologically homeomorphic to $\partial D \times D^n$ (see [2; 4]).

During the "Sesquicentennial Seminar in Operator Theory" (Indiana University, Bloomington, Indiana, 1969–1970), R. G. Douglas asked for a characterization of the components of $\mathscr{F} \setminus \mathscr{F}_{\phi}$ containing a singular inner function; in particular, he asked whether or not every component of $\mathscr{F} \setminus \mathscr{F}_{\phi}$ contains a singular inner function. Here we partially answer the first question. A first counterexample to the second question was given by D. Sarason; his unpublished result follows from his paper [5] (some components of $\mathscr{F} \setminus \mathscr{F}_{\phi}$ contain nothing but Blaschke products whose zeroes converge nontangentially to z = 1). We shall give another counterexample by using a different approach.

We want to express our gratitude to Professors R. G. Douglas, D. Sarason, and A. E. Tong for several helpful discussions; especially to D. Sarason who made available his unpublished paper [5]. We are also grateful to the referee who made several suggestions.

1. Components of \mathscr{F} containing exactly one, or $\underline{c}(\underline{c} = \text{the power of the continuum})$ singular inner functions. We shall need a remarkable classical result due to O. Frostman.

THEOREM 1.1 ([3, § 59, p. 111]). Let $q \in \mathscr{F}$ and let (1) $q_a(z) = [q(z) - a]/[1 - \bar{a}q(z)]$, $a \in D$.

Then, for all $a \in D$, except for a subset of logarithmic capacity zero, $q_a \in \mathscr{F}_B$.

For a precise definition of *logarithmic capacity* of a subset Λ of the complex plane, see [3; 6]. For our purposes, it is enough to recall that, if log cap $\Lambda = 0$, then Λ is a "very small" subset of C; in fact, Λ has planar Lebesgue measure zero and, moreover, the projection of Λ on any line of C has linear measure zero. Thus, Theorem 1.1 implies, in particular, that \mathscr{F}_B is dense in \mathscr{F} .

We are going to analyze the behavior of an inner function q on a closed arc $\Gamma = [e^{i\alpha}, e^{i\beta}]$ ($0 \le \alpha < 2\pi, \alpha < \beta < \alpha + 2\pi$), contained in $\partial D \setminus \text{Sp}(q)$. For an arbitrary continuously differentiable unimodular function $u(e^{i\theta})$ defined in a neighborhood (in ∂D) of Γ , we define the variation of u on Γ as

$$M(u; \ lpha, \ eta) = rg \ u(e^{i eta}) - rg \ u(e^{i lpha}) = \int_{lpha}^{eta} d rg \ u(e^{i heta}) \ ,$$

where $\arg u(e^{i\theta})$ denotes any continuously differentiable determination of the argument of $u(e^{i\theta})$.

LEMMA 1.2. Let p and q be two inner functions and let Γ be as above. Then

(i) $M(q; \alpha, \beta) \geq 0$;

(ii) If $\Gamma \subset \partial D \setminus \text{Sp}(p)$, $M(pq; \alpha, \beta) = M(p; \alpha, \beta) + M(q; \alpha, \beta) \ge M(q; \alpha, \beta)$;

(iii) If p belongs to the component of q, then $\operatorname{Sp}(p) \cap \partial D =$ $\operatorname{Sp}(q) \cap \partial D$ and there exists a constant C = C(p, q) such that $|M(q; \alpha, \beta) - M(p; \alpha, \beta)| = |M(q/p; \alpha, \beta)| \leq C$, and C is independent of Γ .

Proof. (i) This is trivial for finite Blaschke products. If $q(z) = \prod_{k=1}^{\infty} b(z, a_k)$ is an infinite Blaschke product such that $\Gamma \subset \partial D \setminus \operatorname{Sp}(q)$, then observe that $\{\prod_{k=1}^{n} b(z, a_k)\}_{n=1}^{\infty}$ converges to q(z) uniformly on Γ , from which the result follows. Finally, if q is any inner function, then we can find (by *Frostman's theorem*) a sequence $\{a_n\} \subset D$ converging to zero, such that $q_n = q_{a_n}$ (defined by (1)) is a Blaschke product, for all n. Clearly, q_n belongs to the component of q and therefore (see the *introduction*) $\operatorname{Sp}(q_n) \cap \partial D = \operatorname{Sp}(q) \cap \partial D$. Since the result is true for all q_n , $n = 1, 2, \cdots$ and $|q_n(z) - q(z)| \to 0$, as $n \to \infty$, uniformly on Γ , the result is also true for q.

(ii) This follows immediately from (i).

(iii) Let $\mathscr{C}_0(q) = \{q' \in \mathscr{F} : ||q'-q||_{\infty} < 1\}$ and, by induction, define $\mathscr{C}_n(q) = \{q'' \in \mathscr{F} : ||q''-q'||_{\infty} < 1\}$, for some $q' \in \mathscr{C}_{n-1}(q)\}$, $n = 1, 2, \cdots$, and $\mathscr{C}(q) = \bigcup_{n=0}^{\infty} \mathscr{C}_n(q)$. Clearly, $\mathscr{C}(q)$ is open and closed in \mathscr{F} and contains the component of q. Moreover, $\operatorname{Sp}(q') \cap \partial D = \operatorname{Sp}(q) \cap \partial D$, for all $q' \in \mathscr{C}(q)$.

Let $q' \in \mathscr{C}_0(q)$; then for every $e^{i\theta} \in \Gamma$, $|q(e^{i\theta}) - q'(e^{i\theta})| \leq ||q-q'||_{\infty} < 1$, and therefore, for a suitable continuously differentiable definition of the argument, we have $|\arg q(e^{i\theta})/q'(e^{i\theta})| < \pi/3$. Hence, $|M(q/q'; \alpha, \beta)| = |\arg q(e^{i\beta})/q'(e^{i\beta}) - \arg q(e^{i\alpha})/q'(e^{i\alpha})| \leq |\arg q(e^{i\beta})/q'(e^{i\beta})| + |\arg q(e^{i\alpha})/q'(e^{i\alpha})| < 2\pi/3$.

By an elementary inductive argument, it follows that $|M(q/q''; \alpha, \beta)| < 2\pi(n+1)/3$, for all $q'' \in \mathscr{C}_n(q)$, $n = 0, 1, 2, \cdots$, whence the result follows.

THEOREM 1.3. Let d(z) = d(z; 0, 1). Then, for each positive r, the component of d is isometric to the component of d^r ; however, if $r \neq 1$, d and d^r belong to different components of \mathscr{F} . Thus, if 0 < r < 1, then the subset $\{qd^r \in (\text{component of } d)\}$ is isometric to the whole component of $d \cdot d^r$ is the only (up to a constant factor) singular inner function in its own component, for each r > 0. *Proof.* If b(z) is a Blaschke factor, then the mapping $q(z) \rightarrow q(b(z))$ is an isometry from \mathscr{F} onto itself. If the zero of b(z) is the point $a = (1 - r)/(1 + r) \in D(r > 0)$, then $d(b(z)) = d^{r}(z)$, which proves the first part.

Observe that Sp $(d) = \{1\}$ and $M(d^i; 1/n, \pi) \to +\infty$, as $n \to \infty$, for each positive t; hence, d^r and d^{r+t} cannot belong to the same component, as follows from Lemma 1.2. Since $\mathscr{F}_s \cap \mathscr{F}_{(1)} = \{\lambda d^t: \lambda \in \partial D, t > 0\}$, we conclude that every singular inner function in the component of d^r is a constant multiple of d^r .

The remaining statements are clear now.

COROLLARY 1.4. Let $q \in \mathscr{F}_s$ and assume that $\{\theta: e^{i\theta} \in \operatorname{Sp}(q)\}$ is well-ordered (with the usual order of the interval $[0, 2\pi)$). Then the only singular inner functions in the component of q are the constant multiples of q.

Proof. Clearly, Sp (q) is countable and therefore q has the form $q(z) = \lambda \prod_j d(z; \theta_j, l_j) = \lambda \prod_j d_j(z)$ (i.e., $q \in \mathscr{F}_A$). Moreover, if $p \in \mathscr{F}_S$ belongs to the component of q, then $p(z) = \lambda' \prod_h d(z; \theta'_h, l'_j)$, where $\lambda' \in \partial D$ and clos $\{e^{i\theta'_h}\} = \operatorname{clos} \{e^{i\theta_j}\} = \operatorname{Sp}(q)$.

Let $q(z) = \lambda q_1(z)q'_1(z)$, where $q_1(z)$ is the product of all d_j 's corresponding to the isolated points of Sp (q). It is not difficult to see, by using Lemma 1.2 and the arguments of the proof of Theorem 1.3, that $p(z) = \lambda' q_1(z)p'_1(z)$, where Sp $(p'_1) =$ Sp $(q'_1) \subset$ Sp (q)' (here Γ' denotes the derived set of the set Γ).

Now, let $q(z) = \lambda q_1(z)q_2(z)q'_2(z)$, where $q_2(z)$ is the product of the d_j 's corresponding to the isolated points of Sp (q'_1) . Using the above arguments and the fact that, if $e^{i\theta} \in \text{Sp}(q'_1)$, then the arc $(e^{i\theta}, e^{i(\theta+\varepsilon)}]$ (for some $\varepsilon = \varepsilon(\theta) > 0$) does not intersect Sp (q) (here we are using the "well-order property"!), we see that $p(z) = \lambda' q_1(z)q_2(z)p'_2(z)$.

The result follows by a transfinite inductive argument.

It is clear that, if $q \in \mathscr{F}$ is nonconstant, then q(D) is an open subset of D; in general, $q(D) \neq D$ (namely, if q is singular, then $0 \notin q(D)$). In [6, Theorem 10], W. Seidel proved that if q is a nonconstant inner function and $D \setminus q(D)$ contains more than one point, then $\operatorname{Sp}(q) \cap \partial D$ is a nonempty perfect subset of ∂D . The set $D \setminus q(D)$ has been completely determined by O. Frostman ([3, § 61, p. 113]; see also [6, Theorem 13]): If $q \in \mathscr{F}$ is nonconstant, then $D \setminus q(D)$ is a closed subset of D of logarithmic capacity zero; conversely, if Λ is a closed subset of D and log cap $\Lambda = 0$, then the uniformizer of the Riemann surface $D \setminus \Lambda$ is an inner function q such that $D \setminus q(D) = \Lambda$. Moreover, if Λ is compact, then $\operatorname{Sp}(q) \cap \partial D$ has linear measure zero (see [6, p. 218]). The uniformizer of $D \setminus \{a\}(a \in D)$ can be taken equal to $d_{(-a)}(z; \theta, l) = q(z)$ (defined by (1); θ and l > 0 can be arbitrarily chosen); in this case Sp $(q) = \{e^{i\theta}\}$ consist of a single point and we know (by Theorem 1.3) that the component of q contains exactly one (up to a constant factor) singular inner function. On the other hand, if Λ is a compact subset of logarithmic capacity zero of D, and Λ contains more than one point, the uniformizer of $D \setminus \Lambda$, p(z) is an inner function such that Sp (p) is a nonempty perfect subset of ∂D of linear measure zero; since, for every $a \in \Lambda$, $p_a \in \mathscr{F}_s$, we conclude that the component of p contains (at least!) two coprime singular inner functions. In fact, if q = rs and $q_a = rt$, where $q, r, s, t \in \mathscr{F}$ and $a \neq 0$, then $q - a = rs - a = (1 - \bar{a}q)rt$; hence $t(1 - \bar{a}q) = s - a/r \in H^{\infty}$. It follows that r and a/r belong to H^{∞} , but this is impossible unless ris a constant. In other words, q and q_a ard coprime (this example and Theorem 1.5 below are due to D. Sarason).

Corollary 1.4 may be considered an improvement of the above mentioned result of W. Seidel for a very particular class of singular inner functions (in fact, Seidel's result can be reformulated as: If $\operatorname{Sp}(q) \cap \partial D$ is not perfect, then $D \setminus q(D)$ contains, at most, one point) and we guess that the "well-order" condition could be replaced by the weaker condition " $\operatorname{Sp}(q) \cap \partial D$ is countable"; however, Lemma 1.2 is not sufficient to prove this stronger conjecture. On the other hand, an analysis of the function p_a of the above example shows that no "reasonable" condition weaker than "countable" can work to get the same result.

Let p(z) be the uniformizer of $D \setminus A$, where A is any nonempty perfect subset of D of logarithmic capacity zero (e.g., take as A a suitable "Cantor type" subset of the real interval [0, 1/2]; see [3; 6]). Then, for each $a \in A$, p_a is a singular inner function. Since c(A) = c, the power of the continuum, it follows from the previous observations that

THEOREM 1.5 (D. Sarason). There exists a compact of \mathscr{F} containing <u>c</u> pairwise coprime singular inner functions.

The perfect set Λ can be replaced by a finite subset or by a sequence of points in D converging to ∂D . This suggests that, for each $n = 0, 1, 2, \dots, \aleph_0$, there exists a component of \mathscr{F} containing exactly n coprime singular inner functions or, at least, exactly n "essentially different" (i.e., p/q is not a constant) singular inner functions, but we have been unable to prove it.

From Theorem 1.1, we obtain

COROLLARY 1.6. (i) \mathcal{F}_s is a closed nowhere dense subset of \mathcal{F} . (ii) \mathcal{F}_B is a dense, but not open subset of \mathcal{F} .

Proof. By the observations following Theorem 1.1, we only have to prove that \mathscr{F}_s is closed and \mathscr{F}_B is not open. The first fact is immediate, because \mathscr{F}_s is clearly closed with respect to the compact-open topology restricted to \mathscr{F} and the norm-topology in H^{∞} is stronger than the compact-open topology.

To see that \mathscr{F}_B is not open, write $d(z; 0, 1) = \prod_{j=1}^{\infty} d_j(z)$, where $d_j(z)$ is the 2^j-root of d(z; 0, 1), and set $b(z) = \prod_{j=1}^{\infty} p_j(z)$, $p_j(z) = [d_j(z) - 1/2j]/[1 - (1/2j)d_j(z)]$. It follows from Theorem 1.3 that $p_j \in \mathscr{F}_B$, for all j, and $b = \prod_j p_j \in \mathscr{F}_B$. Given any $\varepsilon > 0$, choose n so that $2/n < \varepsilon$. Then $[\prod_{j\neq n} p_j]d_n \notin \mathscr{F}_B$ and $|| b - [\prod_{j\neq n} p_j]d_n ||_{\infty} = || (d_n)_{(1/2n)} - d_n ||_{\infty} < 2/n < \varepsilon$.

Therefore, b(z) does not belong to the interior of \mathcal{F}_{B} .

We close this section with two conjectures:

(1) The component, in \mathscr{F}_s , of a singular inner function p is the set of the constant multiples of p (i.e., \mathscr{F}_s is "essentially" a totally disconnected space).

(2) \mathcal{F}_{c} and \mathcal{F}_{A} are closed in \mathcal{F} .

2. Components contained in \mathcal{F}_{B} .

THEOREM 2.1. Given any sequence $0 \leq r_1 \leq r_2 \leq \cdots \leq r_k \leq \cdots < 1$ of radii such that $\sum_{k=1}^{\infty} (1 - r_k) < \infty$, it is possible to choose \underline{c} sequences $\{\theta_k(t): 0 \leq t < \infty\}$ of arguments such that, for each $t \in [0, \infty)$, the component of

$$b_t(z) = \prod_{k=1}^{\infty} b(z, r_k \exp{\{i\theta_k(t)\}})$$

in \mathscr{F} is contained in \mathscr{F}_{B} . Moreover, if $t \neq t'$, then b_{t} and b_{t} , belong to different components.

Proof. First of all observe that $\prod_{k=1}^{\infty} b(z, r_k)$ converges uniformly on each of the subsets $A_n = \{z : |z| \leq 1, |1-z| \geq 2^{-n}\}$. Therefore, we can choose $k_0 = 0 < k_1 < k_2 < \cdots$ in such a way that

$$egin{aligned} &ig(2\,)\ &ig\|Mig(\prod_{k=m_1}^{m_2}b(e^{i heta},\,r_k);\,2^{-n},\,2\pi-2^{-n}ig)ig| < 2^{-n},\,n=1,\,2,\,\cdots, \ \ ext{ and }\ &2\pi(m_2-m_1+1)-2^{-n}$$

whenever $k_n \leq m_1 \leq m_2 < \infty$.

Define $b(z) = b_0(z) = \prod_{h=1}^{\infty} b'_h(z)$, where

 $b_h'(z) = \prod \{ b(z, r_k \exp [i2^{-h}]) : k_{h-1} < k \leq k_h \}, h = 1, 2 \cdots$

Then the first inequality of (2) implies that $M(b_0(e^{i\theta}); \pi, 2\pi - \varepsilon)$ is uniformly bounded with respect to ε , $0 < \varepsilon < \pi$. Since Sp $(b_0) \cap \partial D = \{1\}$, it is easy to see from Lemma 1.2 and the properties of the functions d(z; 0, l), l > 0, that the component of b_0 in \mathscr{F} only contains Blaschke products. It is also clear that this property of b_0 only depends on the fact that the sequence $\{k_h\}_{h=0}^{\infty}$ tends to infinity rapidly enough. Thus, if $k_h(t)$ denotes the integer part of $k_h h^t, 0 \leq t < \infty$, and b_t is defined by $b_t(z) = \prod_{h=1}^{\infty} b'_{t,h}(z)$, where $b'_{t,h}(z) = \prod \{b(z, r_k \exp [i2^{-h}]): k_{h-1}(t) < k \leq k_h(t)\}$, then the component of b_t is also contained in \mathscr{F}_B and Sp $(b_t) \cap \partial D = \{1\}$.

Finally observe that, if $0 \leq t < t' < \infty$, then the second inequality of (2) implies that $M(b_t/b_{t'}; 2^{-n}, \pi) \cong 2\pi \{k_{n-1}(t) - k_{n-1}(t') + (1/2)[k_n(t) - k_{n-1}(t)] - (1/2)[k_n(t') - k_{n-1}(t')]\} = \pi \{k_{n-1}(t) - k_{n-1}(t') + k_n(t) - k_n(t')\} = -\pi \{k_n(n^{t'} - n^t) + k_{n-1}((n-1)^{t'} - (n-1)^t) + F(n;t,t')\}$, where $F(n;t,t') = 0(k_n)$; hence, $M(b_t/b_{t'}; 2^{-n}, \pi)$ tends to $-\infty$, as n tends to ∞ . It follows from Lemma 1.2 that b_t cannot belong to the component of $b_{t'}$.

THEOREM 2.2. If $b(z) = \prod_{k=1}^{\infty} b(z, a_k)$ has the properties:

(1) The component of b in \mathcal{F} is contained in \mathcal{F}_{B} ,

(2) $a_k \neq 0$ for all k and $\pi > \arg a_1 > \arg a_2 > \cdots > \arg a_k >$ $\arg a_{k+1} > \cdots > 0$, and $\limsup a_k = 0$, and

(3) $M(b; \pi, 2\pi - \varepsilon)$ is uniformly bounded with respect to ε , $0 < \varepsilon < \pi$; then there exists \underline{c} subproducts $b_{\omega}(0 \leq \omega \leq \pi/4)$ of b enjoying the properties (1), (2), and (3); moreover, if $\omega \neq \omega'$, then b_{ω} and $b_{\omega'}$ belong to different component of \mathscr{S} .

It is completely apparent that, if b(z) is a Blaschke product satisfying any of the properties (1), (2), or (3), then the same result is true for every subproduct of b with infinitely many zeroes. Therefore, we only have to show that the subproducts of b can be chosen in such a way that they belong to different components. The proof of the next lemma is a minor modification of the proof given in [1].

LEMMA 2.3. Let N be the set of natural numbers. There exist \underline{c} subsets $\{A_{\omega}: 0 \leq \omega \leq \pi/4\}$ of N such that, if $\omega \neq \omega'$, then

(i) $A_{\omega} \cap A_{\omega'}$ is finite and

(ii) given any $N \in N$, A_{ω} contains a finite sequence of N consecutive numbers n_N , $n_N + 1$, \cdots , $n_N + N - 1$ which are not in $A_{\omega'}$.

Proof. Enumerate the points with integral coordinates in $\{(x, y): 0 \leq x \leq y\}$ as follows:

 $\begin{array}{l} 1 \to (0, \ 0) \\ 2 \to (0, \ 1), \quad 3 \to (1, \ 1) \\ 4 \to (0, \ 2), \quad 5 \to (1, \ 2), \quad 6 \to (2, \ 2) \\ 7 \to (0, \ 3), \quad 8 \to (1, \ 3), \quad 9 \to (2, \ 3), \quad 10 \to (3, \ 3). \text{ etc.} \end{array}$

Let $P_0 = \{(x, y): y > x^2\}$ and let $P_{\omega}, 0 \leq \omega \leq \pi/4$, be the result of rotating P_0 in $-\omega$ about the origin. Now it is enough to take A_{ω} equal to the subset of numbers in the above lattice lying inside P_{ω} .

Proof of Theorem 2.2. Properties (2) and (3) show that b(z) can be factored as $b(z) = b'(z) \cdot b''(z)$, where b'(z) is a finite or infinite subproduct and $b''(z) = \prod_{k=1}^{\infty} b(z, a_k'')$ satisfies (1), (2) (with a_k replaced by a_k''), and (3), and moreover,

(3)
$$|M(b''; \arg a_k'', \pi) - 2(k-1/2)\pi| < 2\pi$$
.

Set $b_{\omega}(z) = b'(z) \cdot \prod \{b(z, a_k''): k \in A_{\omega}\}, 0 \leq \omega \leq \pi/4$, where A_{ω} is the subset of N defined in Lemma 2.3. Now observe that the definition of A_{ω} and (3) imply that, if $0 \leq \omega < \omega' \leq \pi/4$, then

$$\limsup \{ M(b_{\omega}/b_{\omega'}; \arg a_k'', \pi) : k \to \infty \} = +\infty$$

or $\liminf \{M(b_{\omega}/b_{\omega'}; \arg a_k'', \pi): k \to \infty\} = -\infty$. Thus, the result follows from Lemma 1.2.

REMARK. It is completely apparent that the same argument can be used to prove, e.g., that \mathscr{F} has \underline{c} components containing nothing but Blaschke products whose sequences of zeroes converges nontangentially to z = 1. To see this, set $b(z) = \prod_{k=1}^{\infty} b(z, r_k)$, where $\{r_k\}_{k=1}^{\infty}$ is a sequence of radii converging "very rapidly" to 1 so that, for a suitable sequence of arguments $\{\theta_n\}_{n=1}^{\infty}$, decreasing to zero, $M(d(e^{i\theta}; 0, 1/n)/b(e^{i\theta}); \theta_n, \pi\} > n, n = 1, 2, \cdots$. Clearly, the same result is true for any of the subproducts b_{ω} of b (defined as in the proof of Theorem 2.2), and the result follows from Lemma 1.2.

REFERENCES

1. J. R. Buddenhagen, Subsets of a countable set, Amer. Math. Monthly, 78 (1971), 536-537.

2. P. L. Duren, Theory of H^p Spaces, Academic Press, New York and London, 1970.

3. Otto Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la theorie des fonctions, Meddel. Lunds Univ. Mat. Sem., **3** (1935), 1-118.

4. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

5. D. Sarason, Approximation of piecewise continuous functions by quotients of bounded analytic functions, Canad. J. Math., 24 (1972), 642-657.

6. W. Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc., **36** (1934), 201-226.

Received October 9, 1972, and in revised form April 23, 1973. This research was supported by National Science Foundation Grant GP-14255 and GU-3173.

UNIVERSITY OF CHICAGO AND STATE UNIVERSITY OF NEW YORK AT ALBANY

Present address: Universidad Nacional de Río IV° Departamento de Matemáticas Río IV°—Córdoba, Argentina